1
|
Ding R, Gang D, Tang X, Wu T, Liu L, Mao YY, Li ZR, Gao H. Sulfonyl Radical-Induced Regioselective Cyclization of Enamide-Olefin To Form Sulfonylated 6-7-Membered Cyclic Enamines. J Org Chem 2024; 89:15733-15738. [PMID: 39413396 DOI: 10.1021/acs.joc.4c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Remarkable progress has been made in the radical cascade cyclization of heteroaryl- or aryl-tethered alkenes to construct benzene-fused frameworks via the cracking of aryl C-H bonds. In contrast, the radical cascade cyclization of linear dienes through the cracking of vinyl C-H bonds to construct nonbenzene-fused ring frameworks with endocyclic double bonds has significantly lagged behind, and major advances have largely been restricted to the generation of 5-membered heterocycles, such as pyrrolinones. Herein, we report the silver-mediated regioselective sulfonylation-cyclization of linear dienes with sodium sulfinates to form sulfonylated 6- and 7-membered cyclic enamines.
Collapse
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Dong Gang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Xu Tang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Tao Wu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Lei Liu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Yue-Yuan Mao
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Zi-Rong Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Hui Gao
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
2
|
Qian CW, Li X, Gu MQ. Visible-Light-Induced Multi-Component Nitrooxylation Reactions of α-Diazoesters, Cyclic Ethers, and Tert-Butyl Nitrite Leading to Organic Nitrate Esters. Chemistry 2024; 30:e202402304. [PMID: 39044322 DOI: 10.1002/chem.202402304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
A simple and efficient strategy has been developed for the synthesis of organic nitrate esters via visible-light-induced multi-component nitrooxylation reactions of α-diazoesters, cyclic ethers, and tert-butyl nitrite under open air atmosphere. This transformation could be conducted under mild and metal-free conditions to provide a number of organic nitrate esters in moderate to good yields using air as the green oxidant.
Collapse
Affiliation(s)
- Cun-Wei Qian
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Xian Li
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Meng-Qing Gu
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| |
Collapse
|
3
|
Huang AX, Li R, Lv QY, Yu B. Photocatalytic Sulfonylation: Innovations and Applications. Chemistry 2024; 30:e202402416. [PMID: 39003604 DOI: 10.1002/chem.202402416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed. In this review, the recent advances in photocatalyzed sulfonylation have been reviewed since 2020, with a primary focus on discussing reaction design and mechanism.
Collapse
Affiliation(s)
- An-Xiang Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Qi-Yan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Zhou JT, Wu Q, Zhao JX, Wu LL, He XH, Liang LQ, Zhang GH, Li J, Xu WF, Yang RY. Sucurchalasins A and B, Sulfur-Containing Heterodimers of a Cytochalasan and a Macrolide from the Endophytic Fungus Aspergillus spelaeus GDGJ-286. JOURNAL OF NATURAL PRODUCTS 2024; 87:2327-2334. [PMID: 39258410 DOI: 10.1021/acs.jnatprod.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Two sulfur-containing heterodimers of a cytochalasan and a macrolide, sucurchalasins A and B (1 and 2), and four known cytochalasan monomers (3-6), as well as four known macrolide derivatives (7-10), were obtained from the endophytic fungus Aspergillus spelaeus GDGJ-286. Sucurchalasins A and B (1 and 2) are the first cytochalasan heterodimers formed via a thioether bridge between cytochalasan and curvularin macrolide units. Their structures were elucidated by detailed analysis of NMR, LC-MS/MS, and X-ray crystallography. In bioassays, 1 and 2 exhibited cytotoxic effects on A2780 cells, with IC50 values of 3.9 and 8.3 μM, respectively. They also showed antibacterial activities against E. faecalis and B. subtilis with MIC values of 3.1 and 6.3 μg/mL, respectively.
Collapse
Affiliation(s)
- Jia-Tong Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Qian Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jing-Xian Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Liu-Lin Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xian-Hua He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Li-Qi Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Guo-Hai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Wei-Feng Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Rui-Yun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
5
|
Guo G, Li W, Zheng J, Liu A, Zhang Q, Wang Y. PhI(OAc) 2-Promoted 1,2-Transfer Reaction between 1,1-Disubstituted Allylic Alcohols and Thiophenols. Molecules 2024; 29:3112. [PMID: 38999064 PMCID: PMC11243614 DOI: 10.3390/molecules29133112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The PhI(OAc)2-promoted 1,2-transfer reaction between allylic alcohols and thiophenols, conducted in an argon atmosphere, has proven to be effective in producing β-carbonyl sulfides from 1,1-disubstituted allylic alcohols in high yields. This method offers a fast and efficient way to synthesize β-carbonyl sulfides, which are valuable intermediates in organic synthesis. This discussion focuses on the effects of the oxidizer, temperature, and solvent on the reaction. A proposed tentative mechanism for this reaction is also discussed.
Collapse
Affiliation(s)
- Guozhe Guo
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Wenduo Li
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Jingjing Zheng
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Aping Liu
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Qi Zhang
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Yatao Wang
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| |
Collapse
|
6
|
Ding H, Shi S, Hou Y, Cui W, Sun R, Lv Y, Yue H, Wei W, Yi D. Visible-Light-Promoted Cascade Coupling of 2-Isocyanonaphthalenes with Elemental Sulfur and Amines to Construct Naphtho[2,1-d]thiazol-2-Amines. Chemistry 2024; 30:e202400719. [PMID: 38462510 DOI: 10.1002/chem.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
A visible-light-induced strategy has been explored for the synthesis of naphtho[2,1-d]thiazol-2-amines through ortho-C-H sulfuration of 2-isocyanonaphthalenes with elemental sulfur and amines under external photocatalyst-free conditions. This three-component reaction, which utilizes elemental sulfur as the odorless sulfur source, molecular oxygen as the clean oxidant, and visible light as the clean energy source, provides a mild and efficient approach to construct a series of naphtho[2,1-d]thiazol-2-amines. Preliminary mechanistic studies indicated that visible-light-promoted photoexcitation of reaction intermediates consisting of thioureas and DBU might be involved in this transformation.
Collapse
Affiliation(s)
- Hongyu Ding
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Siyu Shi
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Yanan Hou
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Wenxiu Cui
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Rong Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Yufen Lv
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, 810008, P.R.China
| | - Wei Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, 810008, P.R.China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, P. R. China
| |
Collapse
|
7
|
Feng Y, Chen S, Lv L, Yaremenko IA, Terent'ev AO, Li Z. Photocatalytic Sulfonyl Peroxidation of Alkenes via Deamination of N-Sulfonyl Ketimines. Org Lett 2024; 26:1920-1925. [PMID: 38386918 DOI: 10.1021/acs.orglett.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
A photocatalytic three-component sulfonyl peroxidation of alkenes with N-sulfonyl ketimines and tert-butyl hydroperoxide is reported. The reaction takes place via the photoinduced EnT process, which allows the efficient synthesis of a variety of β-peroxyl sulfones under mild reaction conditions in the absence of a transition metal catalyst. The downstream derivatizations of the peroxides were also performed. Furthermore, the utility of this protocol was manifested by the synthesis of 11β-HSD1 inhibitor and the antiprostate cancer drug bicalutamide.
Collapse
Affiliation(s)
- Yuting Feng
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shujun Chen
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
8
|
Sun X, Zhang Y, Li T, Li K, Sun Q, Wang Z. Construction of Asymmetric C-S Bonds via an Electrochemical Catalysis. Org Lett 2024; 26:1566-1572. [PMID: 38364794 DOI: 10.1021/acs.orglett.3c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Construction of asymmetric C-S bonds was realized via electrochemical catalysis in the presence of a chiral nickel complex. The reaction can be carried out with excellent stereoselectivity and great functional group tolerance. The corresponding products provide crucial precursors for some functional materials and pharmaceutical drugs.
Collapse
Affiliation(s)
- Xiang Sun
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yan Zhang
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tong Li
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Kai Li
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Qi Sun
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhiyong Wang
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Li JS, Liu J, Wang YT, Dai JY, Li ZW, Luo WW, Zhang YF, Liu HW, Liu WD. Diazotization-Enabled Deaminative Late-Stage Functionalization of Primary Sulfonamides. Org Lett 2023; 25:8263-8268. [PMID: 37947421 DOI: 10.1021/acs.orglett.3c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
We, for the first time, disclosed a simple and efficient strategy for the late-stage functionalization of primary sulfonamides by diazotization, leading to sulfonyl chlorides, sulfonates, and complex sulfonamides. This protocol obviates the requirement for the prefunctionalization of sulfonamides. Its applicability is exemplified by the late-stage functionalization of sulfonamide-type drugs.
Collapse
Affiliation(s)
- Jiang-Sheng Li
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jia Liu
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yao-Tian Wang
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jia-Ying Dai
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Wei Li
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Wei-Wei Luo
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yue-Fei Zhang
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Han-Wen Liu
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Wei-Dong Liu
- National Engineering Research Center for Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410007, China
| |
Collapse
|
10
|
Zhang G, Zhang Y, Li P, Zhou C, Wang M, Wang L. Metal-Free Synthesis of 2 H-Indazole Skeletons by Photochemistry or Thermochemistry. J Org Chem 2023; 88:12341-12356. [PMID: 37582245 DOI: 10.1021/acs.joc.3c01091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A simple and tuned synthesis of a 2H-indazole skeleton under metal-free conditions was developed. Under visible-light irradiation at room temperature, 2-((aryl/alkyl/H)ethynyl))aryltriazenes reacted with arylsulfinic acids to afford 3-functionalized 2H-indazoles without extra photocatalyst via an electron donor-acceptor complex. In the presence of arylsulfinic acid, 2-(ethynyl)aryltriazenes underwent an intramolecular oxidation/cyclization to provide 2H-indazole-3-carbaldehydes at 50 °C in air.
Collapse
Affiliation(s)
- Gan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Min Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Scienes, Shanghai 200032, P. R. China
| |
Collapse
|
11
|
Lu L, Wang H, Huang S, Xiong B, Zeng X, Ling Y, Qiu X. Photoredox catalysis in alkene and alkyne alkylsulfonylations: the construction of Markovnikov selective α-sulfones. Chem Commun (Camb) 2023; 59:10420-10423. [PMID: 37554108 DOI: 10.1039/d3cc02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Photoredox alkene or alkyne alkylsulfonylation has been achieved with phthalimide esters and sulfinates providing unexpected α-sulfones. Mechanistic studies disclose that the preferential alkyl radical addition to the alkene or the Markovnikov hydrosulfonation of the alkyne should contribute to the formation of the β-alkylated α-sulfones. Moreover, the reaction is easy to operate covering quite large substrate scales including primary, secondary and tertiary alkyl groups and all sorts of terminal aryl alkenes or alkynes. Besides, the reaction was also suitable for the sulfonylation of several drug molecules.
Collapse
Affiliation(s)
- Lingyi Lu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| | - Haoran Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| | - Shanshan Huang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| | - Biao Xiong
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| | - Xiaobao Zeng
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| | - Yong Ling
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| | - Xiaodong Qiu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| |
Collapse
|
12
|
Qi Z, Wen SM, Wu Q, Jiang DF, Hao WJ, Jiang B. Annulative Aminosulfonylation of Unactivated Alkenes for Accessing Pyrazolines via Multicomponent SO 2 Insertion. J Org Chem 2023; 88:11874-11884. [PMID: 37535756 DOI: 10.1021/acs.joc.3c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A direct arylsulfonylation of β,γ-unsaturated hydrazones method, in which sulfonated pyrazolines are accessed by a three-component reaction of β,γ-unsaturated hydrazones, DABSO, and aryldiazonium tetrafluoroborates, has been developed without external oxidants or catalysts. This transformation is triggered by the formation of arylsulfonyl radicals in situ from the reaction of aryldiazonium tetrafluoroborates and DABSO, and is enabled by controllable generation of C center radical, in which DABSO was utilized as the sulfone source and an oxidant in this radical-mediated cascaded reaction. A wide range of substrates can be applied in this process to afford pyrazolines in good yield, and it is amenable for gram-scale synthesis.
Collapse
Affiliation(s)
- Zhenjie Qi
- Department of Engineering, Jining University, Qufu 273155, Shandong, China
| | - Si-Miaomiao Wen
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Provincial First-Class Applied Discipline (Pharmacy), Changsha Medical University, Changsha 410000, China
| | - Quansen Wu
- Department of Engineering, Jining University, Qufu 273155, Shandong, China
| | - Dong-Fang Jiang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Provincial First-Class Applied Discipline (Pharmacy), Changsha Medical University, Changsha 410000, China
| | - Wen-Juan Hao
- School of Chemistry & Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Bo Jiang
- School of Chemistry & Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
13
|
Bhatt D, Kim HY, Oh K. Chemodivergent Sulfonylation of Enynones via Ionic and Radical Addition Modes of Sulfinic Acids. Org Lett 2023. [PMID: 37494288 DOI: 10.1021/acs.orglett.3c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Different addition modes of sulfinic acids were developed for the chemodivergent sulfonylation of enynones, where the ionic sulfonylation to an alkyne moiety of enynones was effected through a salt-controlled syn-addition pathway. The radical sulfonylation of an alkene moiety also provided the stereodefined sulfonylated alkenes. A one-pot tandem sequence of the Ti(Oi-Pr)4-catalyzed α-vinyl aldol condensation of (E)-β-chlorovinyl ketones followed by the chemodivergent sulfonylations was also explored, allowing for ready access to highly substituted dienes and enynes.
Collapse
Affiliation(s)
- Divya Bhatt
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
14
|
Ding R, Li L, Yu YT, Zhang B, Wang PL. Photoredox-Catalyzed Synthesis of 3-Sulfonylated Pyrrolin-2-ones via a Regioselective Tandem Sulfonylation Cyclization of 1,5-Dienes. Molecules 2023; 28:5473. [PMID: 37513345 PMCID: PMC10386375 DOI: 10.3390/molecules28145473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
A mild, visible-light-induced, regioselective cascade sulfonylation-cyclization of 1,5-dienes with sulfonyl chlorides through the intermolecular radical addition/cyclization of alkenes C(sp2)-H was developed. This procedure proceeds well and affords a mild and efficient route to a range of monosulfonylated pyrrolin-2-ones at room temperatures.
Collapse
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Liang Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Ya-Ting Yu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Bing Zhang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Pei-Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
- Information College, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
15
|
Dong H, Chen C, Zhao J, Ji Y, Yang W. Photoinduced Photocatalyst-Free Cascade Cyclization of Alkynes with Sodium Sulfinates for the Synthesis of Benzothiophenes and Thioflavones. Molecules 2023; 28:molecules28114436. [PMID: 37298913 DOI: 10.3390/molecules28114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The subject of this investigation is a new method for the construction of sulfonylated heterocycles which overcomes the limitations of classical approaches using a cheap feedstock sulfonylating agent, especially under photocatalyst- and metal-free conditions.
Collapse
Affiliation(s)
- Hongqiang Dong
- The Open Research Fund of the National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, College of Agriculture, Tarim University, Alaer 843300, China
| | - Chunli Chen
- The Open Research Fund of the National and Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology of Characteristic Fruit Trees in South Xinjiang, College of Agriculture, Tarim University, Alaer 843300, China
| | - Jinlei Zhao
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd., Yangzhou 225127, China
| | - Yigang Ji
- Jiangsu Key Laboratory of Biofuctional Molecules, Department of Life Sciences and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Wenchao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Luo H, Li M, Wang XC, Quan ZJ. Direct synthesis of phosphorotrithioates from [TBA][P(SiCl 3) 2] and disulfides. Org Biomol Chem 2023; 21:2499-2503. [PMID: 36880434 DOI: 10.1039/d2ob02285k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Sulfur-containing organophosphorus molecules have played a pivotal role in organic synthesis, pharmaceutical pesticides and functional materials, thereby motivating researchers worldwide to establish S-P bonds from more environmentally friendly phosphorus sources. In this study, a novel method was developed for constructing S-P bonds, specifically by reacting the inorganic phosphorus derivative TBA[P(SiCl3)2] with sulfur-containing compounds under mild conditions. This method demonstrates the advantages of low energy consumption, mild reaction conditions and environmental friendliness. Moreover, this protocol-as a green synthesis method to replace the use of white phosphorus in the production of organophosphorus compounds (OPCs)-achieved the functional conversion of "inorganic phosphorus to organic phosphorus", in line with the national green development strategy.
Collapse
Affiliation(s)
- Hui Luo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| |
Collapse
|
17
|
Huang J, Wang W, Zhang L, Meng X. Recent advances in the synthesis of benzo[b]thiophene fused polycyclic derivatives: strategies and reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Zhou Z, Liu Q, Huang Z, Zhao Y. A Bi(OTf) 3-Promoted Hydrosulfonylation of Alkenes with Sulfonyl Hydrazides: An Approach to Branched Sulfones. Org Lett 2022; 24:4433-4437. [PMID: 35678549 DOI: 10.1021/acs.orglett.2c01657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Bi(OTf)3-promoted hydrosulfonylation of alkenes with sulfonyl hydrazides to produce branched sulfones is reported, in which various branched sulfones (>40 examples) have been prepared in moderate to good yields. The gram-scale reaction and synthesis of the experimental inhibitor precursor showed the potential application. A preliminary mechanistic study revealed that double-bond migration to form the α,β-conjugated alkene is crucial for this transformation.
Collapse
Affiliation(s)
- Zheng Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qianqian Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| |
Collapse
|
19
|
Photocatalyst-free visible-light-mediated three-component reaction of α-diazoesters, cyclic ethers and NaSCN to access organic thiocyanates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Wang L, Zhang Y, Miao AQ, Zhang TS, Wang X, Hao WJ, Tu SJ, Jiang B. Nitrative bicyclization of 1,7-diynes for accessing skeletally diverse tricyclic pyrroles. Chem Commun (Camb) 2022; 58:4376-4379. [PMID: 35297437 DOI: 10.1039/d2cc00206j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel metal-free nitrative bicyclization of 1,7-diynes with tBuONO in the presence of H2O is reported, producing three types of skeletally diverse tricyclic pyrroles, namely pyrrolo[3,4-c]quinolines, chromeno[3,4-c]pyrroles and benzo[e]isoindoles, with moderate to good yields by simply tuning the linkers of the 1,7-diynes. This domino protocol demonstrates remarkable compatibility regarding 1,7-diynes with different linkers, such as nitrogen and oxygen atoms and a hydroxymethyl group, and tBuONO plays dual roles as a nitro precursor as well as a nitrogen atom source.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yin Zhang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - An-Qi Miao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Xiang Wang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, People's Republic of China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
21
|
Peng X, Chang J, Gao Y, Duan F, Ruan H. Thiocytochalasins A−D, four sulfur-containing cytochalasans from an endophytic fungus Phoma multirostrata XJ-2-1. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Wang K, Huang J, Liu W, Wu Z, Yu X, Jiang J, He W. Direct Synthesis of 3-Sulfonylquinolines from N-Propargylanilines with Sulfonyl Chlorides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhu Y, Xiao T, Xia D, Yang W. Recent Advances in the Decarboxylative Fluoroalkylation of Fluoroalkyl Carboxylic Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Tang X, Chen J, Tian J, Wen K, Gao Q, Shi J, Yao X, Wu T. A new method for C(sp2)-H sulfonylmethylation with glyoxylic acid and sodium sulfinates. Org Biomol Chem 2022; 20:1652-1655. [DOI: 10.1039/d2ob00029f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein describe a C4 sulfonylmethylation of pyrazol-5-amines with glyoxylic acid and sodium sulfinates. The reaction only needed to add water as the solvent, and it featured mild reaction condition,...
Collapse
|
25
|
Shi Y, Xiao T, Xia D, Yang W. SCF 3 Radical Initiated Cascade Reaction of Unsaturated Hydrocarbon. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Meng Y, Chen L, Li EQ. Recent Advances in Lewis Base-Catalysed Chemo-, Diastereo- and Enantiodivergent Reactions of Electron-deficient Olefins and Alkynes. CHEM REC 2021; 22:e202100276. [PMID: 34962071 DOI: 10.1002/tcr.202100276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Indexed: 01/28/2023]
Abstract
Lewis base catalysis provides powerful synthetic strategies for the selective construction of carbon-carbon and carbon-heteroatom bonds. Thus continuous efforts have been deployed to develop effective methodologies involving Lewis base catalysis. The nucleophilicity and steric hindrance of Lewis base catalyst often plays a major role in catalytic reactivity and selectivity in the reaction. In the past decades, tremendous progress has been made in the divergent construction of valuable motifs under Lewis base catalysis. In this review, we provide a comprehensive and updated summary of Lewis base-catalysed chemo-, diastereo- and enantiodivergent reaction, as well as the related mechanism will be highlighted in detail.
Collapse
Affiliation(s)
- Yinggao Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lihui Chen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|