1
|
Jaiswal AK, Kushawaha AK, Katiyar S, Ansari A, Bhatt H, Kant R, Sashidhara KV. Silver-Catalyzed Synthesis of 5-Amino-4-sulfonyl Pyrazoles from 1,2-Diaza-1,3-dienes. J Org Chem 2024; 89:16033-16037. [PMID: 39438304 DOI: 10.1021/acs.joc.4c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A facile and dependable synthetic route for 5-amino-4-sulfonyl pyrazoles, which are substantially important in pharmaceuticals, is highly desirable. This work presents a novel cascade reaction for their efficient synthesis. The approach utilizes silver as a catalyst for C(sp2)-H sulfonylation of readily available starting materials 1,2-diaza-1,3-dienes with sulfinate salts, followed by intramolecular cascade cyclization annulation to afford the desired 5-amino-4-sulfonyl pyrazoles in good to excellent yields under mild conditions.
Collapse
Affiliation(s)
- Arvind Kumar Jaiswal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Ajay Kishor Kushawaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Hemlata Bhatt
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| |
Collapse
|
2
|
Jiang L, Tang Y, Li S, Peng X, Saffar Andaloussi R, Chen XY. Visible Light-Driven Metal- and Photocatalyst-Free Synthesis of β-Trifluoromethylated Enamines via Trifluoromethyl Thianthrenium Salts. Chem Asian J 2024:e202401129. [PMID: 39469779 DOI: 10.1002/asia.202401129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
A novel protocol for the visible-light-driven synthesis of β-trifluoromethylated enamines has been developed, which operates without the use of transition metals or any photocatalysts, utilizing trifluoromethylthiosulfonium salts as the source of trifluoromethyl groups under mild conditions. According to this new protocol, more than 40 products have been prepared in moderate to good yields. In addition to eliminating the need for expensive or toxic transition metals and photocatalysts, this new methodology proves its potential scalability through air-stability, the use of safe and readily available reagents, a two-step one-pot procedure, and effective gram-scale reactions. This innovative approach not only demonstrates promise for green chemical synthesis but also offers a new pathway for the advancement of fluorine chemistry in sustainable organic synthesis.
Collapse
Affiliation(s)
- Liang Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Yisong Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510275, China
| | - Shaxuan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Xing Peng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Rim Saffar Andaloussi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Xiao Yun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| |
Collapse
|
3
|
Tu Z, Wan JP, Wei L, Liu Y. Iridium-catalyzed reduction of o-hydroxyl phenyl enaminones for the synthesis of propiophenones and their application in 3-methyl chromone synthesis. Org Biomol Chem 2024; 22:8279-8284. [PMID: 39301715 DOI: 10.1039/d4ob01359j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A method of reducing o-hydroxyphenyl enaminones with silane as the reductant to provide o-hydroxyl propiophenones has been achieved with iridium catalysis. The reduction reactions were found to proceed via the assistance of the hydroxyl group in the phenyl ring. In addition, the o-hydroxyl propiophenone products were used for the easy synthesis of 3-methyl chromones by directly incorporating N,N-dimethyl formamide dimethyl acetal (DMF-DMA) without using any catalyst.
Collapse
Affiliation(s)
- Zhi Tu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| | - Li Wei
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| | - Yunyun Liu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
4
|
Oyejobi AO, Huang J, Luo YX, Tang XY, Wang L. Photooxidative Reaction of β-Oxoamides with Amines for the Synthesis of Pyrrolin-4-ones under External Photocatalyst-Free Conditions. J Org Chem 2024; 89:9972-9978. [PMID: 38954774 DOI: 10.1021/acs.joc.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The incorporation of oxygen atoms from air under aerobic conditions plays an important role in organic synthesis. Herein, Brønsted acids are found to be a two-in-one strategic catalyst to transform enamines from β-oxoamides and amines to pyrrolin-4-ones without an external photocatalyst under visible-light conditions. The Brønsted acid can inhibit the C-C bond fragmentation of the [2 + 2] adduct from enamine and 1O2, but most importantly, it can form photosensitizers with enamine and pyrrolin-4-one product by acidochromism to promote the 1O2 generation.
Collapse
Affiliation(s)
- Aanuoluwapo O Oyejobi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jie Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yun-Xuan Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
5
|
Fang R, Zheng L, Chen X, Wang C, Chen Y. An FeCl 3-catalyzed three-component reaction for the synthesis of β-(1,2,3-triazolyl)-ketones using DMF as a one-carbon source. Org Biomol Chem 2024; 22:3866-3870. [PMID: 38646715 DOI: 10.1039/d4ob00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
An FeCl3-catalyzed oxidative condensation of NH-1,2,3-triazoles, aryl methyl ketones (or acetophenones) and DMF (N,N-dimethylformamide) for the synthesis of β-(1,2,3-triazolyl)-ketones was developed. DMF serves as a one-carbon source, and the resulting products display diverse reaction selectivity, highlighting the existence of distinct approaches.
Collapse
Affiliation(s)
- Ruilin Fang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Lei Zheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuyang Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Can Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yunfeng Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
6
|
Manna AS, Nandi R, Ghosh T, Pal S, Rahaman R, Maiti DK. Organic Base-Promoted C-N- and C-O-Coupled Domino Cyclization Strategy: Syntheses of Oxazine-6-ones and 4-Pyrimidinols. J Org Chem 2024; 89:5650-5664. [PMID: 38577786 DOI: 10.1021/acs.joc.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Oxazine-6-one and 4-pyrimidinol are two important frameworks in pharmaceutical production. Herein, we disclosed a simple, efficient, inexpensive organic base-promoted and additive-stimulated protocol for the syntheses of variably functionalized oxazine-6-ones and 4-pyrimidinols employing acetonitrile solvent under conventional heating conditions using an oil bath through C-N and C-O coupled domino steps. This simple practicable productive protocol utilizes easily producible cheap precursors, namely, benzimidates or benzamidines, with differently substituted dicyano-olefins, and it comprises step economy, robustness, and moisture insensitive conditions affording high yield that avoids the use of transition-metal catalysts, multistep with multicomponent strategy, and harsh reaction conditions involving hazardous chemicals. This method is scalable into gram-scale production with good yield.
Collapse
Affiliation(s)
- Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tanmoy Ghosh
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
7
|
Liu Y, Deng L, Guo H, Wan JP. Annulative Nonaromatic Newman-Kwart-Type Rearrangement for the Synthesis of Sulfur Heteroaryls. Org Lett 2024; 26:46-50. [PMID: 38149825 DOI: 10.1021/acs.orglett.3c03581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
By employing enaminones and thiuram disulfides as starting materials, the frontiers of Newman-Kwart rearrangement have been expanded to the alkenyl system for the first time. In addition, instead of leading to the formation of simple carbamothioates, the rearrangement has led to the unprecedented construction of S-heteroaryls. Depending on the differences in the enaminone structure, the efficient synthesis of functionalized isothiazoles and thiophenes has been achieved.
Collapse
Affiliation(s)
- Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Leiling Deng
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Haijin Guo
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| |
Collapse
|
8
|
Wu H, Chen K, Liu Y, Wan JP. Unlock the C-N Bond Amidation of Enaminones: Metal-Free Synthesis of Enamides by Water-Assisted Transamidation. J Org Chem 2024; 89:216-223. [PMID: 38109677 DOI: 10.1021/acs.joc.3c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The C-N bond transamidation of primary amides with N,N-dimethyl enaminones has been efficiently realized by heating in the presence of trifluoromethanesulfonic acid (TfOH). The method enables the practical synthesis of valuable enamides without the use of any metal reagent. In addition, this transamidation protocol can also be expanded to the reactions of sulfonamides, and the late-stage functionalization on sulfonamide drugs such as Celecoxib and Valdecoxib has been verified. Moreover, the participation of water in assisting the transamidation process has been identified by the isotope labeling experiments using D2O, disclosing a new possibility in designing catalytic tactic to other transamidation reactions.
Collapse
Affiliation(s)
- Haozhi Wu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Kang Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Liu Q, Zhou Z, Huang Z, Zhao Y. Palladium-Catalyzed E-Selective Oxidative Amination of Aromatic Amine with 3-Butenoic Acid. J Org Chem 2023; 88:15350-15357. [PMID: 37871285 DOI: 10.1021/acs.joc.3c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A palladium-catalyzed oxidative amination of inactive olefins with an aromatic amine was developed using a copper acetate oxidant to yield corresponding secondary and tertiary enamines in moderate to good yields. This new procedure outlines an efficient approach for the construction of enamine skeletons.
Collapse
Affiliation(s)
- Qianqian Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China
| | - Zheng Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| |
Collapse
|
10
|
Rizbayeva TS, Smolobochkin AV, Gazizov AS, Voronina JK, Syakaev VV, Gerasimova DP, Lodochnikova OA, Efimov SV, Klochkov VV, Burilov AR, Pudovik MA. One-Step Synthesis of Functionalized Pyrazolo[3,4- b]pyridines via Ring Opening of the Pyrrolinium Ion. J Org Chem 2023; 88:11855-11866. [PMID: 37550293 DOI: 10.1021/acs.joc.3c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Herein, we report a highly regioselective one-pot synthesis of pyrazolo[3,4-b]pyridines via the reaction of 3-arylidene-1-pyrrolines with aminopyrazoles. The reaction proceeds through the sequential nucleophilic addition/electrophilic substitution/C-N bond cleavage and provides easy access to pyrazolo[3,4-b]pyridine derivatives featuring a primary amino group. Moreover, the reaction can be terminated at the electrophilic substitution stage, thus providing convenient entry to the hardly accessible pyrazolopyrrolopyridine scaffold.
Collapse
Affiliation(s)
- Tanzilya S Rizbayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova str. 8, Kazan 420088, Russian Federation
| | - Andrey V Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova str. 8, Kazan 420088, Russian Federation
| | - Almir S Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova str. 8, Kazan 420088, Russian Federation
| | - Julia K Voronina
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation
| | - Victor V Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova str. 8, Kazan 420088, Russian Federation
| | - Daria P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova str. 8, Kazan 420088, Russian Federation
| | - Olga A Lodochnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova str. 8, Kazan 420088, Russian Federation
| | - Sergey V Efimov
- Kazan Federal University, Kremlyovskaya Str.18, Kazan 420008, Russian Federation
| | - Vladimir V Klochkov
- Kazan Federal University, Kremlyovskaya Str.18, Kazan 420008, Russian Federation
| | - Alexander R Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova str. 8, Kazan 420088, Russian Federation
| | - Michail A Pudovik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova str. 8, Kazan 420088, Russian Federation
| |
Collapse
|
11
|
Lei SG, Zhou Y, Wang LS, Yu ZC, Chen T, Wu YD, Gao M, Wu AX. One Stone, Three Birds: One-Pot Synthesis of Pyrido[3,2- a]phenoxazin-5-one Derivatives from o-Aminophenols with Triple Roles, Paraformaldehyde, and Enaminones via the Povarov Reaction. J Org Chem 2023; 88:11150-11160. [PMID: 37462913 DOI: 10.1021/acs.joc.3c01118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A novel multicomponent cascade cyclization reaction in one pot for the preparation of pyrido[3,2-a]phenoxazin-5-ones from simple o-aminophenols, paraformaldehyde, and enaminones has been established. It is noteworthy that o-aminophenol plays multiple roles serving as both a bis-nucleophile and an iminoquinone precursor, which can in situ generate aminophenoxazinones to undergo the Povarov reaction for the first time to yield pyrido[3,2-a]phenoxazin-5-ones with a high efficiency. Moreover, the photoluminescence of pyrido[3,2-a]phenoxazin-5-ones has polarity sensitivity and features aggregation-induced emission (AIE) characteristics, which is promising for bioimaging and theranostic applications.
Collapse
Affiliation(s)
- Shuang-Gui Lei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ting Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
12
|
Chen D, Zhou L, Wen C, Wan JP. Three-Component Chemo-Selective Synthesis of N-( o-Alkenylaryl) Pyrazoles by Pyrazole Annulation and Rh-Catalyzed Chemo-Selective Aryl C-H Addition Cascade. J Org Chem 2023. [PMID: 37257161 DOI: 10.1021/acs.joc.3c00526] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
By using readily available enaminones, aryl hydrazine hydrochlorides, and alkynes as starting materials, the chemo-selective three-component synthesis of atropisomeric N-(o-alkenylaryl) pyrazoles has been efficiently accessed with rhodium catalysis. Unlike Satoh-Miura reaction leading to the alkyne-based C-H benzannulation by using prior prepared N-phenyl pyrazoles and alkynes as substrates, this three-component protocol displays unprecedented selectivity of C-H alkenylation by blocking the second round metal alkenylation with the key protonation step in the presence of acids.
Collapse
Affiliation(s)
- Demao Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Liyun Zhou
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Chengping Wen
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
13
|
Gao H, Zhou L, Wan JP, Liu Y. Rongalite as C1 Synthon in the Synthesis of Divergent Pyridines and Quinolines. J Org Chem 2023. [PMID: 37171406 DOI: 10.1021/acs.joc.3c00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rongalite has been used as a cheap and efficient carbon synthon for the synthesis of divergent N-heteroaromatics, including different pyridines and quinolines. The selective synthesis of different products can be achieved by employing enaminones or enaminones/anilines as reaction partners. In addition, compared with the reaction using conventional aldehyde synthons, rongalite displays an evident advantage in providing products with considerably higher product yields under milder conditions. The GC-MS analysis of the reaction process has been performed to probe the possible reaction mechanism.
Collapse
Affiliation(s)
- Huan Gao
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Liyun Zhou
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Cao D, Wang C, Wan JP, Wen C, Liu Y. Tunable vicinal, geminal diphosphorylation and C-N bond phosphorylation of enaminones toward divergent phosphorylated ketone derivatives. Chem Commun (Camb) 2023; 59:6383-6386. [PMID: 37157911 DOI: 10.1039/d3cc01427d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This paper reports the trifunctionalization reactions of tertiary enaminones in the fashion of selective gem- and vicinal diphosphorylation, leading to the tunable synthesis of α,α- and α,β-diphosphoryl ketones. In addition, the C-N bond phosphorylation with improved substrate tolerance has been achieved.
Collapse
Affiliation(s)
- Dingsheng Cao
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Chaoli Wang
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Chengping Wen
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
15
|
Song W, Liu Y, Yan N, Wan JP. Tunable Key [3 + 2] and [2 + 1] Cycloaddition of Enaminones and α-Diazo Compounds for the Synthesis of Isomeric Isoxazoles: Metal-Controlled Selectivity. Org Lett 2023; 25:2139-2144. [PMID: 36946543 DOI: 10.1021/acs.orglett.3c00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The three-component reactions of enaminones, α-diazo esters/ketones, and t-butyl nitrite (TBN) for the switchable synthesis of isomeric isoxazoles have been realized. The catalysis with Cu(II) salt provides 3,4-disubsituted isoxazoles via [3 + 2] cycloaddition. On the other hand, the catalysis of Ag(I) with identical substrates leads to isomeric isoxazoles with reversed C3 and C4 substitution based on a key [2 + 1] cycloaddition.
Collapse
Affiliation(s)
- Wenli Song
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| |
Collapse
|
16
|
Chen D, Zhou L, Liu Y, Wan JP. Three-component synthesis of N-naphthyl pyrazoles via Rh(III)-catalyzed cascade pyrazole annulation and Satoh-Miura benzannulation. Chem Commun (Camb) 2023; 59:4036-4039. [PMID: 36924202 DOI: 10.1039/d3cc00649b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The synthesis of N-naphthyl pyrazoles has been realized by the direct three-component reactions of enaminones, aryl hydrazine hydrochlorides and internal alkynes via Rh(III) catalysis. The synthetic reactions employing simple substrates lead to simultaneous construction of dual cyclic moieties, including a pyrazole ring and a phenyl ring, via sequential formation of two C-N and three C-C bonds.
Collapse
Affiliation(s)
- Demao Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Liyun Zhou
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China. .,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
17
|
Tian S, Liu Y, Wan C, Wan JP, Hao G. Catalyst-Free Cascade Annulation of Enaminones and Aryl Diazonium Tetrafluoroboronates for Cinnoline Synthesis and the Anti-Inflammatory Activity Study. J Org Chem 2023; 88:2433-2442. [PMID: 36753776 DOI: 10.1021/acs.joc.2c02858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A simple and concise method for the synthesis of cinnolines has been developed by the reactions of readily available enaminones and aryl diazonium tetrafluoroboronates. The reactions run efficiently to provide cinnolines with broad diversity in the substructure by heating in dimethyl sulfoxide without using any catalyst or additive. In addition, the primary investigation of the anti-inflammatory activity of these products leads to the observation of p-chlorobenzoyl (3f) and p-nitrobenzoyl (3j) cinnolines as attractive anti-inflammatory compounds in vitro.
Collapse
Affiliation(s)
- Shanghui Tian
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Changfeng Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Guifeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
18
|
Chen K, Zhao B, Liu Y, Wan JP. Thiazole-5-carbaldehyde Synthesis by Cascade Annulation of Enaminones and KSCN with Dess-Martin Periodinane Reagent. J Org Chem 2022; 87:14957-14964. [PMID: 36260927 DOI: 10.1021/acs.joc.2c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Dess-Martin periodinane (DMP) reagent-mediated reactions of tertiary enaminones with potassium thiocyanate for the synthesis of thiazole-5-carbaldehydes are developed. The product formation involves cascade hydroxyl thiocyanation of the C═C double bond, intramolecular hydroamination of the C≡N bond, and thiazole annulation by condensation on the ketone carbonyl site, representing novel reaction pathways in the reactions between enaminones and thiocyanate salt. DMP plays dual roles in mediating the free radical thiocyanation and inducing the unconventional selective thiazole-5-carbaldehyde formation by masking the in situ generated formyl group during the reaction process.
Collapse
Affiliation(s)
- Kang Chen
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Yunyun Liu
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Jie-Ping Wan
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
19
|
Tang Y, Tang Y, zhu R, Zheng S, Cheng X, Chen XY. Metal-free synthesis of N-vinyl sulfoximines via DABCO-participated Michael addition of terminal carbonyl alkynes with N-chlorosulfoximines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Photocatalyst-free visible-light-mediated three-component reaction of α-diazoesters, cyclic ethers and NaSCN to access organic thiocyanates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Zimba HC, Baldassari LL, Moro AV. A copper-catalysed one-pot hydroboration/azidation/cycloaddition reaction of alkynes. Org Biomol Chem 2022; 20:6239-6244. [PMID: 35611798 DOI: 10.1039/d2ob00635a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report our study on the development of a catalytic one-pot process, showing the challenges and advantages encountered all over the way. At the end, we developed a regioselective, environmentally friendly, and operationally simple method to explore the reactivity of functionalized propargylic alkynes through three copper-catalysed reactions in a single reaction vessel. The sequence consisted of a hydroboration, azidation, and 1,3-dipolar cycloaddition and led to the regioselective formation of vinyl 1,2,3-triazoles in good yields.
Collapse
Affiliation(s)
- Hamilton C Zimba
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento, Gonçalves 9500, Campus do Vale, 91501-970, Porto Alegre, RS, Brazil.
| | - Lucas L Baldassari
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento, Gonçalves 9500, Campus do Vale, 91501-970, Porto Alegre, RS, Brazil.
| | - Angélica V Moro
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento, Gonçalves 9500, Campus do Vale, 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
Wang Z, Zhao B, Liu Y, Wan J. Recent Advances in Reactions Using Enaminone in Water or Aqueous Medium. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhouying Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang 312000 People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| |
Collapse
|
23
|
Xia XF, Niu YN. Recent developments in the synthesis of nitrogen-containing heterocycles from β-aminovinyl esters/ketones as CC-N donors. Org Biomol Chem 2022; 20:282-295. [PMID: 34877952 DOI: 10.1039/d1ob01998h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen-containing heterocycles are ubiquitous fragments of numerous natural products, pharmaceuticals, designed bioactive drug candidates and agrochemicals. During the past few decades, these compounds have received considerable attention from the synthetic chemistry community, and great efforts have been focused on the development of concise and efficient methods for the synthesis of these heterocyclic skeletons. In this review, we summarize a diverse range of synthetic methods employing β-aminovinyl esters(ketones) as key CC-N-synthons to furnish useful bioactive heterocyclic frameworks, such as quinolines, pyridines, pyrazines, pyrroles, indoles, oxazoles, imidazoles, thiazoles, isothiazoles, pyrazoles, triazoles, and azepines, thus offering new opportunities and expanding the toolbox of synthetic chemistry reactions.
Collapse
Affiliation(s)
- Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Yan-Ning Niu
- Department of Teaching and Research, Nanjing Forestry University, Huai'an, Jiangsu, 223003, People's Republic of China.
| |
Collapse
|
24
|
Huang Q, Deng T, Zhu J, Li J, Li F. Study on the Green Synthesis of β-Hydroxy-1,2,3-triazoles Catalyzed by An Amino-Functionalized Graphene-Supported Ag-Cu Composites. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|