1
|
Wang J, Shi M, Tang LP, Ruan SN, Chao YY, Chen P, Shen FC. Customizing Ionic Liquids Functionalized MOFs Composites with Hydrophobic Interface for Electrochemical CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53775-53784. [PMID: 39315993 DOI: 10.1021/acsami.4c10640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2RR) to generate feedstocks for chemical products (e.g., carbon monoxide, CO) offers a highly attractive method for achieving the closure of the carbon cycle. Ionic liquids (ILs)-functionalized Cu-based catalyst Cu2O-HKUST-1/IL1/PTFE was developed, configuring metal-organic frameworks(MOFs) based materials with high adsorption and multiple active sites. The modified electrocatalysts exhibited high specific surface area, strong CO2 adsorption capacity, abundant active sites, and fast charge transfer rate. The nucleophilic active site of deprotonation at the C2 site in imidazole ILs further improved the selectivity of proton migration and CO product generation, which was verified through DFT calculations for the low Gibbs free energy of the generated intermediate interactions. In addition, the hydrophobic interface constructed by PTFE facilitated the inhibition of the hydrogen evolution reaction (HER) and significantly improved the efficiency of CO2 electroreduction. The Cu2O-HKUST-1/IL1/PTFE catalyst manifested a high C1 Faraday efficiency (FE) up to 96.5% and in particular 92.7% for FECO at -1.7 V vs RHE. The present work provides an efficient strategy for configuring ILs-functionalized MOFs-based materials with good hydrophobic interfaces to enhance the efficiency of CO2 electroreduction to C1 products.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| | - Meng Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| | - Li-Ping Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| | - Sheng-Nan Ruan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| | - Ying-Ying Chao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| | - Peng Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| | - Feng-Cui Shen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| |
Collapse
|
2
|
Han J, Bai X, Xu X, Bai X, Husile A, Zhang S, Qi L, Guan J. Advances and challenges in the electrochemical reduction of carbon dioxide. Chem Sci 2024; 15:7870-7907. [PMID: 38817558 PMCID: PMC11134526 DOI: 10.1039/d4sc01931h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
The electrocatalytic carbon dioxide reduction reaction (ECO2RR) is a promising way to realize the transformation of waste into valuable material, which can not only meet the environmental goal of reducing carbon emissions, but also obtain clean energy and valuable industrial products simultaneously. Herein, we first introduce the complex CO2RR mechanisms based on the number of carbons in the product. Since the coupling of C-C bonds is unanimously recognized as the key mechanism step in the ECO2RR for the generation of high-value products, the structural-activity relationship of electrocatalysts is systematically reviewed. Next, we comprehensively classify the latest developments, both experimental and theoretical, in different categories of cutting-edge electrocatalysts and provide theoretical insights on various aspects. Finally, challenges are discussed from the perspectives of both materials and devices to inspire researchers to promote the industrial application of the ECO2RR at the earliest.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
3
|
Karatayeva U, Al Siyabi SA, Brahma Narzary B, Baker BC, Faul CFJ. Conjugated Microporous Polymers for Catalytic CO 2 Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308228. [PMID: 38326090 PMCID: PMC11005716 DOI: 10.1002/advs.202308228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 02/09/2024]
Abstract
Rising carbon dioxide (CO2) levels in the atmosphere are recognized as a threat to atmospheric stability and life. Although this greenhouse gas is being produced on a large scale, there are solutions to reduction and indeed utilization of the gas. Many of these solutions involve costly or unstable technologies, such as air-sensitive metal-organic frameworks (MOFs) for CO2 capture or "non-green" systems such as amine scrubbing. Conjugated microporous polymers (CMPs) represent a simpler, cheaper, and greener solution to CO2 capture and utilization. They are often easy to synthesize at scale (a one pot reaction in many cases), chemically and thermally stable (especially in comparison with their MOF and covalent organic framework (COF) counterparts, owing to their amorphous nature), and, as a result, cheap to manufacture. Furthermore, their large surface areas, tunable porous frameworks and chemical structures mean they are reported as highly efficient CO2 capture motifs. In addition, they provide a dual pathway to utilize captured CO2 via chemical conversion or electrochemical reduction into industrially valuable products. Recent studies show that all these attractive properties can be realized in metal-free CMPs, presenting a truly green option. The promising results in these two fields of CMP applications are reviewed and explored here.
Collapse
|
4
|
He R, Luo X, Li L, Zhang Y, Peng L, Xu N, Qiao J. Grain boundary and interface interaction of metal (copper/indium) oxides to boost efficient electrocatalytic carbon dioxide reduction into syngas. J Colloid Interface Sci 2024; 658:1016-1024. [PMID: 38160124 DOI: 10.1016/j.jcis.2023.12.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Electrochemical conversion of carbon dioxide (CO2) into syngas is considered a promising approach to mitigate global warming and achieve the recycling of carbon resources. In this work, a series of core-shell metal (copper/indium) oxides with abundant grain boundaries (GBs) between the amorphous In2O3 and cubic Cu2O have been prepared by template-assisted co-precipitation method and tested for the synthesis of syngas by electrochemical CO2 reduction reaction (CO2RR). The phases of Cu2O and In2O3 are independent in bimetallic oxides and do not form any alloy oxidation phase, thus Cu2O and In2O3 can maintain their crystal structure and chemical properties in bimetallic oxides. The Cu2O and In2O3 would been completely reduced to metallic Cu and In during CO2RR. The derived copper/indium possesses the maximum FE of CO (80 %) at -0.77 V vs. reversible hydrogen electrode (RHE) and a good stability of 10 h in an H-type cell. Further applied the copper/indium oxide in the MEA reactor, the FE of CO is more than 80 % at 2.6 V and the total FE of syngas is near 100 % at all applied potentials. More importantly, the H2/CO ratios can be tuned from 1/1 to 1/4 by changing the applied voltages in MEA. Therefore, this study provides a promising strategy to promote the electrocatalytic CO2RR conversion by creating abundant grain boundaries in bimetallic oxides to regulate the ratio of H2/CO.
Collapse
Affiliation(s)
- Ruinan He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China; Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Xi Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| | - Lulu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| | - Yang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| | - Luwei Peng
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China.
| | - Nengneng Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Chen Y, Shen Y, Dai L, Yao S, An C. Coordination Confined Thermolysis Synthesis of the Ni Single Atom Catalyst on the N-Doped Commercial Carbon for the Production of Syngas. Inorg Chem 2024; 63:2131-2137. [PMID: 38212991 DOI: 10.1021/acs.inorgchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The electrochemical conversion of CO2 into controllable syngas (CO/H2) over a wide potential range is challenging. The main electrocatalysts are based on the noble metals Au (Ag) or heavy metal Pb. The development of alternative nonprecious catalysts is of paramount importance for practice. In this work, a simple coordination confined thermal pyrolysis method has been developed for the synthesis of Ni single-atom catalyst loaded onto nitrogen-doped commercial carbon. The catalyst is in the form of NiN3-C, which exhibits a high-performance electrocatalytic reduction of CO2 toward producing syngas with Faraday efficiencies of 62.28% of CO and 36.7% of H2. The Gibbs free energies of COOH* and H* on the NiN3-C structure were estimated by using density functional theory (DFT). The formation of COOH* intermediate is the speed-limiting step in the process, with ΔG COOH* being 0.7 eV, while H* is the speed-limiting step in the hydrogen evolution, respectively. This work provides a feasible method for the achievement of nonprecious catalysts for the resourceful use of CO2.
Collapse
Affiliation(s)
- Yuping Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yongli Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Linxiu Dai
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shuang Yao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Changhua An
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
6
|
Wang Y, Zheng M, Li Y, Chen J, Ye J, Ye C, Li S, Wang J, Zhu Y, Sun SG, Wang D. Oxygen-Bridged Long-Range Dual Sites Boost Ethanol Electrooxidation by Facilitating C-C Bond Cleavage. NANO LETTERS 2023; 23:8194-8202. [PMID: 37624651 DOI: 10.1021/acs.nanolett.3c02319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Optimizing the interatomic distance of dual sites to realize C-C bond breaking of ethanol is critical for the commercialization of direct ethanol fuel cells. Herein, the concept of holding long-range dual sites is proposed to weaken the reaction barrier of C-C cleavage during the ethanol oxidation reaction (EOR). The obtained long-range Rh-O-Pt dual sites achieve a high current density of 7.43 mA/cm2 toward EOR, which is 13.3 times that of Pt/C, as well as remarkable stability. Electrochemical in situ Fourier transform infrared spectroscopy indicates that long-range Rh-O-Pt dual sites can increase the selectivity of C1 products and suppress the generation of a CO intermediate. Theoretical calculations further disclose that redistribution of the surface-localized electron around Rh-O-Pt can promote direct oxidation of -OH, accelerating C-C bond cleavage. This work provides a promising strategy for designing oxygen-bridged long-range dual sites to tune the activity and selectivity of complicated catalytic reactions.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Meng Zheng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yunrui Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Juan Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenliang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuna Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yongfa Zhu
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Li X, Zhang P, Zhang L, Zhang G, Gao H, Pang Z, Yu J, Pei C, Wang T, Gong J. Confinement of an alkaline environment for electrocatalytic CO 2 reduction in acidic electrolytes. Chem Sci 2023; 14:5602-5607. [PMID: 37265726 PMCID: PMC10231308 DOI: 10.1039/d3sc01040f] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
Acidic electrochemical CO2 reduction reaction (CO2RR) can minimize carbonate formation and eliminate CO2 crossover, thereby improving long-term stability and enhancing single-pass carbon efficiency (SPCE). However, the kinetically favored hydrogen evolution reaction (HER) is generally predominant under acidic conditions. This paper describes the confinement of a local alkaline environment for efficient CO2RR in a strongly acidic electrolyte through the manipulation of mass transfer processes in well-designed hollow-structured Ag@C electrocatalysts. A high faradaic efficiency of over 95% at a current density of 300 mA cm-2 and an SPCE of 46.2% at a CO2 flow rate of 2 standard cubic centimeters per minute are achieved in the acidic electrolyte, with enhanced stability compared to that under alkaline conditions. Computational modeling results reveal that the unique structure of Ag@C could regulate the diffusion process of OH- and H+, confining a high-pH local reaction environment for the promoted activity. This work presents a promising route to engineer the microenvironment through the regulation of mass transport that permits the CO2RR in acidic electrolytes with high performance.
Collapse
Affiliation(s)
- Xiaozhi Li
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Peng Zhang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
- Joint School of National University of Singapore, Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 China
| | - Lili Zhang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Gong Zhang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Hui Gao
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Zifan Pang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Jia Yu
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Chunlei Pei
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
| | - Tuo Wang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
| | - Jinlong Gong
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin) Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- National Industry-Education Platform of Energy Storage, Tianjin University 135 Yaguan Road Tianjin 300350 China
| |
Collapse
|
8
|
Li L, Su J, Lu J, Shao Q. Recent Advances of Core-Shell Cu-Based Catalysts for the Reduction of CO 2 to C 2+ Products. Chem Asian J 2023; 18:e202201044. [PMID: 36640117 DOI: 10.1002/asia.202201044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Copper is a key metal for carbon dioxide (CO2 ) reduction reaction, which can reduce CO2 to value-added products. The core-shell structure can effectively promote the C-C coupling process due to its strong synergistic effect originated from its unique electronic structure and interface environment. Therefore, the combination of copper and core-shell structure to design an efficient Cu-based core-shell structure catalyst is of great significance for electrocatalytic CO2 reduction (CO2 RR). In this review, we first briefly summarize the basic principle of CO2 RR. In addition, we outline the advantages of core-shell structure for catalysis. Then, we review the recent research progresses of Cu-based core-shell structures for the selective reduction of multi-carbon (C2+ ) products. In the end, the challenges of using core-shell catalyst for CO2 RR are described, and the future development of this field is prospected.
Collapse
Affiliation(s)
- Lamei Li
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Jiangsu, 215123, P. R. China
| | - Jiaqi Su
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Jiangsu, 215123, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Jiangsu, 215123, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials, Science Soochow University, Jiangsu, 215123, P. R. China
| |
Collapse
|
9
|
Larrea C, Avilés-Moreno JR, Ocón P. Strategies to Enhance CO 2 Electrochemical Reduction from Reactive Carbon Solutions. Molecules 2023; 28:molecules28041951. [PMID: 36838939 PMCID: PMC9960053 DOI: 10.3390/molecules28041951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
CO2 electrochemical reduction (CO2 ER) from (bi)carbonate feed presents an opportunity to efficiently couple this process to alkaline-based carbon capture systems. Likewise, while this method of reducing CO2 currently lags behind CO2 gas-fed electrolysers in certain performance metrics, it offers a significant improvement in CO2 utilization which makes the method worth exploring. This paper presents two simple modifications to a bicarbonate-fed CO2 ER system that enhance the selectivity towards CO. Specifically, a modified hydrophilic cathode with Ag catalyst loaded through electrodeposition and the addition of dodecyltrimethylammonium bromide (DTAB), a low-cost surfactant, to the catholyte enabled the system to achieve a FECO of 85% and 73% at 100 and 200 mA·cm-2, respectively. The modifications were tested in 4 h long experiments where DTAB helped maintain FECO stable even when the pH of the catholyte became more alkaline, and it improved the CO2 utilization compared to a system without DTAB.
Collapse
|
10
|
Hu Y, Kang Y. Surface and Interface Engineering for the Catalysts of Electrocatalytic CO 2 Reduction. Chem Asian J 2023; 18:e202201001. [PMID: 36461703 DOI: 10.1002/asia.202201001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Indexed: 12/04/2022]
Abstract
The massive use of fossil fuels releases a great amount of CO2 , which substantially contributes to the global warming. For the global goal of putting CO2 emission under control, effective utilization of CO2 is particularly meaningful. Electrocatalytic CO2 reduction reaction (eCO2 RR) has great potential in CO2 utilization, because it can convert CO2 into valuable carbon-containing chemicals and feedstock using renewable electricity. The catalyst design for eCO2 RR is a key challenge to achieving efficient conversion of CO2 to fuels and useful chemicals. For a typical heterogeneous catalyst, surface and interface engineering is an effective approach to enhance reaction activity. Herein, the development and research progress in CO2 catalysts with focus on surface and interface engineering are reviewed. First, the fundaments of eCO2 RR is briefly discussed from the reaction mechanism to performance evaluation methods, introducing the role of the surface and interface engineering of electrocatalyst in eCO2 RR. Then, several routes to optimize the surface and interface of CO2 electrocatalysts, including morphology, dopants, atomic vacancies, grain boundaries, surface modification, etc., are reviewed and representative examples are given. At the end of this review, we share our personal views in future research of eCO2 RR.
Collapse
Affiliation(s)
- Yiping Hu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
11
|
Rusdan NA, Timmiati SN, Isahak WNRW, Yaakob Z, Lim KL, Khaidar D. Recent Application of Core-Shell Nanostructured Catalysts for CO 2 Thermocatalytic Conversion Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3877. [PMID: 36364653 PMCID: PMC9655136 DOI: 10.3390/nano12213877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Carbon-intensive industries must deem carbon capture, utilization, and storage initiatives to mitigate rising CO2 concentration by 2050. A 45% national reduction in CO2 emissions has been projected by government to realize net zero carbon in 2030. CO2 utilization is the prominent solution to curb not only CO2 but other greenhouse gases, such as methane, on a large scale. For decades, thermocatalytic CO2 conversions into clean fuels and specialty chemicals through catalytic CO2 hydrogenation and CO2 reforming using green hydrogen and pure methane sources have been under scrutiny. However, these processes are still immature for industrial applications because of their thermodynamic and kinetic limitations caused by rapid catalyst deactivation due to fouling, sintering, and poisoning under harsh conditions. Therefore, a key research focus on thermocatalytic CO2 conversion is to develop high-performance and selective catalysts even at low temperatures while suppressing side reactions. Conventional catalysts suffer from a lack of precise structural control, which is detrimental toward selectivity, activity, and stability. Core-shell is a recently emerged nanomaterial that offers confinement effect to preserve multiple functionalities from sintering in CO2 conversions. Substantial progress has been achieved to implement core-shell in direct or indirect thermocatalytic CO2 reactions, such as methanation, methanol synthesis, Fischer-Tropsch synthesis, and dry reforming methane. However, cost-effective and simple synthesis methods and feasible mechanisms on core-shell catalysts remain to be developed. This review provides insights into recent works on core-shell catalysts for thermocatalytic CO2 conversion into syngas and fuels.
Collapse
Affiliation(s)
- Nisa Afiqah Rusdan
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Wan Nor Roslam Wan Isahak
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Zahira Yaakob
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kean Long Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Dalilah Khaidar
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
12
|
Kuang S, Li M, Chen X, Chi H, Lin J, Hu Z, Hu S, Zhang S, Ma X. Intermetallic CuAu nanoalloy for stable electrochemical CO2 reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|