1
|
Shao X, Maibam A, Cao F, Jin H, Huang S, Liang M, Gyu Kim M, My Tran K, Jadhav AR, Seung Jung H, Babarao R, Lee H. Coordination Environment and Distance Optimization of Dual Single Atoms on Fluorine-Doped Carbon Nanotubes for Chlorine Evolution Reaction. Angew Chem Int Ed Engl 2024; 63:e202406273. [PMID: 39076060 DOI: 10.1002/anie.202406273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
The chlorine evolution reaction (CER) is a crucial anode reaction in the chlor-alkali industrial process. Precious metal-based dimensionally stable anodes (DSA) are commonly used as catalysts for CER but are constrained by their high cost and low selectivity. Herein, a Pt dual singe-atom catalyst (DSAC) dispersed on fluorine-doped carbon nanotubes (F-CNTs) is designed for an efficient and robust CER process. The prepared Pt DSAC demonstrates excellent CER activity with a low overpotential of 21 mV to achieve a current density of 10 mA cm-2 and a remarkable mass activity of 3802.6 A gpt -1 at an overpotential around 30 mV, outperforming those of commercial DSA and Pt single-atom catalyst. The excellent CER performance of Pt DSAC is attributed to the high atomic utilization and improved intrinsic activity. Notably, introducing fluorine atoms on CNTs increases the oxidation and chlorination resistance of Pt DSAC, and reduces the demetalization ratio of Pt atoms, resulting in excellent long-term CER stability. Theoretical calculations reveal that several Pt DSAC configurations with optimized first-shell ligands and interatomic distance display lower energy barriers for Cl intermediates generation and weaker ionic Pt-Cl bond interaction, which are favorable for the CER process.
Collapse
Affiliation(s)
- Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Ashakiran Maibam
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, 3001, Melbourne, Victoria, Australia
| | - Fengliang Cao
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, People's Republic of China
| | - Haiyan Jin
- International Iberian Nanotechnology Laboratory, 4715-330, Braga, Portugal
| | - Shiqing Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Mengfang Liang
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, 37673, Pohang, Republic of Korea
| | - Kim My Tran
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Amol R Jadhav
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Hyun Seung Jung
- School of Chemical Engineering, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Ravichandar Babarao
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, 3001, Melbourne, Victoria, Australia
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
- Creative Research Institute and Institute of Quantum Biophysics, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| |
Collapse
|
2
|
Gao Z, Xu M, Liu R, Xu H, Chu D, Yang D, Feng M, Wang T, Jin G. Designing a flower-shaped ZnS/CoS heterojunction for efficient electroreduction of N 2 to NH 3. Chem Commun (Camb) 2024; 60:10878-10881. [PMID: 39252573 DOI: 10.1039/d4cc02860k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) is a highly promising process for synthesizing ammonia and holds great potential to replace the traditional Haber-Bosch process. Here, we report a novel flower-shaped ZnS/CoS composite electrocatalyst for the NRR. Remarkably, the ZnS/CoS-105 heterojunction catalyst achieved an NH3 yield rate of 20.42 μg h-1 mgcat.-1 and a faradaic efficiency (FE) of 11.83% at -0.45 V VS. RHE in an aqueous 0.1 M Na2SO4 solution. In addition, ZnS/CoS-105 showed remarkable stability (up to 24 h) for the NRR process.
Collapse
Affiliation(s)
- Ze Gao
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Ming Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Renming Liu
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Hang Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Dongxue Chu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Daming Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Ting Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, People's Republic of China.
| | - Guangyong Jin
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| |
Collapse
|
3
|
Liu X, Huang L, He Y, Zhou P, Song X, Zhang Z. Single-Atom Co-N 4 Sites Mediate C=N Formation via Reductive Coupling of Nitroarenes with Alcohols. JACS AU 2024; 4:3436-3450. [PMID: 39328762 PMCID: PMC11423325 DOI: 10.1021/jacsau.3c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 09/28/2024]
Abstract
It remains challenging to construct C=N bonds due to their facile hydrogenation. Herein, a single Co atom catalyst was discovered to be active for the selective construction of C=N bonds toward the synthesis of imines and N-heterocycles via reductive coupling of nitroarenes with various alcohols, including inert aliphatic ones. DFT calculations and experimental data revealed that the transfer hydrogenation proceeded via the intramolecular hydride transfer and the transfer of H from the α-Csp3-H bond to the nitro group was the rate-determining step. The single Co atoms served as a bridge to transfer the electrons from the catalyst to the adsorbed alcohol molecules, resulting in the activation of the α-Csp3-H bond. Unlike metal nanoparticles, the C=N bonds in imine products can be reserved due to the large steric hindrance from substituents on C and N. DFT calculation also confirmed that transfer hydrogenation of the C=N bonds in imines is thermodynamically unfavored with a much higher energy barrier compared with the transfer hydrogenation of the -NO2 group (1.47 vs 1.15 eV).
Collapse
Affiliation(s)
- Xixi Liu
- Key
Laboratory of Catalysis and Materials Sciences of the Ministry of
Education, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Liang Huang
- The
State Key Laboratory of Refractories and Metallurgy/Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430074, P. R. China
| | - Yurong He
- Key
Laboratory of Catalysis and Materials Sciences of the Ministry of
Education, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Peng Zhou
- Key
Laboratory of Catalysis and Materials Sciences of the Ministry of
Education, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xuedan Song
- State
Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning
Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Zehui Zhang
- Key
Laboratory of Catalysis and Materials Sciences of the Ministry of
Education, South-Central Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
4
|
Gong L, Qiu L, Xing X, Zhu J, Lu M, Dong F, Yu Y, Yu W. Coupling Fe-Co atomic pair to promote the selective reduction of nitroaromatics under mild conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169161. [PMID: 38092213 DOI: 10.1016/j.scitotenv.2023.169161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Selectively reducing nitroaromatics into aromatic amines will not only remove nitroaromatic pollutants in waste effluents to reduce environmental risks, but also yield important feedstocks for chemical industrial manufactures. In this study, a FeCo-co-embedded N-doped Carbon (FeCo-N-C) catalyst with Fe-Co atomic pair has been identified with favorable activity, superior selectivity, excellent reusability, as well as outstanding performance in the treatment of real water. The combined results from theoretical study and experimental tests indicate that the improved catalytic performance of FeCo-N-C is owing to the narrowed band gap and electron delocalization caused by the Fe-Co atomic pair which can improve electron transport in its catalytic reaction. The results of isotope experiments and H* quenching experiments confirm that H2O is the source of hydrogen in catalytic reduction of PNP. FeCo-N-C is identified as a superior catalyst to replace multitudinous currently used noble-metal catalysts for the selective catalytic reduction of nitroaromatics in wastewater treatment.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Leben Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Xiaoqian Xing
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Jieyun Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Mengzhi Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Feier Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Yan Yu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi 315300, People's Republic of China
| | - Weiting Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China.
| |
Collapse
|
5
|
Zong J, He C, Zhang W, Bai M. Transition metals anchored on two-dimensional p-BN support with center-coordination scaling relationship descriptor for spontaneous visible-light-driven photocatalytic nitrogen reduction. J Colloid Interface Sci 2023; 652:878-889. [PMID: 37633112 DOI: 10.1016/j.jcis.2023.08.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Solar energy has the potential to revolutionize the production of ammonia, as it could provide a reliable and uninterrupted source of energy for the chemical reaction involved. However, improving the catalytic performance of catalysts often leads to a reduction in their band gaps, which results in insufficient photogenerated electron potential to realize the nitrogen reduction reaction (NRR), and thus the development of NRR efficient photocatalysts remains a great challenge. Herein, based on the density functional theory (DFT), a series of single-atom photocatalysts with transition metals (TMs) doped on porous boron nitride (p-BN) nanosheet are proposed for NRR. Among them, Re-B3@p-BN could effectively catalyze gas-phase N2 through the corresponding pathways with limiting potentials of 0.31 V. Meanwhile, it exhibits excellent light absorption efficiency under illumination and could spontaneously catalyse nitrogen fixation reactions due to the suitable forbidden band and high photogenerated electron potential. Moreover, a linear relationship descriptor based on the intrinsic properties has been established, using a machine learning approach by considering the combined effects of the central metal atom and the coordination atoms. This descriptor could help accelerate the development of rational and improved 2D NRR photocatalysts with high catalytic activity and high selectivity.
Collapse
Affiliation(s)
- Jingshan Zong
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Cheng He
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Wenxue Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China.
| | - Min Bai
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| |
Collapse
|
6
|
Guo H, Yang P, Yang Y, Wu H, Zhang F, Huang ZF, Yang G, Zhou Y. Vacancy-Mediated Control of Local Electronic Structure for High-Efficiency Electrocatalytic Conversion of N 2 to NH 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309007. [PMID: 38037488 DOI: 10.1002/smll.202309007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Ambient electrocatalytic nitrogen (N2 ) reduction has gained significant recognition as a potential substitute for producing ammonia (NH3 ). However, N2 adsorption and *NN protonation for N2 activation reaction with the competing hydrogen evolution reaction remain a daunting challenge. Herein, a defect-rich TiO2 nanosheet electrocatalyst with PdCu alloy nanoparticles (PdCu/TiO2-x ) is designed to elucidate the reactivity and selectivity trends of N2 cleavage path for N2 -to-NH3 catalytic conversion. The introduction of oxygen vacancy (OV) not only acts as active sites but also effectively promotes the electron transfer from Pd-Cu sites to high-concentration Ti3+ sites, and thus lends to the N2 activation via electron donation of PdCu. OVs-mediated control effectively lowers the reaction barrier of *N2 H and *H adsorption and facilitates the first hydrogenation process of N2 activation. Consequently, PdCu/TiO2-x catalyst attains a high rate of NH3 evolution, reaching 5.0 mmol gcat. -1 h-1 . This work paves a pathway of defect-engineering metal-supported electrocatalysts for high-efficient ammonia electrosynthesis.
Collapse
Affiliation(s)
- Heng Guo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Peng Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Yuantao Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Haoran Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Fengying Zhang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 7010049, China
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
7
|
Zhou Y, Lu X, Chang YC, Ma Y, Wang L, Zhang J, Zhu J. Carbon dots modified nanoflower petals with super enhanced nitrogen electro-reduction efficiency. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Chen Z, Liu C, Sun L, Wang T. Progress of Experimental and Computational Catalyst Design for Electrochemical Nitrogen Fixation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhe Chen
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province 310027, China
| | - Chunli Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| |
Collapse
|
9
|
Transition metal decorated bismuthene for ammonia synthesis: a density functional theory study. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Amorphous core/shell Ti-doped SnO2 with synergistically improved N2 adsorption/activation and electrical conductivity for electrochemical N2 reduction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|