1
|
Yin LZ, Luo XQ, Li JL, Liu Z, Duan L, Deng QQ, Chen C, Tang S, Li WJ, Wang P. Deciphering the pathogenic risks of microplastics as emerging particulate organic matter in aquatic ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134728. [PMID: 38805824 DOI: 10.1016/j.jhazmat.2024.134728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Microplastics are accumulating rapidly in aquatic ecosystems, providing habitats for pathogens and vectors for antibiotic resistance genes (ARGs), potentially increasing pathogenic risks. However, few studies have considered microplastics as particulate organic matter (POM) to elucidate their pathogenic risks and underlying mechanisms. Here, we performed microcosm experiments with microplastics and natural POM (leaves, algae, soil), thoroughly investigating their distinct effects on the community compositions, functional profiles, opportunistic pathogens, and ARGs in Particle-Associated (PA) and Free-Living (FL) bacterial communities. We found that both microplastics and leaves have comparable impacts on microbial community structures and functions, enriching opportunistic pathogens and ARGs, which may pose potential environmental risks. These effects are likely driven by their influences on water properties, including dissolved organic carbon, nitrate, DO, and pH. However, microplastics uniquely promoted pathogens as keystone species and further amplified their capacity as hosts for ARGs, potentially posing a higher pathogenic risk than natural POM. Our research also emphasized the importance of considering both PA and FL bacteria when assessing microplastic impacts, as they exhibited different responses. Overall, our study elucidates the role and underlying mechanism of microplastics as an emerging POM in intensifying pathogenic risks of aquatic ecosystems in comparison with conventional natural POM.
Collapse
Affiliation(s)
- Ling-Zi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China; Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiao-Qing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zetao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510655, China
| | - Shaojun Tang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China; Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology & School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Wu H, Chang H, Zhong N, Tang Y, Gong Y, Wu W, Liu J, Yin T, Li G, Ho SH. Thermodynamic and kinetic studies on harmful algal blooms harvesting by novel etherified cationic straw flocculant. BIORESOURCE TECHNOLOGY 2022; 361:127737. [PMID: 35931283 DOI: 10.1016/j.biortech.2022.127737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) are growing threats that cause tens of billion dollars economic loss annually. Aiming at efficient disposal of HABs, a cheap and eco-friendly cationic straw was developed by etherification of wheat straw, which replaced hydroxyl groups on cellulose by quaternary ammonium groups. It endowed the cationic straw with high positive charge and achieved 93.92% of harvesting efficiency by enhancing HABs cells aggregation via charge neutralization. Different from inorganic salts-based flocculants, HABs harvesting by the cationic straw is a spontaneous and exothermic process with negative ΔG° and ΔH° under all adsorption conditions. Thermodynamics and kinetics analysis elucidated that HABs adsorption process by cationic straw were mainly driven by physical forces. Together, cationic straw preparation and HABs harvesting processes were comprehensively optimized with orthogonal experiments. The work may inspire cost-effective HABs disposal and fill knowledge gaps of process nature for HABs harvesting.
Collapse
Affiliation(s)
- Haihua Wu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Nianbing Zhong
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Yuting Tang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuqi Gong
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Wenbo Wu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jian Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Taikun Yin
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Gang Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| |
Collapse
|
3
|
Ashour M, Alprol AE, Khedawy M, Abualnaja KM, Mansour AT. Equilibrium and Kinetic Modeling of Crystal Violet Dye Adsorption by a Marine Diatom, Skeletonema costatum. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6375. [PMID: 36143687 PMCID: PMC9505319 DOI: 10.3390/ma15186375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 05/31/2023]
Abstract
Significant efforts have been made to improve adsorbents capable of eliminating pollutants from aqueous solutions, making it simple and quick to separate from the treated solution. In the current study, the removal of Crystal Violet Dye (CVD) from an aqueous synthetic solution onto a marine diatom alga, Skeletonema costatum, was investigated. Different experiments were conducted as a function of different pH, contact time, adsorbent dosage, temperature, and initial CVD concentration. The highest adsorption efficiency (98%) was obtained at 0.4 g of S. costatum, pH 3, and a contact time of 120 min, at 25 °C. Furthermore, Fourier-transform infrared spectroscopy (FTIR) results display that binding of CVD on S. costatum may occur by electrostatic and complexation reactions. Moreover, the Brunauer-Emmett-Teller surface area analysis (BET) obtained was 87.17 m2 g-1, which, in addition to a scanning electron microscope (SEM), reveals large pores that could enhance the uptake of large molecules. However, the equilibrium adsorption models were conducted by Halsey, Langmuir, Freundlich, Henderson, and Tempkin isotherm. In addition, multilayer adsorption isotherm best described the uptake of CVD onto S. costatum. The maximum monolayer adsorption capacity (qmax) was 6.410 mg g-1. Moreover, thermodynamic parameters of the adsorption studies suggested that the uptake of CVD onto S. costatum was endothermic and spontaneous. The pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic equations were applied to model the adsorption kinetic data. It was seen that the kinetics of the adsorption may be described using pseudo-second-order kinetic equations. Finally, the present work concluded that the marine diatom alga S. costatum is suitable as a natural material for the adsorption of CVD.
Collapse
Affiliation(s)
- Mohamed Ashour
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Ahmed E. Alprol
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Mohamed Khedawy
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Khamael M. Abualnaja
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Makkah, Saudi Arabia
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
4
|
Chang H, Wu H, Zhang L, Wu W, Zhang C, Zhong N, Zhong D, Xu Y, He X, Yang J, Zhang Y, Zhang T, Liao Q, Ho SH. Gradient electro-processing strategy for efficient conversion of harmful algal blooms to biohythane with mechanisms insight. WATER RESEARCH 2022; 222:118929. [PMID: 35970007 DOI: 10.1016/j.watres.2022.118929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Globally eruptive harmful algal blooms (HABs) have caused numerous negative effects on aquatic ecosystem and human health. Conversion of HABs into biohythane via dark fermentation (DF) is a promising approach to simultaneously cope with environmental and energy issues, but low HABs harvesting efficiency and biohythane productivity severely hinder its application. Here we designed a gradient electro-processing strategy for efficient HABs harvesting and disruption, which had intrinsic advantages of no secondary pollution and high economic feasibility. Firstly, low current density (0.888-4.444 mA/cm2) was supplied to HABs suspension to harvest biomass via electro-flocculation, which achieved 98.59% harvesting efficiency. A mathematic model considering coupling effects of multi-influencing factors on HABs harvesting was constructed to guide large-scale application. Then, the harvested HABs biomass was disrupted via electro-oxidation under higher current density (44.44 mA/cm2) to improve bioavailability for DF. As results, hydrogen and methane yields of 64.46 mL/ (g VS) and 171.82 mL/(g VS) were obtained under 6 min electro-oxidation, along with the highest energy yield (50.1 kJ/L) and energy conversion efficiency (44.87%). Mechanisms of HABs harvesting and disruption under gradient electro-processing were revealed, along with the conversion pathways from HABs to biohythane. Together, this work provides a promising strategy for efficient disposal of HABs with extra benefit of biohythane production.
Collapse
Affiliation(s)
- Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Haihua Wu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Wenbo Wu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Nianbing Zhong
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunlan Xu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xuefeng He
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Yang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yue Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qiang Liao
- Key laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
5
|
Chu Y, Zhang C, Chen X, Li X, Ren N, Ho SH. Multistage defense response of microalgae exposed to pharmaceuticals in wastewater. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|