1
|
Chong SW, Shen Y, Palomba S, Vigolo D. Nanofluidic Lab-On-A-Chip Systems for Biosensing in Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407478. [PMID: 39491535 DOI: 10.1002/smll.202407478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Biosensing plays a vital role in healthcare monitoring, disease detection, and treatment planning. In recent years, nanofluidic technology has been increasingly explored to be developed into lab-on-a-chip biosensing systems. Given now the possibility of fabricating geometrically defined nanometric channels that are commensurate with the size of many biomolecules, nanofluidic-based devices are likely to become a key technology for the analysis of various clinical biomarkers, including DNA (deoxyribonucleic acid) and proteins in liquid biopsies. This review summarizes the fundamentals and technological advances of nanofluidics from the purview of single-molecule analysis, detection of low-abundance molecules, and single-cell analysis at the subcellular level. The extreme confinement and dominant surface charge effects in nanochannels provide unique advantages to nanofluidic devices for the manipulation and transport of target biomarkers. When coupled to a microfluidic network to facilitate sample introduction, integrated micro-nanofluidic biosensing devices are proving to be more sensitive and specific in molecular analysis compared to conventional assays in many cases. Based on recent progress in nanofluidics and current clinical trends, the review concludes with a discussion of near-term challenges and future directions for the development of nanofluidic-based biosensing systems toward enabling a new wave of lab-on-a-chip technology for personalized and preventive medicine.
Collapse
Affiliation(s)
- Shin Wei Chong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yi Shen
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefano Palomba
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Daniele Vigolo
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Sun H, Fu B, Qian X, Xu P, Qin W. Nuclear and cytoplasmic specific RNA binding proteome enrichment and its changes upon ferroptosis induction. Nat Commun 2024; 15:852. [PMID: 38286993 PMCID: PMC10825125 DOI: 10.1038/s41467-024-44987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
The key role of RNA-binding proteins (RBPs) in posttranscriptional regulation of gene expression is intimately tied to their subcellular localization. Here, we show a subcellular-specific RNA labeling method for efficient enrichment and deep profiling of nuclear and cytoplasmic RBPs. A total of 1221 nuclear RBPs and 1333 cytoplasmic RBPs were enriched and identified using nuclear/cytoplasm targeting enrichment probes, representing an increase of 54.4% and 85.7% compared with previous reports. The probes were further applied in the omics-level investigation of subcellular-specific RBP-RNA interactions upon ferroptosis induction. Interestingly, large-scale RBPs display enhanced interaction with RNAs in nucleus but reduced association with RNAs in cytoplasm during ferroptosis process. Furthermore, we discovered dozens of nucleoplasmic translocation candidate RBPs upon ferroptosis induction and validated representative ones by immunofluorescence imaging. The enrichment of Tricarboxylic acid cycle in the translocation candidate RBPs may provide insights for investigating their possible roles in ferroptosis induced metabolism dysregulation.
Collapse
Affiliation(s)
- Haofan Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Bin Fu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Weijie Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Yang J, Kamai H, Wang Y, Xu Y. Nanofluidic Aptamer Nanoarray to Enable Stochastic Capture of Single Proteins at Normal Concentrations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301013. [PMID: 37350189 DOI: 10.1002/smll.202301013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/18/2023] [Indexed: 06/24/2023]
Abstract
Single-molecule experiments allow understanding of the diversity, stochasticity, and heterogeneity of molecular behaviors and properties hidden by conventional ensemble-averaged measurements. They hence have great importance and significant impacts in a wide range of fields. Despite significant advances in single-molecule experiments at ultralow concentrations, the capture of single molecules in solution at normal concentrations within natural biomolecular processes remains a formidable challenge. Here, a high-density, well-defined nanofluidic aptamer nanoarray (NANa) formed via site-specific self-assembly of well-designed aptamer molecules in nanochannels with nano-in-nano gold nanopatterns is presented. The nanofluidic aptamer nanoarray exhibits a high capability to specifically capture target proteins (e.g., platelet-derived growth factor BB; PDGF-BB) to form uniform protein nanoarrays under optimized nanofluidic conditions. Owing to these fundamental features, the nanofluidic aptamer nanoarray enables the stochastic capture of single PDGF-BB molecules at a normal concentration from a sample with an ultrasmall volume equivalent to a single cell by following Poisson statistics, forming a readily addressable single-protein nanoarray. This approach offers a methodology and device to surpass both the concentration and volume limits of single-protein capture in most conventional methodologies of single-molecule experiments, thus opening an avenue to explore the behavior of individual biomolecules in a manner close to their natural forms, which remains largely unexplored to date.
Collapse
Affiliation(s)
- Jinbin Yang
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Hiroki Kamai
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, 26 CBEB, University Park, PA, 16802-6804, USA
| | - Yan Xu
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Japan Science and Technology Agency (JST), CREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
4
|
Kong L, Li F, Fang W, Du Z, Wang G, Zhang Y, Ge WP, Zhang W, Qin W. Sensitive N-Glycopeptide Profiling of Single and Rare Cells Using an Isobaric Labeling Strategy without Enrichment. Anal Chem 2023; 95:11326-11334. [PMID: 37409763 DOI: 10.1021/acs.analchem.3c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Single-cell omics is critical in revealing population heterogeneity, discovering unique features of individual cells, and identifying minority subpopulations of interest. As one of the major post-translational modifications, protein N-glycosylation plays crucial roles in various important biological processes. Elucidation of the variation in N-glycosylation patterns at single-cell resolution may largely facilitate the understanding of their key roles in the tumor microenvironment and immune therapy. However, comprehensive N-glycoproteome profiling for single cells has not been achieved due to the extremely limited sample amount and incompatibility with the available enrichment strategies. Here, we have developed an isobaric labeling-based carrier strategy for highly sensitive intact N-glycopeptide profiling for single cells or a small number of rare cells without enrichment. Isobaric labeling has unique multiplexing properties, by which the "total" signal from all channels triggers MS/MS fragmentation for N-glycopeptide identification, while the reporter ions provide quantitative information. In our strategy, a carrier channel using N-glycopeptides obtained from bulk-cell samples significantly improved the "total" signal of N-glycopeptides and, therefore, promoted the first quantitative analysis of averagely 260 N-glycopeptides from single HeLa cells. We further applied this strategy to study the regional heterogeneity of N-glycosylation of microglia in mouse brain and discovered region-specific N-glycoproteome patterns and cell subtypes. In conclusion, the glycocarrier strategy provides an attractive solution for sensitive and quantitative N-glycopeptide profiling of single/rare cells that cannot be enriched by traditional workflows.
Collapse
Affiliation(s)
- Linlin Kong
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Fengzhi Li
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Wei Fang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Zhuokun Du
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Guibin Wang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Yangjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
5
|
Kawagishi H, Funano SI, Tanaka Y, Xu Y. Flexible Glass-Based Hybrid Nanofluidic Device to Enable the Active Regulation of Single-Molecule Flows. NANO LETTERS 2023; 23:2210-2218. [PMID: 36879391 PMCID: PMC10804405 DOI: 10.1021/acs.nanolett.2c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Single-molecule studies offer deep insights into the essence of chemistry, biology, and materials science. Despite significant advances in single-molecule experiments, the precise regulation of the flow of single small molecules remains a formidable challenge. Herein, we present a flexible glass-based hybrid nanofluidic device that can precisely block, open, and direct the flow of single small molecules in nanochannels. Additionally, this approach allows for real-time tracking of regulated single small molecules in nanofluidic conditions. Therefore, the dynamic behaviors of single small molecules confined in different nanofluidic conditions with varied spatial restrictions are clarified. Our device and approach provide a nanofluidic platform and mechanism that enable single-molecule studies and applications in actively regulated fluidic conditions, thus opening avenues for understanding the original behavior of individual molecules in their natural forms and the development of single-molecule regulated chemical and biological processes in the future.
Collapse
Affiliation(s)
- Hiroto Kawagishi
- Department
of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Shun-ichi Funano
- Center
for Biosystems Dynamics Research, RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yo Tanaka
- Center
for Biosystems Dynamics Research, RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yan Xu
- Department
of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
- Japan
Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Japan
Science and Technology Agency (JST), CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
6
|
Chantipmanee N, Xu Y. Toward nanofluidics‐based mass spectrometry for exploring the unknown complex and heterogenous subcellular worlds. VIEW 2022. [DOI: 10.1002/viw.20220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nattapong Chantipmanee
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
| | - Yan Xu
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
- Japan Science and Technology Agency (JST) PRESTO Kawaguchi Japan
- Japan Science and Technology Agency (JST) CREST Kawaguchi Japan
| |
Collapse
|
7
|
Chantipmanee N, Xu Y. Nanofluidics for chemical and biological dynamics in solution at the single molecular level. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Fukuda S, Xu Y. A biomimetic anti-biofouling coating in nanofluidic channels. J Mater Chem B 2022; 10:2481-2489. [DOI: 10.1039/d1tb02627e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A biomimetic coating using a tailored phosphorylcholine-containing monomer enables to suppress non-specific protein adsorption in nanofluidic channels, paving a way to explore a new anti-biofouling strategy using monomer-based materials for nanodevices.
Collapse
Affiliation(s)
- Sumire Fukuda
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yan Xu
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- NanoSquare Research Institute, Research Center for the 21st Century, Organization for Research Promotion, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
9
|
Seetasang S, Xu Y. Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales. J Mater Chem B 2022; 10:2323-2337. [DOI: 10.1039/d1tb02675e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired materials have attracted attention in a wide range of fields. Among these materials, a polymer family containing 2-methacryloyloxyethyl phosphorylcholine (MPC), which has a zwitterionic phosphorylcholine headgroup inspired by the...
Collapse
|