1
|
Wang N, Yang W, Feng L, Xu XD, Feng S. A supramolecular artificial light-harvesting system based on a luminescent platinum(II) metallacage. Dalton Trans 2023; 52:15524-15529. [PMID: 37622328 DOI: 10.1039/d3dt01706k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
A trigonal luminescent metallacage was constructed by the coordination-driven self-assembly of m-pyridine-modified tetraphenylene ligands with organic Pt(II) acceptors, which exhibited excellent Aggregation-Induced Emission (AIE) properties. An efficient artificial light-harvesting system was successfully constructed by selecting the metallacage as the donor and the hydrophobic fluorescent dye Nile Red (NiR) as the donor molecule in a system of acetone/water (1/9, v/v), The absorption spectra of NiR and the emission spectra of the metallacage showed considerable overlap, achieving energy transfer from the metallacage to NiR.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Weiao Yang
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Lei Feng
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Xing-Dong Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
2
|
Rubinsztajn S, Chojnowski J, Mizerska U. Tris(pentafluorophenyl)borane-catalyzed Hydride Transfer Reactions in Polysiloxane Chemistry-Piers-Rubinsztajn Reaction and Related Processes. Molecules 2023; 28:5941. [PMID: 37630197 PMCID: PMC10459531 DOI: 10.3390/molecules28165941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Tris(pentafluorophenyl)borane (TPFPB) is a unique Lewis acid that catalyzes the condensation between hydrosilanes (Si-H) and alkoxysilanes (Si-OR), leading to the formation of siloxane bonds (Si-OSi) with the release of hydrocarbon (R-H) as a byproduct-the so-called Piers-Rubinsztajn reaction. The analogous reactions of hydrosilanes with silanols (Si-OH), alcohols (R-OH), ethers (R-OR') or water in the presence of TPFPB leads to the formation of a siloxane bond, alkoxysilane (Si-OR or Si-OR') or silanol (Si-OH), respectively. The above processes, often referred to as Piers-Rubinsztajn reactions, provide new synthetic tools for the controlled synthesis of siloxane materials under mild conditions with high yields. The common feature of these reactions is the TPFPB-mediated hydride transfer from silicon to carbon or hydrogen. This review presents a summary of 20 years of research efforts related to this field, with a focus on new synthetic methodologies leading to numerous previously difficult to synthesize well-defined siloxane oligomers, polymers and copolymers of a complex structure and potential applications of these new materials. In addition, the mechanistic aspects of the recently discovered reactions involving hydride transfer from silicon to silicon are discussed in more detail.
Collapse
Affiliation(s)
- Slawomir Rubinsztajn
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences, Sienkiewicza 112, 90-636 Lodz, Poland;
| | - Julian Chojnowski
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences, Sienkiewicza 112, 90-636 Lodz, Poland;
| | | |
Collapse
|
3
|
Xue H, Li DS, Cai HW, Sun XL, Wan WM. Radical Polymerization-Induced Nontraditional Intrinsic Luminescence of Triphenylmethyl Azide-Containing Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Hong Xue
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - De-Shan Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Hua-Wen Cai
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| |
Collapse
|
4
|
Zhang J, Li R, Bei Y, Xu XD, Kang W. Design of a large Stokes shift ratiometric fluorescent sensor with hypochlorite detection towards the potential application as invisible security ink. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121859. [PMID: 36108409 DOI: 10.1016/j.saa.2022.121859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Hypochlorite (ClO-) as a well-known highly reactive oxygen species (ROS), is widely used as preservative and household disinfectant in daily life. Although many fluorescence imaging sensors for ClO- have been reported, the development of ClO- ratio fluorescence sensors with large Stokes shift is still quite limited. This sensor shows obvious benefits including minimizing environmental intervention and improving signal-to-noise ratio. In the present project, we report an innovative conjugated pyrene-based system, 1-B, as a chlorine fluorescence sensor. The detector exhibits ratio detection performance, large Stokes and emission shifts. Furthermore, the system has desired sensitivity as well as selectivity for ClO-. Based on these excellent properties, the sensor 1-B was successfully used as ink to encrypt patterns and anti-counterfeiting information through inkjet printing technology. Compared with the existing probes, the probe shows some superior characteristics, which provides a promising tool for exploring the role of ClO- response sensor in the field of anti-counterfeiting.
Collapse
Affiliation(s)
- Junying Zhang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Ruochen Li
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yiling Bei
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Xing-Dong Xu
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China.
| | - Wenbing Kang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
5
|
Luo Y, Yu G, Liu F, Feng Y, Zhao P, Yue J. Structure-Dependent Nontraditional Intrinsic Fluorescence of Aliphatic Hyperbranched Polyureas. Bioconjug Chem 2022; 33:1319-1327. [PMID: 35729781 DOI: 10.1021/acs.bioconjchem.2c00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nontraditional intrinsic fluorescence (NTIF) of polymers containing heteroatoms has gained considerable attention due to its promising applications in label-free bioimaging. Aliphatic hyperbranched polyureas (aBPUs), which have recently shown great promise in the field of nanomedicine, bear controllable urea groups distributed on the branch points and thus are potential candidate luminogens. However, their NTIF properties and how their structures influence the NTIF properties have not been illustrated yet. Here, we addressed these issues by synthesizing a series of aBPUs with different degrees of branching (DBs) or different modifications. aBPUs exhibited an obvious NTIF phenomenon and with the increase of DBs, the NTIF enhanced as well. Chemical modifications either at the branching ends or in the interior of aBPUs could affect the NTIF performances, which were highly dependent on the types of modification. Disruption of the intra-/intermolecular hydrogen-bonding interactions decreased the NTIF. In addition, poly(ethylene glycol) (PEG)-modified aBPUs could self-assemble into nanospheres, and the formation of nanoassembly led to 89% enhancement on NTIF compared with the homogeneous solution of aBPUs-PEG in dimethylformamide (DMF). Finally, aBPUs-PEG nanoassembly demonstrated a capability in realizing label-free material imaging in vitro. These results shed light on the rational design of the polymer structures to achieve desired fluorescence with unconventional luminophores.
Collapse
Affiliation(s)
- Yao Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Guoyi Yu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Fei Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yanwen Feng
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Pei Zhao
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jun Yue
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
6
|
Xu Q, Qin Z, Bei Y, Feng S, Xu XD. A cationic amphiphilic tetraphenylethylene derivative with hydrochromic sensitive property: Applications in anti-counterfeiting ink and rewritable paper. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|