1
|
Shi Y, Lei Y, Chen M, Ma H, Shen T, Zhang Y, Huang X, Ling W, Liu SY, Pan Y, Dai Z, Xu Y. A Demethylation-Switchable Aptamer Design Enables Lag-Free Monitoring of m 6A Demethylase FTO with Energy Self-Sufficient and Structurally Integrated Features. J Am Chem Soc 2024; 146:34638-34650. [PMID: 39628311 DOI: 10.1021/jacs.4c12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Cellular context profiling of modification effector proteins is critical for an in-depth understanding of their biological roles in RNA N6-methyladenosine (m6A) modification regulation and function. However, challenges still remain due to the high context complexities, which call for a versatile toolbox for accurate live-cell monitoring of effectors. Here, we propose a demethylation-switchable aptamer sensor engineered with a site-specific m6A (DSA-m6A) for lag-free monitoring of the m6A demethylase FTO activity in living cells. As a proof of concept, a DNA aptamer against adenosine triphosphate (ATP) is selected to construct the DSA-m6A model, as the "universal energy currency" role of ATP could guarantee the equally fast and spontaneous conformation change of DSA-m6A sensor upon demethylation and ATP binding in living organisms, thus enabling sensitive monitoring of FTO activity with neither time delay nor recourse to extra supply of substances. This ATP-driven DSA-m6A design facilitates biomedical research, including live-cell imaging, inhibitor screening, single-cell tracking of dynamic FTO nuclear translocation upon starvation stimuli, FTO characterization in a biomimetic heterotypic three-dimensional (3D) multicellular spheroid model, as well as the first report on the in vivo imaging of FTO activity. This strategy provides a simple yet versatile toolbox for clinical diagnosis, drug discovery, therapeutic evaluation, and biological study of RNA demethylation.
Collapse
Affiliation(s)
- Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yutian Lei
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Hansu Ma
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Taorong Shen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wanxuan Ling
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuzhi Xu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Li T, Cheng C, Liu J. Chemical and Enzyme-Mediated Chemical Reactions for Studying Nucleic Acids and Their Modifications. Chembiochem 2024; 25:e202400220. [PMID: 38742371 DOI: 10.1002/cbic.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Nucleic acids are genetic information-carrying molecules inside cells. Apart from basic nucleotide building blocks, there exist various naturally occurring chemical modifications on nucleobase and ribose moieties, which greatly increase the encoding complexity of nuclei acids, contribute to the alteration of nucleic acid structures, and play versatile regulation roles in gene expression. To study the functions of certain nucleic acids in various biological contexts, robust tools to specifically label and identify these macromolecules and their modifications, and to illuminate their structures are highly necessary. In this review, we summarize recent technique advances of using chemical and enzyme-mediated chemical reactions to study nucleic acids and their modifications and structures. By highlighting the chemical principles of these techniques, we aim to present a perspective on the advancement of the field as well as to offer insights into developing specific chemical reactions and precise enzyme catalysis utilized for nucleic acids and their modifications.
Collapse
Affiliation(s)
- Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
| | - Chongguang Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
- Life Sciences Institute, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, Zhejiang Province, China
| |
Collapse
|
3
|
Kong X, Dong M, Du M, Qian J, Yin J, Zheng Q, Wu ZL. Recent Progress in 3D Printing of Polymer Materials as Soft Actuators and Robots. CHEM & BIO ENGINEERING 2024; 1:312-329. [PMID: 39974466 PMCID: PMC11835162 DOI: 10.1021/cbe.4c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 02/21/2025]
Abstract
With inspiration from natural systems, various soft actuators and robots have been explored in recent years with versatile applications in biomedical and engineering fields. Soft active materials with rich stimulus-responsive characteristics have been an ideal candidate to devise these soft machines by using different manufacturing technologies. Among these technologies, three-dimensional (3D) printing shows advantages in fabricating constructs with multiple materials and sophisticated architectures. In this Review, we aim to provide an overview of recent progress on 3D printing of soft materials, robotics performances, and representative applications. Typical 3D printing techniques are briefly introduced, followed by state-of-the-art advances in 3D printing of hydrogels, shape memory polymers, liquid crystalline elastomers, and their hybrids as soft actuators and robots. From the perspective of material properties, the commonly used printing techniques and action-generation principles for typical printed constructs are discussed. Actuation performances, locomotive behaviors, and representative applications of printed soft materials are summarized. The relationship between printing structures and action performances of soft actuators and robots is also briefly discussed. Finally, the advantages and limitations of each soft material are compared, and the remaining challenges and future directions in this field are prospected.
Collapse
Affiliation(s)
- Xiangren Kong
- Key
Laboratory of Soft Machines and Smart Devices of Zhejiang Province,
Department of Engineering Mechanics, Zhejiang
University, Hangzhou 310027, China
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Min Dong
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Miao Du
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jin Qian
- Key
Laboratory of Soft Machines and Smart Devices of Zhejiang Province,
Department of Engineering Mechanics, Zhejiang
University, Hangzhou 310027, China
| | - Jun Yin
- The
State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory
of 3D Printing Process and Equipment of Zhejiang Province, School
of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qiang Zheng
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zi Liang Wu
- Ministry
of Education Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Dong M, Liu W, Dai CF, Jiao D, Zhu QL, Hong W, Yin J, Zheng Q, Wu ZL. Photo-steered rapid and multimodal locomotion of 3D-printed tough hydrogel robots. MATERIALS HORIZONS 2024; 11:2143-2152. [PMID: 38376773 DOI: 10.1039/d3mh02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Hydrogels are an ideal material to develop soft robots. However, it remains a grand challenge to develop miniaturized hydrogel robots with mechanical robustness, rapid actuation, and multi-gait motions. Reported here is a facile strategy to fabricate hydrogel-based soft robots by three-dimensional (3D) printing of responsive and nonresponsive tough gels for programmed morphing and locomotion upon stimulations. Highly viscoelastic poly(acrylic acid-co-acrylamide) and poly(acrylic acid-co-N-isopropyl acrylamide) aqueous solutions, as well as their mixtures, are printed with multiple nozzles into 3D constructs followed by incubation in a solution of zirconium ions to form robust carboxyl-Zr4+ coordination complexes, to produce tough metallo-supramolecular hydrogel fibers. Gold nanorods are incorporated into ink to afford printed gels with response to light. Owing to the mechanical excellence and small diameter of gel fibers, the printed hydrogel robots exhibit high robustness, fast response, and agile motions when remotely steered by dynamic light. The design of printed constructs and steering with spatiotemporal light allow for multimodal motions with programmable trajectories of the gel robots. The hydrogel robots can walk, turn, flip, and transport cargos upon light stimulations. Such printed hydrogels with good mechanical performances, fast response, and agile locomotion may open opportunities for soft robots in biomedical and engineering fields.
Collapse
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Weixuan Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Fei Dai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Wei Hong
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering Zhejiang University, Hangzhou 310058, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Zhang YY, Yang GW, Lu C, Zhu XF, Wang Y, Wu GP. Organoboron-mediated polymerizations. Chem Soc Rev 2024; 53:3384-3456. [PMID: 38411207 DOI: 10.1039/d3cs00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The scientific community has witnessed extensive developments and applications of organoboron compounds as synthetic elements and metal-free catalysts for the construction of small molecules, macromolecules, and functional materials over the last two decades. This review highlights the achievements of organoboron-mediated polymerizations in the past several decades alongside the mechanisms underlying these transformations from the standpoint of the polymerization mode. Emphasis is placed on free radical polymerization, Lewis pair polymerization, ionic (cationic and anionic) polymerization, and polyhomologation. Herein, alkylborane/O2 initiating systems mediate the radical polymerization under ambient conditions in a controlled/living manner by careful optimization of the alkylborane structure or additives; when combined with Lewis bases, the selected organoboron compounds can mediate the Lewis pair polymerization of polar monomers; the bicomponent organoboron-based Lewis pairs and bifunctional organoboron-onium catalysts catalyze ring opening (co)polymerization of cyclic monomers (with heteroallenes, such as epoxides, CO2, CO, COS, CS2, episulfides, anhydrides, and isocyanates) with well-defined structures and high reactivities; and organoboranes initiate the polyhomologation of sulfur ylides and arsonium ylides providing functional polyethylene with different topologies. The topological structures of the produced polymers via these organoboron-mediated polymerizations are also presented in this review mainly including linear polymers, block copolymers, cyclic polymers, and graft polymers. We hope the summary and understanding of how organoboron compounds mediate polymerizations can inspire chemists to apply these principles in the design of more advanced organoboron compounds, which may be beneficial for the polymer chemistry community and organometallics/organocatalysis community.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Chenjie Lu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiao-Feng Zhu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Yuhui Wang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
6
|
Li T, Shu X, Gao M, Huang C, Li T, Cao J, Ying X, Liu D, Liu J. N4-Allylcytidine: a new nucleoside analogue for RNA labelling and chemical sequencing. RSC Chem Biol 2024; 5:225-235. [PMID: 38456037 PMCID: PMC10915972 DOI: 10.1039/d3cb00189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024] Open
Abstract
RNA labelling has become indispensable in studying RNA biology. Nucleoside analogues with a chemical sequencing power represent desirable RNA labelling molecules because precise labelling information at base resolution can be obtained. Here, we report a new nucleoside analogue, N4-allylcytidine (a4C), which is able to tag RNA through both in vitro and in vivo pathways and further specifically reacts with iodine to form 3, N4-cyclized cytidine (cyc-C) in a catalyst-free, fast and complete manner. Full spectroscopic characterization concluded that cyc-C consisted of paired diastereoisomers with opposite chiral carbon centers in the fused 3, N4-five-membered ring. During RNA reverse transcription into complementary DNA, cyc-C induces base misincorporation due to the disruption of canonical hydrogen bonding by the cyclized structure and thus can be accurately identified by sequencing at single base resolution. With the chemical sequencing rationale of a4C, successful applications have been performed including pinpointing N4-methylcytidine methyltransferases' substrate modification sites, metabolically labelling mammalian cellular RNAs, and mapping active cellular RNA polymerase locations with the chromatin run-on RNA sequencing technique. Collectively, our work demonstrates that a4C is a promising molecule for RNA labelling and chemical sequencing and expands the toolkit for studying sophisticated RNA biology.
Collapse
Affiliation(s)
- Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Xiao Shu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Minsong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Chenyang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Ting Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
- Life Sciences Institute, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Xiner Ying
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Donghong Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
- Life Sciences Institute, Zhejiang University Yuhangtang Road 866 Hangzhou 310058 Zhejiang Province China
| |
Collapse
|
7
|
Ying X, Huang C, Li T, Li T, Gao M, Wang F, Cao J, Liu J. An RNA Methylation-Sensitive AIEgen-Aptamer Reporting System for Quantitatively Evaluating m 6A Methylase and Demethylase Activities. ACS Chem Biol 2024; 19:162-172. [PMID: 38105499 DOI: 10.1021/acschembio.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
N6-Methyladenosine (m6A) chemical modification determines the fate of the mammalian cellular mRNA to modulate crucial physiological and pathological processes. Dysregulations of m6A methylase and demethylase have been linked to cancer diseases. Therefore, evaluations of enzyme mutants' activities and related inhibitors for discovery of targeted therapeutic strategies are very necessary. Here, we report an RNA methylation-sensitive fluorescent aptamer reporting assay to measure the catalytic activities of m6A enzymes under various conditions. The rationale is that when an RNA aptamer, named A-Pepper, is methylated at a specific adenosine position to generate m6A-Pepper, the latter displays stronger fluorescence than the former upon binding the ligand, which is an aggregation-induced emission-active luminogen. The fluorescence signal enhancement is linearly proportional to the RNA methylation extent, which is equivalent to the methylase activity. On the contrary, the m6A demethylase activity is measured through calculating the fluorescence signal decrease caused by the switching from m6A-Pepper to A-Pepper. The assay has been successfully applied to quantitatively evaluate the mutation and inhibitor effects on the activities of m6A methylases METTL3/METTL14 and demethylase FTO, and the obtained results are well-consistent with those quantified by the expensive and time-consuming golden standard LC-MS/MS. Our work provides a simple tool capable of detecting m6A enzymes' activities and screening their inhibitors in a rapid, quantitative, cost-effective, and high-throughput manner.
Collapse
Affiliation(s)
- Xiner Ying
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Chenyang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ting Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Minsong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fengqin Wang
- College of Animal Sciences, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| |
Collapse
|
8
|
Yao Y, Ren J, Li H. Multi-Functionalization of Single crystals Mediated by Gel-Incorporation: A Bioinspired Strategy. Chempluschem 2023; 88:e202300228. [PMID: 37529945 DOI: 10.1002/cplu.202300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Biominerals are inherently organic-inorganic crystal composites. Drawing inspiration from this biomineral structure, functionalized single crystals can be synthesized using the gel-grown method, resulting in the incorporation of gel-networks into the host crystals. By incorporating gel-networks, diverse guest materials, such as nanoparticles and dye molecules, can be uniformly and isotropically distributed within the crystals, thereby imparting non-intrinsic optical or magnetic properties to the host crystals. Additionally, gel-incorporation enhances the toughness and stability of the crystals as the incorporated gel-fibers and accompanying guest materials act as bridges to prevent crack propagation. Furthermore, gel-incorporation enables protein crystals to exhibit self-healing properties, which can be attributed to the dynamic bonding interaction between gel-networks and crystals. Notably, recent research has demonstrated that the incorporation of zwitterionic gel-networks enhances the charge effects on crystal morphology evolution as the charged groups become bound to the developing crystal surfaces, and their detachment is impeded by the interconnected gel-networks. Therefore, preparing single crystals with gel-incorporation is a remarkable strategy for synthesizing functionalized crystal materials.
Collapse
Affiliation(s)
- Yuqing Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Jie Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| |
Collapse
|
9
|
Yu G, Ren J, Yan S, Yuan W, Li H. Long-Range Ordered Organic Bulk-Heterojunction: C 60 and O-IDTBR Single Crystals Penetrated by Crystalline P3HT Fibrous Networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302046. [PMID: 37173813 DOI: 10.1002/smll.202302046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/16/2023] [Indexed: 05/15/2023]
Abstract
The long-range ordering of bulk-heterojunctions (BHJs) significantly facilitates exciton diffusion and dissociation as well as charge transport. A feasible bio-inspired strategy to realize such a heterostructure is crystallization in gel media where the growing host crystals incorporate the surrounding guest materials of gel networks. Until now, the host-guest pairs forming ordered BHJs are still very limited and, more importantly, the used gel-network guests are structurally amorphous, spurring investigation toward crystalline gel-networks. Here, single crystals of fullerene and non-fullerene acceptors (NFAs) in poly(3-hexylthiophene) (P3HT) organogel are prepared, forming C60 :P3HT and (5Z,5″Z)-5,5″-((7,7″-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b″]dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene))bis(3-ethyl-2-thioxothiazolidin-4-one) (O-IDTBR):P3HT BHJs. The crystalline P3HT network penetrates the crystal matrix without significantly disturbing the single crystallinity, resulting in long-range ordered BHJs. This bi-continuous structure, together with an improved overall ordering, contributes to enhanced charge/energy transfer. As a result, photodetectors based on these ordered BHJs exhibit ameliorated responsivity, detectivity, bandwidth, and stability as compared to the conventional BHJs with short-range ordering. Therefore, this work further extends the scope of long-range ordered BHJs toward crystalline polymer donors and NFAs, providing a generally applicable strategy for the design of organic optoelectronic devices with superior performance.
Collapse
Affiliation(s)
- Guanxiong Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jie Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shuo Yan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
10
|
Exploring Possible Ways to Enhance the Potential and Use of Natural Products through Nanotechnology in the Battle against Biofilms of Foodborne Bacterial Pathogens. Pathogens 2023; 12:pathogens12020270. [PMID: 36839543 PMCID: PMC9967150 DOI: 10.3390/pathogens12020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially their presence in the food industry is problematic. Using chemical disinfectants in the food industry to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods. Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as natural preservatives in the food industry. However, the use of these natural preservatives in the food industry is restricted by their poor availability, stability during food processing and storage. Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is one way to get around these limitations and as well as the use of underutilized bioactives. The use of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles used in fabricating or encapsulating natural products are considered as an appealing antibiofilm strategy since the nanoparticles enhance the activity of the natural products against biofilms of foodborne bacterial pathogens. Hence, this literature review is intended to provide a comprehensive analysis of the current methods in nanotechnology used for natural products delivery (biofabrication, encapsulation, and nanoemulsion) and also discuss the different promising strategies employed in the recent and past to enhance the inhibition and eradication of foodborne bacterial biofilms.
Collapse
|
11
|
Sheng Y, Chen Z, Wu W, Lu Y. Engineered organic nanoparticles to combat biofilms. Drug Discov Today 2023; 28:103455. [PMID: 36403883 DOI: 10.1016/j.drudis.2022.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Biofilms are colonies of microorganisms that are embedded in autocrine extracellular polymeric substances (EPS), imparting antibiotic resistance and recalcitrant bacterial infection. Nanoparticles (NPs) can enhance the biofilm inhibition and eradication of delivered antibiotics. This is mainly because of enhanced EPS penetration and a high local drug concentration. As we discuss here, novel strategies are being developed to further enhance the antibiofilm capacity of NPs, including size optimization, surface modification, stimuli-triggered release, and combined strategies. Thus, NPs represent an effective and promising approach to combat biofilms.
Collapse
Affiliation(s)
- Yuze Sheng
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Engineering Research Center For External Chinese Medicine, Shanghai 200433, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China; Fudan Zhangjiang Institute, Shanghai 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
12
|
Yang K, Hua B, Qi S, Bai B, Yu C, Huang F, Yu G. Suprasomes Based on Host-Guest Molecular Recognition: An Excellent Alternative to Liposomes in Cancer Theranostics. Angew Chem Int Ed Engl 2022; 61:e202213572. [PMID: 36261392 DOI: 10.1002/anie.202213572] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 11/07/2022]
Abstract
Liposomes and polymersomes, typical vesicular drug delivery systems (DDSs), have faced some limitations in cancer theranostics. Suprasomes, supramolecular vesicles assembled from amphiphiles linked by noncovalent interactions, show potential as new generation of vesicular DDSs. We construct suprasomes based on host-guest recognition, by which the desired functions can be integrated into carriers without tedious synthesis. Photothermally active host-guest complex is formed between a functional guest and pillar[5]arene, which further self-assembles into hollow suprasomes. A supramolecular nanomedicine is developed by encapsulating cisplatin in the suprasomes. The obtained cisplatin@Suprasomes achieve excellent anticancer efficacy and anti-metastasis combining chemotherapy and photothermal therapy, which ablate the tumors without relapse and metastasis. This work demonstrates the facile functionalization of suprasomes, holding promise as alternatives to liposomes and polymersomes.
Collapse
Affiliation(s)
- Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
13
|
Zhao Y, Wang W, He Z, Peng B, Di CA, Li H. High-performance and multifunctional organic field-effect transistors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Gong Z, Yan Q. Photoregulated supramolecular hydrogels driven by polyradical interactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
15
|
Liu B, Chu B, Zhu L, Zhang H, Yuan WZ, Zhao Z, Wan WM, Zhang XH. Clusteroluminescence: A gauge of molecular interaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Li YT, Sheng ST, Yu B, Jia F, Wang K, Han HJ, Jin Q, Wang YX, Ji J. An ROS-Responsive Antioxidative Macromolecular Prodrug of Caffeate for Uveitis Treatment. CHINESE JOURNAL OF POLYMER SCIENCE 2022; 40:1101-1109. [DOI: 10.1007/s10118-022-2798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022]
|
17
|
Li J, Jia F, Chen Z, Lin J, Lv Q, Huang Y, Jin Q, Wang Y, Fu G, Ji J. Targeted delivery of liver X receptor agonist to inhibit neointimal hyperplasia by differentially regulating cell behaviors. Biomater Sci 2022; 10:6354-6364. [PMID: 36018302 DOI: 10.1039/d2bm01041k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Restenosis induced by neointimal hyperplasia is one of the key reasons limiting the long-term success of cardiovascular interventional therapy. However, it remains a serious challenge to completely overcome restenosis because of the dilemma of simultaneously activating human umbilical vein endothelial cells (HUVECs) and inhibiting human aortic smooth muscle cells (HASMCs). Herein, we developed a targeted nanomedicine encapsulating the liver X receptor (LXR) agonist, T0901317, for differentially regulating the behaviors of HUVECs and HASMCs. The stimulatory effect on HUVEC proliferation/migration and the inhibitory effect on HASMC proliferation/migration were confirmed in vitro, respectively. In the co-culture system, the competitiveness of HUVECs over HASMCs was notably improved after being treated with T0901317-loaded liposomes. Compared to free T0901317 and non-targeted liposomes, the type IV collagen (Col-IV) targeted liposomes could accumulate in the vascular injured area more effectively and inhibit neointimal hyperplasia in a balloon-induced rat carotid artery injury model. Therefore, targeted delivery of LXR agonist might be a very promising therapeutic strategy for anti-restenosis therapy.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhebin Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| | - Jun Lin
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| | - Jian Ji
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China. .,MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
18
|
Chen X, Jia F, Huang Y, Jin Q, Ji J. Cancer-Associated Fibroblast-Targeted Delivery of Captopril to Overcome Penetration Obstacles for Enhanced Pancreatic Cancer Therapy. ACS APPLIED BIO MATERIALS 2022; 5:3544-3553. [PMID: 35786827 DOI: 10.1021/acsabm.2c00486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pancreatic cancer is one of the most stroma-abundant solid cancers. Its desmoplastic nature restricts the penetration of drugs in tumor tissues and is considered as a major challenge for efficient chemotherapy. In the present study, we repurposed the use of captopril to deplete the overexpressed extracellular matrix (ECM) in stroma of pancreatic tumor. Precise delivery of captopril to cancer-associated fibroblasts (CAFs) was achieved using CAFs targeting peptide modified liposomes. The targeted delivery of captopril significantly downregulated the deposition of ECM by blocking the TGF-β1-Smad2 related signaling pathway, which improved the penetration of subsequently administrated liposome-encapsulated chemotherapeutic agent gemcitabine. It proved as a promising solution to break the aforementioned stromal barrier in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
19
|
A NIR-II emissive polymer AIEgen for imaging-guided photothermal elimination of bacterial infection. Biomaterials 2022; 286:121579. [DOI: 10.1016/j.biomaterials.2022.121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022]
|
20
|
An K, Gao J, Chen Y, Nie J, Li Y, Xu J, Du B. Effect of poly(4-tert-butylstyrene) block length on the microphase structure of poly(ethylene oxide)-b-poly(4-vinylbenzyl chloride)-b-poly(4-tert-butylstyrene) triblock terpolymers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Liu SY, Wang D, Wen TJ, Zhou GQ, Zhu HM, Chen HZ, Li CZ. Unaxisymmetric Non-Fused Electron Acceptors for Efficient Polymer Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Wen Q, Cai Q, Fu P, Chang D, Xu X, Wen TJ, Wu GP, Zhu W, Wan LS, Zhang C, Zhang XH, Jin Q, Wu ZL, Gao C, Zhang H, Huang N, Li CZ, Li H. Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Huang Y, Zou L, Wang J, Jin Q, Ji J. Stimuli-responsive nanoplatforms for antibacterial applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1775. [PMID: 35142071 DOI: 10.1002/wnan.1775] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
The continuously increasing bacterial resistance has become a big threat to public health worldwide, which makes it urgent to develop innovative antibacterial strategies. Nanotechnology-based drug delivery systems are considered as promising strategies in combating bacterial infections which are expected to improve the therapeutic efficacy and minimize the side effects. Unfortunately, the conventional nanodrug delivery systems always suffer from practical dilemmas, including incomplete and slow drug release, insufficient accumulation in infected sites, and weak biofilm penetration ability. Stimuli-responsive nanoplatforms are hence developed to overcome the disadvantages of conventional nanoparticles. In this review, we provide an extensive review of the recent progress of endogenous and exogenous stimuli-responsive nanoplatforms in the antibacterial area, including planktonic bacteria, intracellular bacteria, and bacterial biofilms. Taking advantage of the specific infected microenvironment (pH, enzyme, redox, and toxin), the mechanisms and strategies of the design of endogenous stimuli-responsive nanoplatforms are discussed, with an emphasis on how to improve the therapeutic efficacy and minimize side effects. How to realize controlled drug delivery using exogenous stimuli-responsive nanoplatforms especially light-responsive nanoparticles for improved antibacterial effects is another topic of this review. We especially highlight photothermal-triggered drug delivery systems by the combination of photothermal agents and thermo-responsive materials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Lingyun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Gao M, Li Y, Shu X, Dai P, Cao J, An Y, Li T, Huang Y, Wang F, Lu Z, Meng FL, Feng XH, Ma L, Liu J. New Chromatin Run-On Reaction Enables Global Mapping of Active RNA Polymerase Locations in an Enrichment-free Manner. ACS Chem Biol 2022; 17:768-775. [PMID: 35302367 DOI: 10.1021/acschembio.1c00951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of a simple and cost-effective method to map the distribution of RNA polymerase II (RNPII) genome-wide at a high resolution is highly beneficial to study cellular transcriptional activity. Here we report a mutation-based and enrichment-free global chromatin run-on sequencing (mGRO-seq) technique to locate active RNPII sites genome-wide at near-base resolution. An adenosine triphosphate (ATP) analog named N6-allyladenosine triphosphate (a6ATP) was designed and could be incorporated into nascent RNAs at RNPII-located positions during a chromatin run-on reaction. By treatment of the run-on RNAs with a mild iodination reaction and subjection of the products to reverse transcription into complementary DNA (cDNA), base mismatch occurs at the original a6A incorporation sites, thus making the RNPII locations detected in the high-throughput cDNA sequencing. The mGRO-seq yields both the map of RNPII sites and the chromatin RNA abundance and holds great promise for the study of single-cell transcriptional activity.
Collapse
Affiliation(s)
- Minsong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Yini Li
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Xiao Shu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Pengfei Dai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Yunyun An
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Ye Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Fengqin Wang
- College of Animal Sciences, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310027, China
| | - Zhike Lu
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Lijia Ma
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
- Life Sciences Institute, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| |
Collapse
|
25
|
Ye J, Yu B, Hu H, Zhou D, Jin Q, Ji J, Tang Z. Verteporfin-loaded supramolecular micelles for enhanced cisplatin-based chemotherapy via autophagy inhibition. J Mater Chem B 2022; 10:2670-2679. [PMID: 35043820 DOI: 10.1039/d1tb02583j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cisplatin (CDDP) is one of the most successful chemotherapeutic agents for cancer therapy. However, CDDP can activate pro-survival autophagy, which inhibits the therapeutic efficacy of CDDP. Herein, autophagy inhibitor verteporfin (VTPF) is integrated into CDDP-conjugated micelles to address this issue. The CDDP-conjugated micelles are prepared by host-guest interaction of zwitterionic poly(2-(methacryloyloxy)ethyl phosphorylcholine)-co-poly(2-(methacryloyloxy)ethyl adamantane-1-carboxylate) (P(MPC-co-MAd)) and CDDP conjugated β-cyclodextrin (CD-CDDP). VTPF is then physically encapsulated into the supramolecular micelles by hydrophobic interaction. Due to the zwitterionic corona of the supramolecular micelles, the micelles are stable in different media. CDDP and VTPF could be released in a reductive environment. CDDP-activated autophagy could be inhibited by VTPF, which is fully characterized by western blot, fluorescence imaging, and transmission electron microscopy (TEM). Moreover, the outstanding therapeutic efficacy of CDDP and VTPF co-loaded micelles is validated both in vitro and in vivo. This research not only provides a new strategy to fabricate CDDP delivery systems by supramolecular self-assembly, but also presents an innovative way to enhance cisplatin-based chemotherapy via autophagy inhibition.
Collapse
Affiliation(s)
- Junwei Ye
- Department of Surgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China. .,International Institutes of Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Haitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China. .,International Institutes of Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Dongfang Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China. .,Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China. .,International Institutes of Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China.,Department of Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
26
|
Hou LX, Ding H, Hao XP, Zhu CN, Du M, Wu ZL, Zheng Q. Multi-level encryption of information in morphing hydrogels with patterned fluorescence. SOFT MATTER 2022; 18:2149-2156. [PMID: 35212340 DOI: 10.1039/d2sm00083k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorescent hydrogels have attracted tremendous attention recently in the field of information security due to the booming development of information technology. Along this line, it is highly desired to improve the security level of concealed information by the advancements of materials and encryption technologies. Here we report multi-level encryption of information in a bilayer hydrogel with shape-morphing ability and patterned fluorescence. This hydrogel is composed of a fluorescence layer containing chromophore units in the poly(acrylic acid) network and an active layer with UV-absorption agents in the poly(N-isopropylacrylamide-co-acrylic acid) network. The former layer exhibits tunable fluorescence tailored by UV light irradiation to induce unimer-to-dimer transformation of the chromophores, facilitating the write-in of information through photolithography. The latter layer is responsive to temperature, enabling morphing of the bilayer hydrogel. Therefore, the bilayer hydrogel encoded with patterned fluorescent patterns can deform into three-dimensional configurations at room temperature to conceal the information, which is readable only after successive procedures of shape recovery at an appropriate temperature and under UV light irradiation from the right direction. The combination of morphing materials and patterned fluorescence as a new avenue to improve the encryption level of information should merit the design of other smart materials with integrated functions for specific applications.
Collapse
Affiliation(s)
- Li Xin Hou
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hongyao Ding
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Xing Peng Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Chao Nan Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
27
|
Wang S, Yu Y, Li H, Huang Y, Wang J, Jin Q, Ji J. pH
‐sensitive polyion nanocomplexes for antimicrobial peptide delivery. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuting Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Yan Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Heyang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Yan Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jing Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
28
|
Fang L, Hu J, Zhang CW, Wei J, Yu HC, Zheng SY, Wu ZL, Zheng Q. Facile synthesis of tough metallosupramolecular hydrogels by using phosphates as temporary ligands of ferric ions to avoid inhibition of polymerization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lingtao Fang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jian Hu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics Xi'an Jiaotong University Xi'an China
| | - Chuan Wei Zhang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jialun Wei
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Hai Chao Yu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Si Yu Zheng
- College of Materials Science & Engineering Zhejiang University of Technology Hangzhou China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
29
|
Zhu XF, Lu X, Qi H, Wang Y, Wu GP. Sulfur-containing polymers derived from SO2: synthesis, properties, and applications. Polym Chem 2022. [DOI: 10.1039/d2py00685e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfur-containing polymers enjoy the merits of excellent optical performance, degradation, chemical recyclability, and adhesive abilities toward metal ions. Recently, increasing attentions in both academic and industrial circles have been paid...
Collapse
|
30
|
Peng B, Wu R, Li H. Crystallization from a Droplet: Single-Crystalline Arrays and Heterojunctions for Organic Electronics. Acc Chem Res 2021; 54:4498-4507. [PMID: 34866378 DOI: 10.1021/acs.accounts.1c00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusSingle crystals of organic semiconductors (OSCs) are believed to have both high mobility and intrinsic flexibility, making them promising candidates for flexible electronic/optoelectronic applications and being consistently pursued by researchers. The van der Waals force in OSC enables low-temperature solution processing of single crystals, but the relatively weak binding energy brings challenges in forming large, uniform, and defect-free single crystals. To promote the study on OSC single crystals, a generalized method that grows high-quality crystals in an easy-to-handle, time/resource-saving, and repeatable manner is apparently necessary. In 2012, Li et al. developed a droplet-pinned crystallization (DPC) method that uses a rather simple strategy to create a steadily receding contact line for the growth of OSC single crystals. Instead of setting up expensive equipment, controlling strict deposition parameters, or waiting for days or weeks for countable crystal seeds, the DPC method offers a time- and cost-effective way to obtain OSC single crystals for further study of the tendency of crystallization, single-crystal mobility, and molecular packing information. The DPC method is primarily a powerful tool for studying the charge-transport mechanisms in OSC single crystals. In pioneering work, high-mobility single crystals of both p-type 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) and n-type C60 materials were obtained. Driven by the demands from practical applications, we then focused on the general lagging of electron mobility in OSC materials. The ambipolar property of TIPS-PEN was studied, and a strong correlation between electron mobility and polar species (polar solvent residuals and surface hydroxyl groups) was observed. The latter further guided the harvest of electron mobility in a series of OSC materials. Undoubtfully, the facile DPC method accelerated these studies by providing a time-efficient, reliable, and repeatable testing platform. Additionally, flexibility on OSC materials and solvents, where not only one-component but also binary systems were allowed, is another critical integrity of the DPC method. The m-xylene/carbon tetrachloride binary solvent was proven to be efficient for growing ribbon-like C60 single crystals rather than needle-like crystals from typical one-component solvents. Afterward, a variety of OSC materials (including p-type, n-type, and ambipolar ones) and a series of solvents (including aromatic, aliphatic, and polar ones) were studied. The crystallization of OSC single crystals was primarily found at either the top liquid-air interface or the bottom solid-liquid interface. The interactions between OSC molecules and substrate surfaces were deduced as the qualitative determining factor. By utilizing the top interface crystallization, the two-step sequential deposition of single-crystalline OSC heterojunctions was enabled. Moreover, by selecting appropriate pairs of OSC materials that crystallize at separate interfaces, the facile one-step formation of single-crystalline OSC heterojunctions was achieved. The OSC single crystals and heterojunctions (including horizontal, vertical, and bulk heterojunctions) thereof exhibit promising potentials in circuits, photovoltaics, and photodiodes and would probably provide new insights for the future development of organic electronics.
Collapse
Affiliation(s)
- Boyu Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruihan Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
Wen Q, Ma W, Liu Y, Jin X, Ren J, Lin C, Hu C, Yang YM, Li H. PbI 2-TiO 2 Bulk Heterojunctions with Long-Range Ordering for X-ray Detectors. J Phys Chem Lett 2021; 12:11176-11181. [PMID: 34761947 DOI: 10.1021/acs.jpclett.1c03297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-performance X-ray detectors are usually based on single crystals, due to the long-range ordering and hence outstanding electronic properties. On the other hand, bulk heterojunctions (BHJs) that can effectively enhance photogenerated exciton dissociation are widely used for photodetectors. The benefits of both spur investigation into how to combine these two strategies to enhance X-ray detection. Here, TiO2 networks are incorporated into PbI2 crystals to form interpenetrating type II heterojunctions, namely BHJs. These BHJs exhibit long-range ordering in molecular packing similar to that of single crystals. Compared with single crystals, the long-range ordered BHJs facilitate the separation of photogenerated electrons and holes to inhibit recombination, extend the mobility lifetime product by 6.4 times, and consequently improve X-ray sensitivity by 5.8 times. Hence, this work provides a new strategy using gel-grown crystals to fabricate high-performance X-ray detectors as well as a new platform for studying the behavior of X-ray-generated carriers in BHJs with long-range ordering.
Collapse
Affiliation(s)
- Quan Wen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wenbo Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yujing Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xinyi Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jie Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chengce Lin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chong Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yang Michael Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hanying Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|