1
|
Nan M, Yang Y, Ying P, Zheng Q, Wu Y, Cao T, Li T, Huang W, Fu C, Kong L, Xu W. Garciyunnanones A-R: Caged polycyclic polyprenylated acylphloroglucinols decorated with a lavandulyl substituent from Garcinia yunnanensis. PHYTOCHEMISTRY 2024; 224:114167. [PMID: 38810816 DOI: 10.1016/j.phytochem.2024.114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Garciyunnanones A-R (1-18), eighteen undescribed caged polycyclic polyprenylated acylphloroglucinols, two undescribed biogenetic congeners (19-20), and nineteen known analogues (21-39), were isolated from the stem barks of Garcinia yunnanensis Hu. All of these isolates are decorated with a C-5 lavandulyl substituent. Their structures and absolute configurations were confirmed by HRESIMS, 1D & 2D NMR spectroscopic analysis, quantum chemical calculations of electronic circular dichroism data, and single-crystal X-ray diffraction analysis. The X-ray crystallographic data of ten isolated caged compounds ascertained the absolute configuration of C-23 in the lavandulyl as S. The cytotoxicity on three cancer cell lines and the anti-nonalcoholic steatohepatitis activity of the isolates were tested. In a free fatty acid-induced L02 cell model, compounds 33 and 39 decreased intracellular lipid accumulation significantly.
Collapse
Affiliation(s)
- Miaomiao Nan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yueyou Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ping Ying
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, People's Republic of China
| | - Qiang Zheng
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, People's Republic of China
| | - Youjun Wu
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, People's Republic of China
| | - Tianjie Cao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ting Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Weiming Huang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Chuanlu Fu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Wenjun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute of China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
2
|
Duan Y, Sun W, Li Y, Shi Z, Li L, Zhang Y, Huang K, Zhang Z, Qi C, Zhang Y. Spirohypertones A and B as potent antipsoriatics: Tumor necrosis factor- α inhibitors with unprecedented chemical architectures. Acta Pharm Sin B 2024; 14:2646-2656. [PMID: 38828134 PMCID: PMC11143743 DOI: 10.1016/j.apsb.2024.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a promising target for inflammatory and autoimmune diseases. Spirohypertones A (1) and B (2), two unprecedented polycyclic polyprenylated acylphloroglucinols with highly rearranged skeletons, were isolated from Hypericum patulum. The structures of 1 and 2 were confirmed through comprehensive spectroscopic analysis, single-crystal X-ray diffraction and electronic circular dichroism calculations. Importantly, 2 showed remarkable TNF-α inhibitory activity, which could protect L929 cells from death induced by co-incubation with TNF-α and actinomycin D. It also demonstrated the ability to suppress the inflammatory response in HaCaT cells stimulated with TNF-α. Notably, in an imiquimod-induced psoriasis murine model, 2 restrained symptoms of epidermal hyperplasia associated with psoriasis, presenting anti-inflammatory and antiproliferative effects. This discovery positions 2 as a potent TNF-α inhibitor, providing a promising lead compound for developing an antipsoriatic agent.
Collapse
Affiliation(s)
- Yulin Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongqi Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lanqin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Zhang JF, Wu SF, Zhu L, Cai YX, Yu ZP, Kong LY, Luo JG. Withanolides from Physalis angulata var. villosa and the Relative Configurational Revision of Some Known Analogs. JOURNAL OF NATURAL PRODUCTS 2024; 87:38-49. [PMID: 38207331 DOI: 10.1021/acs.jnatprod.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Physalis angulata var. villosa is a plant possessing abundant withanolides, but in-depth research is lacking. In our ongoing study of P. angulata var. villosa, 15 previously undescribed withanolides (1-15), along with 21 known analogs (16-36), were isolated from the whole plant. The structures of the withanolides (1-15) were elucidated based on analysis of their 1D and 2D NMR, HRESIMS, and ECD data. Additionally, the application of γ-gauche effects with the help of ROESY correlations led to the formulation of empirical rules for withanolides with 14-OH/15-OAc to rapidly determine the 14-OH orientations, making it possible to propose configurational revisions of 19 previously reported analogs (1'-19'). Withanolides 1, 4-6, and 10 showed potent cytotoxic activities against three human cancer cell lines (HCT-116, MDA-MB-231, and A549).
Collapse
Affiliation(s)
- Jian-Fei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Si-Fang Wu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ling Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yu-Xing Cai
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhan-Peng Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
4
|
Li XY, Dong RR, Nan MM, Wang XL, Cao TJ, Ying P, Zheng Q, Kong LY, Xu WJ. Hyperxylones A and B, two polycyclic polyprenylated acylphloroglucinols with a benzoyl substituted bicyclo[3.2.1]octane core from Hypericum beanii. Fitoterapia 2023; 165:105389. [PMID: 36586626 DOI: 10.1016/j.fitote.2022.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Two new polycyclic polyprenylated acylphloroglucinols (PPAPs) possessing a rare benzoyl substituted bicyclo[3.2.1]octane core, hyperxylones A (1) and B (2), along with three new dearomatized isoprenylated acylphloroglucinols (DIAPs), hyperxylones C - E (3-5), were isolated from the roots of Hypericum beanii. The structures of 1-5 were determined by high-resolution electrospray ionization mass spectroscopy (HRESIMS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopic analyses, gauge-independent atomic orbital (GIAO) NMR calculations, and electronic circular dichroism (ECD) calculations. Compounds 1 and 2 were biomimetically semi-synthesized starting from 5 and 4, respectively, enabling the correct stereochemical assignment of 5 and 4. Moreover, compounds 1 and 2 showed anti-nonalcoholic steatohepatitis (NASH) activity by inhibiting lipid deposition in L02 cells; compounds 3 and 5 exhibited nitric oxide (NO) inhibitory activity in lipopolysaccharides (LPS)-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Xue-Yan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Rui-Rui Dong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Miao-Miao Nan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiao-Li Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tian-Jie Cao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ping Ying
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, PR China
| | - Qiang Zheng
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, PR China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wen-Jun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
5
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2022. [PMID: 35929527 DOI: 10.1039/d2np90026b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as hyperispirone A from Hypericum beanii.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UK, G12 8QQ.
| | | |
Collapse
|