1
|
Liu J, Hanson A, Yin W, Wu Q, Wauthier E, Diao J, Dinh T, Macdonald J, Li R, Terajima M, Yamauchi M, Chen Z, Sethupathy P, Dong J, Reid LM, Wang Y. Decellularized liver scaffolds for constructing drug-metabolically functional ex vivo human liver models. Bioact Mater 2025; 43:162-180. [PMID: 39386220 PMCID: PMC11462156 DOI: 10.1016/j.bioactmat.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
The creation of ex vivo human liver models has long been a critical objective in academic, clinical, and pharmaceutical research, particularly for drug development, where accurate evaluation of hepatic metabolic dynamics is crucial. We have developed a bioengineered, perfused, organ-level human liver model that accurately replicates key liver functions, including metabolic activities, and protein synthesis, thus addressing some of the limitations associated with traditional liver monolayers, organoids, and matrix-embedded liver cells. Our approach utilizes liver-specific biomatrix scaffolds, prepared using an innovative protocol and fortified with matrix components that facilitate cellular interactions. These scaffolds, when seeded with human fetal liver cells or co-seeded with liver parenchymal and endothelial cell lines, enable the formation of three-dimensional (3D) human livers with enhanced cellular organization. The "recellularized tissue-engineered livers" (RCLs) have undergone various analyses, demonstrating the capability for establishing liver microenvironments ex vivo. Within 7-14 days, the RCLs exhibit evidence of liver differentiation and metabolic capabilities, underscoring the potential for use in drug metabolism and toxicity studies. Although our study represents a significant step forward, we acknowledge the need for direct comparisons with existing models and further research to fully elucidate the spectrum of regenerative responses. The high drug-metabolizing enzyme activity of RCLs, as demonstrated in our study, provides a promising avenue for investigating drug-induced liver injury mechanisms, contributing to a more detailed understanding of early drug discovery processes.
Collapse
Affiliation(s)
- Juan Liu
- Hepato-pancreato-biliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Ariel Hanson
- Departments of Biomedical Engineering, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Wenzhen Yin
- Hepato-pancreato-biliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Qiao Wu
- Infection Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Eliane Wauthier
- Departments of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jinmei Diao
- Hepato-pancreato-biliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Timothy Dinh
- Departments of Genetics, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jeff Macdonald
- Departments of Biomedical Engineering, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ruihong Li
- Hepato-pancreato-biliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Masahiko Terajima
- Oral and Craniofacial Health Sciences, UNC School of Dentistry, Chapel Hill, NC, 27599, USA
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, UNC School of Dentistry, Chapel Hill, NC, 27599, USA
| | - Ziye Chen
- Hepato-pancreato-biliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Praveen Sethupathy
- Departments of Genetics, UNC School of Medicine, Chapel Hill, NC, 27599, USA
- Division of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jiahong Dong
- Hepato-pancreato-biliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Lola M. Reid
- Departments of Biomedical Engineering, UNC School of Medicine, Chapel Hill, NC, 27599, USA
- Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Yunfang Wang
- Hepato-pancreato-biliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Baka Z, Godier C, Lamy L, Mallick A, Gribova V, Figarol A, Bezdetnaya L, Chateau A, Magne Z, Stiefel M, Louaguef D, Lavalle P, Gaffet E, Joubert O, Alem H. A Coculture Based, 3D Bioprinted Ovarian Tumor Model Combining Cancer Cells and Cancer Associated Fibroblasts. Macromol Biosci 2023; 23:e2200434. [PMID: 36448191 DOI: 10.1002/mabi.202200434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Ovarian cancer remains a major public health issue due to its poor prognosis. To develop more effective therapies, it is crucial to set-up reliable models that closely mimic the complexity of the ovarian tumor's microenvironment. 3D bioprinting is currently a promising approach to build heterogenous and reproducible cancer models with controlled shape and architecture. However, this technology is still poorly investigated to model ovarian tumors. In this study, a 3D bioprinted ovarian tumor model combining cancer cells (SKOV-3) and cancer associated fibroblasts (CAFs) are described. The resulting tumor models show their ability to maintain cell viability and proliferation. Cells are observed to self-assemble in heterotypic aggregates. Moreover, CAFs are observed to be recruited and to circle cancer cells reproducing an in vivo process taking place in the tumor microenvironment. Interestingly, this approach also shows its ability to rapidly generate a high number of reproducible tumor models that can be subjected to usual characterizations (cell viability and metabolic activity; histology and immunological studies; and real-time imaging). Therefore, these ovarian tumor models can be an interesting tool for high throughput drug screening applications.
Collapse
Affiliation(s)
- Zakaria Baka
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Claire Godier
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Laureline Lamy
- Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifque (CNRS), UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, Vandoeuvre-lès-Nancy, 54506, France.,Département Recherche, Institut de Cancérologie de Lorraine (ICL), 6 Avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - Abhik Mallick
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1121, Biomaterials and Bioengineering, 1 rue Eugène Boeckel, Strasbourg, 67100, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, Strasbourg, 67000, France
| | - Agathe Figarol
- Institut FEMTO ST, Centre National de la Recherche Scientifique (CNRS), UMR 6174, Université Bourgogne Franche Comté, 15B Avenue des Montboucons, Besançon, F-25000, France
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifque (CNRS), UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, Vandoeuvre-lès-Nancy, 54506, France.,Département Recherche, Institut de Cancérologie de Lorraine (ICL), 6 Avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - Alicia Chateau
- Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifque (CNRS), UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, Vandoeuvre-lès-Nancy, 54506, France
| | - Zoé Magne
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Marie Stiefel
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Dounia Louaguef
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1121, Biomaterials and Bioengineering, 1 rue Eugène Boeckel, Strasbourg, 67100, France
| | - Eric Gaffet
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Olivier Joubert
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Halima Alem
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France.,Institut Universitaire de France, Paris, 75000, France
| |
Collapse
|
3
|
Carpentier N, Urbani L, Dubruel P, Van Vlierberghe S. The native liver as inspiration to create superior in vitro hepatic models. Biomater Sci 2023; 11:1091-1115. [PMID: 36594602 DOI: 10.1039/d2bm01646j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drug induced liver injury (DILI) is one of the major reasons of drug withdrawal during the different phases of drug development. The later in the drug development a drug is discovered to be toxic, the higher the economical as well as the ethical impact will be. In vitro models for early detection of drug liver toxicity are under constant development, however to date a superior model of the liver is still lacking. Ideally, a highly reliable model should be established to maintain the different hepatic cell functionalities to the greatest extent possible, during a period of time long enough to allow for tracking of the toxicity of compounds. In the case of DILI, toxicity can appear even after months of exposure. To reach this goal, an in vitro model should be developed that mimics the in vivo liver environment, function and response to external stimuli. The different approaches for the development of liver models currently used in the field of tissue engineering will be described in this review. Combining different technologies, leading to optimal materials, cells and 3D-constructs will ultimately lead to an ideal superior model that fully recapitulates the liver.
Collapse
Affiliation(s)
- Nathan Carpentier
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Guagliano G, Volpini C, Briatico-Vangosa F, Cornaglia AI, Visai L, Petrini P. Toward 3D-Bioprinted Models of the Liver to Boost Drug Development. Macromol Biosci 2022; 22:e2200264. [PMID: 36106413 DOI: 10.1002/mabi.202200264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Indexed: 01/15/2023]
Abstract
The main problems in drug development are connected to enormous costs related to the paltry success rate. The current situation empowered the development of high-throughput and reliable instruments, in addition to the current golden standards, able to predict the failures in the early preclinical phase. Being hepatotoxicity responsible for the failure of 30% of clinical trials, and the 21% of withdrawal of marketed drugs, the development of complex in vitro models (CIVMs) of liver is currently one of the hottest topics in the field. Among the different fabrication techniques, 3D-bioprinting is emerging as a powerful ally for their production, allowing the manufacture of three-dimensional constructs characterized by computer-controlled and customized geometry, and inter-batches reproducibility. Thanks to these, it is possible to rapidly produce tailored cell-laden constructs, to be cultured within static and dynamic systems, thus reaching a further degree of personalization when designing in vitro models. This review highlights and prioritizes the most recent advances related to the development of CIVMs of the hepatic environment to be specifically applied to pharmaceutical research, with a special focus on 3D-bioprinting, since the liver is primarily involved in the metabolism of drugs.
Collapse
Affiliation(s)
- Giuseppe Guagliano
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, MI, 20133, Italy
| | - Cristina Volpini
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Forlanini 14, Pavia, PV, 27100, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri IRCCS, Via S. Boezio 28, Pavia, PV, 27100, Italy
| | - Francesco Briatico-Vangosa
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, MI, 20133, Italy
| | - Antonia Icaro Cornaglia
- University of Pavia - Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, Via Forlanini 2, Pavia, PV, 27100, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Forlanini 14, Pavia, PV, 27100, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri IRCCS, Via S. Boezio 28, Pavia, PV, 27100, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), Università di Pavia Unit, Pavia, PV, 27100, Italy
| | - Paola Petrini
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, MI, 20133, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), Politecnico di Milano Unit, Milano, MI, 20133, Italy
| |
Collapse
|
5
|
Kanabekova P, Kadyrova A, Kulsharova G. Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. MICROMACHINES 2022; 13:428. [PMID: 35334720 PMCID: PMC8950395 DOI: 10.3390/mi13030428] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Mortality from liver disease conditions continues to be very high. As liver diseases manifest and progress silently, prompt measures after diagnosis are essential in the treatment of these conditions. Microfluidic organs-on-chip platforms have significant potential for the study of the pathophysiology of liver diseases in vitro. Different liver-on-a-chip microphysiological platforms have been reported to study cell-signaling pathways such as those activating stellate cells within liver diseases. Moreover, the drug efficacy for liver conditions might be evaluated on a cellular metabolic level. Here, we present a comprehensive review of microphysiological platforms used for modelling liver diseases. First, we briefly introduce the concept and importance of organs-on-a-chip in studying liver diseases in vitro, reflecting on existing reviews of healthy liver-on-a-chip platforms. Second, the techniques of cell cultures used in the microfluidic devices, including 2D, 3D, and spheroid cells, are explained. Next, the types of liver diseases (NAFLD, ALD, hepatitis infections, and drug injury) on-chip are explained for a further comprehensive overview of the design and methods of developing liver diseases in vitro. Finally, some challenges in design and existing solutions to them are reviewed.
Collapse
Affiliation(s)
- Perizat Kanabekova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Adina Kadyrova
- Department of Biological Sciences, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Gulsim Kulsharova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| |
Collapse
|