1
|
Zeng J, Zhou T, Liu J, Wan JP. Photocatalytic Pyridine Synthesis with Enaminones and TMEDA under Metal-Free Conditions. J Org Chem 2024; 89:11060-11066. [PMID: 39046227 DOI: 10.1021/acs.joc.4c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Reported herein is a new photocatalytic annulation for the synthesis of 2,3,4,6-tetrasubstituted pyridines with enaminones and N,N,N',N'-tetramethyl ethylenediamine (TMEDA). The photocatalytic reactions take place without requiring a transition metal reagent and provide products with broad scope. The methyl in TMEDA acts as the carbon source in pyridine ring construction, and BrCF2CO2Et plays the role of the terminal oxidant for free radical quenching.
Collapse
Affiliation(s)
- Junlong Zeng
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Tao Zhou
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jianchao Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
2
|
Wang Y, Liu L, Deng P, Ji H. Photocatalyzed Acylation of Azauracil Derivatives with Aldehydes. J Org Chem 2024; 89:11083-11087. [PMID: 39044345 DOI: 10.1021/acs.joc.4c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A novel approach for the acylation of azauracil derivatives with aldehydes has been developed utilizing sodium decatungstate (NaDT) as a photocatalyst. This method demonstrates broad substrate tolerance and yields moderate to excellent outcomes. Notably, it aligns with green chemistry principles by eliminating oxidants, utilizing eco-friendly energy sources, and offering high scalability and operational simplicity.
Collapse
Affiliation(s)
- Yi Wang
- College of Pharmacy, Shaoyang University, Shaoyang 422099, China
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Peng Deng
- College of Pharmacy, Shaoyang University, Shaoyang 422099, China
| | - Hongtao Ji
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Liu Y, Li R, Lv Q, Yu B. Embracing heterogeneous photocatalysis: evolution of photocatalysts in annulation of dimethylanilines and maleimides. Chem Commun (Camb) 2024. [PMID: 39078307 DOI: 10.1039/d4cc02516d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Recent advances in visible-light-promoted construction of tetrahydroquinolines from dimethylanilines and maleimides are documented. Homogeneous and heterogeneous photocatalytic systems, as well as the reaction mechanism, are emphasized. The mechanism of this photocatalytic annulation reaction is quite clear, i.e., dimethylanilines and maleimides serve as the radical precursors and radical acceptors, respectively. This annulation reaction could serve as an excellent platform for evaluating novel oxidative heterogeneous photocatalytic systems, which could further inspire chemists in this field to develop more efficient photocatalytic systems. Significant opportunities are expected in the future for heterogeneous photocatalysis strategies.
Collapse
Affiliation(s)
- Yan Liu
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou, Henan Province 451191, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore.
| | - Qiyan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Tang E, Zhou QQ, Wan JP. Visible-light-induced Ritter-type amidation of α-hydroxy ketones in the selective synthesis of α,α-diamido and monoamido ketones. Chem Commun (Camb) 2024; 60:7471-7474. [PMID: 38938073 DOI: 10.1039/d4cc02334j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Visible light-induced, transition metal-free oxidative dehydroxylation and C-H amidation of α-hydroxy ketones involving Ritter-type amidation has been developed, leading to the selective synthesis of α,α-diamido- and α-monoamido ketones with tunable selectivity as well as broad substrate tolerance.
Collapse
Affiliation(s)
- Enrong Tang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Quan-Quan Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
5
|
Liao M, Shen H, Lin X, Li Z, Zhu M, Liu K, Zhou S, Dai J, Huang Y. Interfacial engineering of POM-stabilized Ni quantum dots on porous titanium mesh for high-rate and stable alkaline hydrogen production. Dalton Trans 2024; 53:5084-5088. [PMID: 38375913 DOI: 10.1039/d3dt03917j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The development of low-cost, high-efficiency, and stable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is a key challenge because the alkaline HER kinetics is slowed by an additional water dissociation step. Herein, we report an interfacial engineering strategy for polyoxometalate (POM)-stabilized nickel (Ni) quantum dots decorated on the surface of porous titanium mesh (POMs-Ni@PTM) for high-rate and stable alkaline hydrogen production. Benefiting from the strong interfacial interactions among POMs, Ni atoms, and PTM substrates, as well as unique POM-Ni quantum dot structures, the optimized POMs-Ni@PTM electrocatalyst exhibits a remarkable alkaline HER performance with an overpotential (η10) of 30.1 mV to reach a current density of 10 mA cm-2, which is much better than those of bare Ni decorated porous titanium mesh (Ni@PTM) (η10 = 171.1 mV) and POM decorated porous titanium mesh (POMs@PTM) electrocatalysts (η10 = 493.6 mV), comparable to that of the commercial 20 wt% platinum/carbon (20% Pt/C) electrocatalyst (η10 = 20 mV). Moreover, the optimized POMs-Ni@PTM electrocatalyst demonstrates excellent stability under continuous alkaline water-splitting at a current density of ∼100 mA cm-2 for 100 h, demonstrating great potential for its practical application.
Collapse
Affiliation(s)
- Meihong Liao
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Huawei Shen
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| | - Xiaorui Lin
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Zhengji Li
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Muzi Zhu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| | - Kefei Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| | - Shuaishuai Zhou
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Jingjie Dai
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Yichao Huang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| |
Collapse
|
6
|
Li HC, Zhao KY, Tan Y, Wang HS, Wang WS, Chen XL, Yu B. Visible-Light-Promoted Intermolecular β-Acyl Difunctionalization of Alkenes via Oxidative Radical-Polar Crossover. Org Lett 2023; 25:8067-8071. [PMID: 37939226 DOI: 10.1021/acs.orglett.3c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A visible-light-induced β-acyl difunctionalization of alkenes with acyl oxime esters and various nucleophiles was developed to achieve molecular complexity from readily available raw materials via oxidative radical-polar crossover. A variety of nucleophiles, including NH-sulfoximines, indoles, indazole, and trimethoxybenzene, were all effectively applicable to the sustainable reaction system. The novel synthetic strategy features mild reaction conditions, a broad substrate scope (39 examples), easy scale-up, and excellent regioselectivity.
Collapse
Affiliation(s)
- Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ke-Yuan Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Tan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Hao-Sen Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Shan Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Joshi A, Acharya S, Devi N, Gupta R, Sharma D, Singh M. A polyoxomolybdate-based hybrid nano capsule as an antineoplastic agent. NANOSCALE ADVANCES 2023; 5:6045-6052. [PMID: 37941962 PMCID: PMC10628982 DOI: 10.1039/d3na00459g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
Polyoxometalates (POMs) are versatile anionic clusters which have attracted a lot of attention in biomedical investigations. To counteract the increasing resistance effect of cancer cells and the high toxicity of chemotherapeutic treatments, POM-based metallodrugs can be strategically synthesized by adjusting the stereochemical and physicochemical features of POMs. In the present report a polyoxomolybdate (POMo) based organic-inorganic hybrid solid (C6H16N)(C6H15N)2[Mo8O26]·3H2O, solid 1, has been synthesized and its antitumoral activities have been investigated against three cancer cell lines namely, A549 (Lung cancer), HepG2 (Liver cancer), and MCF-7 (Breast cancer) with IC50 values 56.2 μmol L-1, 57.3 μmol L-1, and 55.2 μmol L-1 respectively. The structural characterization revealed that solid 1 consists of an octa molybdate-type cluster connected by three triethylamine molecules via hydrogen bonding interactions. The electron microscopy analysis suggests the nanocapsule-like morphology of solid 1 in the size range of 50-70 nm. The UV-vis absorption spectra were used to assess the binding ability of synthesized POM-based solid 1 to calf thymus DNA (ctDNA), which further explained the binding interaction between POMo and ctDNA and the binding constant was calculated to be 2.246 × 103 giving evidence of groove binding.
Collapse
Affiliation(s)
- Arti Joshi
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Sobhna Acharya
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Neeta Devi
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Ruby Gupta
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Deepika Sharma
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Monika Singh
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| |
Collapse
|
8
|
Lopat'eva ER, Krylov IB, Paveliev SA, Emtsov DA, Kostyagina VA, Korlyukov AA, Terent'ev AO. Free Radicals in the Queue: Selective Successive Addition of Azide and N-Oxyl Radicals to Alkenes. J Org Chem 2023; 88:13225-13235. [PMID: 37616501 DOI: 10.1021/acs.joc.3c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The selective successive addition of azide (•N3) and N-oxyl radicals to alkenes is demonstrated, despite each of the two radicals being known to attack C═C bonds and the mixture of radical adducts possibly being expected. The proposed radical mechanism was supported by density functional theory calculations, electron paramagnetic resonance, and radical trapping experiments. The reaction proceeds at room temperature with the available reagents: NaN3, N-hydroxy compounds, and PhI(OAc)2 as the oxidant. The method can be applied for N-hydroxyimides, N-hydroxyamides, N-hydroxybenzotriazole, and oximes as N-oxyl radical precursors. Vinylarenes, aliphatic alkenes, and even electron-deficient methyl methacrylate were successfully functionalized.
Collapse
Affiliation(s)
- Elena R Lopat'eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Stanislav A Paveliev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
| | - Daniil A Emtsov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Vera A Kostyagina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Alexander A Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov strasse, 28, 119991 Moscow, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| |
Collapse
|
9
|
Stefanowska K, Nagórny J, Szyling J, Franczyk A. Functionalization of octaspherosilicate (HSiMe 2O) 8Si 8O 12 with buta-1,3-diynes by hydrosilylation. Sci Rep 2023; 13:14314. [PMID: 37653063 PMCID: PMC10471723 DOI: 10.1038/s41598-023-41461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
Hydrosilylation with octaspherosilicate (HSiMe2O)8Si8O12 (1) has provided hundreds of molecular and macromolecular systems so far, making this method the most popular in the synthesis of siloxane-based, nanometric, cubic, and reactive building blocks. However, there are no reports on its selective reaction with 1,3-diynes, which allows for the formation of new products with unique properties. Therefore, herein we present an efficient protocol for monohydrosilylation of symmetrically and non-symmetrically 1,4-disubstituted buta-1,3-diynes with 1. The compounds obtained bear double and triple bonds and other functionalities (e.g., Br, F, OH, SiR3), making them highly desirable, giant building blocks in organic synthesis and material chemistry. These compounds were fully characterized by 1H, 13C, 29Si, 1D NOE, 1H-13C HSQC NMR, FT-IR, and MALDI TOF MS, EA, UV-Vis, and TGA analysis. The TGA proved their high thermal stability up to 427 ℃ (Td10%) for compound 3j.
Collapse
Affiliation(s)
- Kinga Stefanowska
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Jakub Nagórny
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
10
|
Jiao J, Zhang T, Xu J, Guo K, Li J, Han Q. Hydroxyl radical-dominated selective oxidation of ethylbenzene over a photoactive polyoxometalate-based metal-organic framework. Chem Commun (Camb) 2023; 59:3114-3117. [PMID: 36807431 DOI: 10.1039/d2cc06403k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Realizing photo-promoted saturated C-H functionalization is a significant challenge. [CuI3(H2O)6(TPT)2][H2BW12O40]·28H2O was assembled by combining electron reservoir [BW12O40]5- with photosensitizer TPT. The continuous coordination bonds and π-π stacking interactions facilitate hole-electron separation and electron transfer, and allow it to exhibit high photocatalytic activity toward ethylbenzene oxidation with O2/H2O as oxidants.
Collapse
Affiliation(s)
- Jiachen Jiao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.
| | - Ting Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.
| | - Jiangbo Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.
| | - Kaixin Guo
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.
| | - Jie Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China. .,School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, P. R. China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.
| |
Collapse
|
11
|
Abstract
A novel Zr-added trimer, [H2N(CH3)2]10H14[(Zr2P2W16O61)3]·7H2O (1), has been made under hydrothermal conditions, and contains the highest number of Zr centers in known Dawson-type poly(POM)s. A remarkable feature of this study is the first discovery of a new type of divacant [α-5,10-P2W16O60]14- fragment, which assembles with Zr4+ ions to form a cyclic trimer. Furthermore, 1 as a heterogeneous catalyst exhibits high activity for the selective oxidative degradation of a sulfur mustard simulant CEES.
Collapse
Affiliation(s)
- Hai-Lou Li
- Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Chen Lian
- Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Guo-Yu Yang
- Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
12
|
Mohamadpour F. Visible-light-driven radical Friedländer hetero-annulation of 2-aminoaryl ketone and α-methylene carbonyl compound via organic dye fluorescein through a single-electron transfer (SET) pathway. BMC Chem 2022; 16:116. [PMID: 36522648 PMCID: PMC9753410 DOI: 10.1186/s13065-022-00910-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The discoveries recommend that the photoinduced conditions of fluorescein-determined go about as impetus for photochemically combining polysubstituted quinolines in ethanol at room temperature under air environment by means of revolutionary Friedländer hetero-annulation of 2-aminoaryl ketone and α-methylene carbonyl compound. This study lays out an original capability for photochemically orchestrating fluorescein. This non-metallic organic dye is economically accessible and modest, producing great outcomes, accelerating the cycle, and achieving a high compound economy. The turnover number (TON) and turnover recurrence (TOF) of polysubstituted quinolines have been determined. This cycle will likewise run on a gram scale, demonstrating the chance of modern applications.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- grid.513953.8School of Engineering, Apadana Institute of Higher Education, Shiraz, Iran
| |
Collapse
|
13
|
Chen Y, An H, Chang S, Li Y, Xu T, Zhu Q, Luo H, Huang Y, Wei Y. Two pseudo-polymorphic porous POM-pillared MOFs for sulfide-sulfoxide transformation: Efficient synergistic effects of POM precursors, metal sites and microstructures. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
An H, Luo H, Xu T, Chang S, Chen Y, Zhu Q, Huang Y, Tan H, Li YG. Visible-Light-Driven Oxidation of Amines to Imines in Air Catalyzed by Polyoxometalate-Tris(bipyridine)ruthenium Hybrid Compounds. Inorg Chem 2022; 61:10442-10453. [PMID: 35758283 DOI: 10.1021/acs.inorgchem.2c01243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of visible-light photocatalysts for the selective oxidative coupling of amines to imines is an area of great interest. Herein, four hybrid compounds based on polyoxometalate anions and tris(bipyridine)ruthenium cations, Ru(bpy)3[M6O19] (M = Mo, W) 1-2, [Ru(bpy)3]2[Mo8O26] 3, [Ru(bpy)3]2[W10O32] 4, are prepared and characterized by X-ray diffraction (single-crystal and powder), elemental analysis, energy-dispersive X-ray spectroscopy (EDS) analysis, infrared (IR) spectroscopy, and solid diffuse reflective spectroscopy. Single-crystal structural analysis indicates that polyoxometalate anions and tris(bipyridine)ruthenium cations interact with each other through extensive hydrogen bonds in these compounds. These hybrid species with strong visible-light-harvesting abilities and suitable photocatalytic energy potentials show excellent photocatalytic activity and selectivity for the oxidation of amines to imines at room temperature in air as an oxidant. Among them, compound 1 with the [Mo6O19]2- anion has the highest catalytic activity, which can swiftly convert >99.0% of benzylamine into N-benzylidenebenzylamine with a selectivity of 98.0% in 25 min illumination by a 10 W 445 nm light-emitting diode (LED). Its turnover frequency reaches 392 h-1, which is not only better than the homogeneous catalyst [Ru(bpy)3]Cl2 but also much superior to those achieved over most of reported heterogeneous catalysts. Moreover, it shows a wide generality for various aromatic amines, accompanied by the advantages of good recyclability and stability. The photocatalytic oxidation mechanism of amines to the corresponding imines over polyoxometalate-based hybrid compounds was fully investigated.
Collapse
Affiliation(s)
- Haiyan An
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Huiyun Luo
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Tieqi Xu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Shenzhen Chang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yanhong Chen
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Qingshan Zhu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yaohui Huang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
15
|
Yang F, Zhen M, Wang S, Wei W, He H, Xu Y. Atropisomer-based construction of a new perylene diimide macrocycle as visible-light photocatalyst for selective sulfide oxidation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Li T, Yang J, Yin X, Shi J, Cao Q, Hu M, Xu X, Li M, Shen Z. Visible-light-mediated aerobic Ritter-type C–H amination of diarylmethanes using DDQ/ tert-butyl nitrite. Org Biomol Chem 2022; 20:8756-8760. [DOI: 10.1039/d2ob01713j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A metal-free photocatalytic Ritter-type C–H amination of diarylmethanes using O2 as an oxidant has been developed using a co-catalytic system of DDQ and TBN and offers a low cost, sustainable way to synthesise secondary amides under mild conditions.
Collapse
Affiliation(s)
- Tianci Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiangyu Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Zhejiang Jitai New Materials Co., Ltd, Shaoxing 312369, China
| | - Xin Yin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Zhejiang Jitai New Materials Co., Ltd, Shaoxing 312369, China
| | - Jinhua Shi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qun Cao
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK
| | - Miaomiao Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaowen Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|