1
|
Liu S, Zhang D, Gong Y, Ma L, Li L, Chen W. π-π stacking assisted regioselectivity regulation in palladium-catalyzed cyclization reactions: a theoretical study. RSC Adv 2024; 14:38285-38292. [PMID: 39634724 PMCID: PMC11615657 DOI: 10.1039/d4ra06552b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
The regulation of regioselectivity is an objective often pursued by organic chemists, and the comprehension of its mechanisms is crucial for devising efficient synthetic pathways. In this report, we conducted theoretical calculations to explore the regioselectivity regulatory mechanisms of two palladium-catalyzed cyclization reactions. In these cyclization reactions, manipulating the structural differences in the reaction substrates leads to the formation of distinct products. A detailed reaction mechanism and reactivity profile for this reaction were revealed. Furthermore, a π-π stacking assisted regioselectivity regulatory mechanism was proven by distortion-interaction energy analysis and noncovalent interaction calculations. The calculated results presented herein provide a theoretical guide for further experimental investigations of regioselectivity regulation.
Collapse
Affiliation(s)
- Song Liu
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China
- School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400030 China
| | - Dianmin Zhang
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China
| | - Yue Gong
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China
| | - Lianli Ma
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China
| | - Li Li
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China
| | - Wei Chen
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China
| |
Collapse
|
2
|
Qiao B, Lin FY, Fu D, Li SJ, Zhang T, Lan Y. Mechanistic insights into facilitating reductive elimination from Ni(II) species. Chem Commun (Camb) 2024; 60:8008-8019. [PMID: 39005163 DOI: 10.1039/d4cc02667e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Reductive elimination is a key step in Ni-catalysed cross-couplings, which is often considered to result in new covalent bonds. Due to the weak oxidizing ability of Ni(II) species, reductive eliminations from Ni(II) centers are challenging. A thorough mechanistic understanding of this process could inspire the rational design of Ni-catalysed coupling reactions. In this article, we give an overview of recent advances in the mechanistic study of reductive elimination from Ni(II) species achieved by our group. Three possible models for reductive elimination from Ni(II) species were investigated and discussed, including direct reductive elimination, electron density-controlled reductive elimination, and oxidation-induced reductive elimination. Notably, the direct reductive elimination from Ni(II) species often requires a high activation energy in some cases. In contrast, the electron density-controlled and oxidation-induced reductive elimination pathways can significantly enhance the driving force for reductive elimination, accelerating the formation of new covalent bonds. The intricate reaction mechanisms for each of these pathways are thoroughly discussed and systematically summarized in this paper. These computational studies showcase the characteristics of three models for reductive elimination from Ni(II) species, and we hope that it will spur the development of mechanistic studies of cross-coupling reactions.
Collapse
Affiliation(s)
- Bolin Qiao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Fa-You Lin
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dongmin Fu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shi-Jun Li
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Tao Zhang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan, 451162, P. R. China.
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, P. R. China.
- Pingyuan Laboratory, Xinxiang, Henan, 453007, China
| |
Collapse
|
3
|
Zhong K, Liu S, He X, Ni H, Lai W, Gong W, Shan C, Zhao Z, Lan Y, Bai R. Oxidative cyclopalladation triggers the hydroalkylation of alkynes. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Zhang C, Shang Z, Li R, Xu X. DFT study on the mechanism of selectively oxidative C(sp2)–H/C(sp3)–H cross-coupling of benzamides with amides by nickel catalyst: Oxidant-controlled regioselectivity. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Li L, Lai S, Lin H, Zhao X, Li X, Chen X, Liu J, Yang G, Zhan C. QM/MM study on the O2 activation reaction of 4-hydroxylphenyl pyruvate dioxygenase reveals a common mechanism for α-ketoglutarate dependent dioxygenase. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Yuan XA, Li D, Wang S, Jiang YY, Liu P, Bi S. Distinctive Mechanistic Scenarios and Substituent Effects of Gold(I) versus Copper(I) Catalysis for Hydroacylation of Terminal Alkynes with Glyoxal Derivatives. J Org Chem 2022; 87:11681-11692. [PMID: 35984222 DOI: 10.1021/acs.joc.2c01316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional theory (DFT) calculations have been conducted to study the mechanisms, substituent effects, and the role of bases in Au- and Cu-catalyzed hydroacylation of terminal alkyne with glyoxal derivatives. The two reactions, despite being catalyzed by the same group of transition metals, follow distinctive reaction mechanisms. Through the detailed DFT calculations, insights into the mechanisms are obtained, and the substituent effects and the role of the bases are understood.
Collapse
Affiliation(s)
- Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, People's Republic of China
| | - Dan Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, People's Republic of China
| | - Shanshan Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, People's Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, People's Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, People's Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, 57 Jingxuan West Road, Qufu, Shandong 273165, People's Republic of China
| |
Collapse
|
7
|
Mechanism of the Phosphine‐Catalyzed [3 + 3] Annulation with MBH Carbonates as the Potential Dipoles. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Gong W, Fu D, Zhong K, Ni H, He X, Shan C, Li R, Lan Y. What is the difference between mono- and biphosphine ligands? Revealing the chemoselectivity in Pd-catalysed carbenation of bromonaphthalene. Org Chem Front 2022. [DOI: 10.1039/d2qo00910b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligand-controlled chemoselectivity is an important topic in organometallic chemistry.
Collapse
Affiliation(s)
- Wenting Gong
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Dongmin Fu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Hao Ni
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Xiaoqian He
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Chunhui Shan
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Rong Li
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|