1
|
Khera N, Jeevanandam P. CuCo 2S 4 nanoparticles synthesized via a thermal decomposition approach: evaluation of their potential as peroxidase mimics. NANOSCALE 2024; 16:18108-18118. [PMID: 39258884 DOI: 10.1039/d4nr02215g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The current study demonstrates the synthesis of CuCo2S4 nanoparticles using a novel thermal decomposition approach. The CuCo2S4 nanoparticles were synthesized under various conditions by changing the source of sulfur and the solvent. The CuCo2S4 nanoparticles were characterized using an array of analytical techniques. Powder XRD results indicate the successful formation of CuCo2S4 nanoparticles. TEM results show agglomerated nanoparticles with close to spherical morphology and XPS measurements indicate the presence of Cu2+, Cu+, Co3+, Co2+, and S2- in the samples. The CuCo2S4 nanoparticles exhibit weak ferromagnetic and paramagnetic behaviour at 5 K and 300 K, respectively. The CuCo2S4 nanoparticles were explored for their enzyme mimetic activity using 3,3',5,5' tetramethylbenzidine (TMB) as a substrate. They exhibit better catalytic activity compared to that of a natural enzyme (horseradish peroxidase) and other metal sulfide nanoparticles reported in the literature.
Collapse
Affiliation(s)
- Nainy Khera
- Department of Chemistry, Indian Institute of Technology, Roorkee, Roorkee-247667, India.
| | - Pethaiyan Jeevanandam
- Department of Chemistry, Indian Institute of Technology, Roorkee, Roorkee-247667, India.
| |
Collapse
|
2
|
Liu Y, Deng Q, Yao Z, Liang T, Zhang S, Zhu T, Xing C, Pan J, Yu Z, Liang K, Xie T, Li R, Hou Y. Inducing spin polarization via Co doping in the BiVO 4 cell to enhance the built-in electric field for promotion of photocatalytic CO 2 reduction. J Colloid Interface Sci 2024; 664:500-510. [PMID: 38484518 DOI: 10.1016/j.jcis.2024.03.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
The efficiency of CO2 photocatalytic reduction is severely limited by inefficient separation and sluggish transfer. In this study, spin polarization was induced and built-in electric field was strengthened via Co doping in the BiVO4 cell to boost photocatalytic CO2 reduction. Results showed that owing to the generation of spin-polarized electrons upon Co doping, carrier separation and photocurrent production of the Co-doped BiVO4 were enhanced. CO production during CO2 photocatalytic reduction from the Co-BiVO4 was 61.6 times of the BiVO4. Notably, application of an external magnetic field (100 mT) further boosted photocatalytic CO2 reduction from the Co-BiVO4, with 68.25 folds improvement of CO production compared to pristine BiVO4. The existence of a built-in electric field (IEF) was demonstrated through density functional theory (DFT) simulations and kelvin probe force microscopy (KPFM). Mechanism insights could be elucidated as follows: doping of magnetic Co into the BiVO4 resulted in increased the number of spin-polarized photo-excited carriers, and application of a magnetic field led to an augmentation of intrinsic electric field due to a dipole shift, thereby extending carrier lifetime and suppressing charges recombination. Additionally, HCOO- was a crucial intermediate in the process of CO2RR, and possible pathways for CO2 reduction were proposed. This study highlights the significance of built-in electric fields and the important role of spin polarization for promotion of photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yujia Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; School of Politics and Public Administration, Guangxi Minzu University, Nanning 530006, China
| | - Qucheng Deng
- School of Politics and Public Administration, Guangxi Minzu University, Nanning 530006, China.
| | - Zuofang Yao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ting Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shiming Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Tingting Zhu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chenchen Xing
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jinghui Pan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Keying Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Tao Xie
- Beijing SDL Technology Co., Ltd., Beijing 102206, China
| | - Rui Li
- Beijing SDL Technology Co., Ltd., Beijing 102206, China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| |
Collapse
|
3
|
Wang Y, Shen S, Liu M, He G, Li X. Enhanced tribocatalytic degradation performance of organic pollutants by Cu 1.8S/CuCo 2S 4 p-n junction. J Colloid Interface Sci 2024; 655:187-198. [PMID: 37939403 DOI: 10.1016/j.jcis.2023.10.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Tribocatalysis research, leveraging the triboelectric effect, presents significant potential for environmental water pollution control. However, there is a notable scarcity of studies pertaining to tribocatalysis involving heterojunctions, particularly in the context of p-n junction tribocatalysis. In this study, we employed a one-step solvothermal method to synthesize a Cu1.8S/CuCo2S4 p-n junction composite catalyst. Subsequently, we explored the tribocatalytic degradation performance of organic pollutants facilitated by the Cu1.8S/CuCo2S4 catalyst. The findings reveal that, under simple magnetic stirring conditions, the degradation rates achieved by the Cu1.8S/CuCo2S4 catalyst for tetracycline (TC), methylene blue (MB), and methyl orange (MO) are remarkably high, reaching 99.9 %, 99.7 %, and 94.0 %, respectively. This underscores the broad applicability of the Cu1.8S/CuCo2S4 catalyst for the tribocatalytic degradation of diverse organic pollutants. Experimental evidence establishes that friction occurring between the polytetrafluoroethylene (PTFE) magnet rod, the beaker, and the catalyst induces charge transfer at their interfaces, generating highly oxidized active species that effectively decompose pollutants. Through free radical capture and electron spin resonance (ESR) tests, it was empirically determined and validated that the principal active species involved in tribocatalytic degradation are holes (h+) and superoxide radicals (O2-). Incorporating insights from the experimental characterization of p-n junctions and density functional theory (DFT) theoretical calculations, we propose a plausible tribocatalytic mechanism for Cu1.8S/CuCo2S4. This research not only contributes novel findings but also serves as a reference for the exploration of innovative heterojunction tribocatalysts.
Collapse
Affiliation(s)
- Yong Wang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Shishi Shen
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Mingyue Liu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China.
| | - Guangyu He
- School of Science, Westlake University, Hangzhou 310024, China
| | - Xibao Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| |
Collapse
|
4
|
Chong WK, Ng BJ, Lee YJ, Tan LL, Putri LK, Low J, Mohamed AR, Chai SP. Self-activated superhydrophilic green ZnIn 2S 4 realizing solar-driven overall water splitting: close-to-unity stability for a full daytime. Nat Commun 2023; 14:7676. [PMID: 37996415 PMCID: PMC10667227 DOI: 10.1038/s41467-023-43331-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Engineering an efficient semiconductor to sustainably produce green hydrogen via solar-driven water splitting is one of the cutting-edge strategies for carbon-neutral energy ecosystem. Herein, a superhydrophilic green hollow ZnIn2S4 (gZIS) was fabricated to realize unassisted photocatalytic overall water splitting. The hollow hierarchical framework benefits exposure of intrinsically active facets and activates inert basal planes. The superhydrophilic nature of gZIS promotes intense surface water molecule interactions. The presence of vacancies within gZIS facilitates photon energy utilization and charge transfer. Systematic theoretical computations signify the defect-induced charge redistribution of gZIS enhancing water activation and reducing surface kinetic barriers. Ultimately, the gZIS could drive photocatalytic pure water splitting by retaining close-to-unity stability for a full daytime reaction with performance comparable to other complex sulfide-based materials. This work reports a self-activated, single-component cocatalyst-free gZIS with great exploration value, potentially providing a state-of-the-art design and innovative aperture for efficient solar-driven hydrogen production to achieve carbon-neutrality.
Collapse
Affiliation(s)
- Wei-Kean Chong
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Boon-Junn Ng
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Yong Jieh Lee
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Lling-Lling Tan
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Lutfi Kurnianditia Putri
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Jingxiang Low
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
- Department of Applied Chemistry, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Abdul Rahman Mohamed
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
5
|
Chen Y, Zhu L, Shen Y, Liu J, Xi J, Qiu L, Xu X, Men D, Li P, Duo S. Facile Construction of 2D/2D ZnIn 2S 4-Based Bifunctional Photocatalysts for H 2 Production and Simultaneous Degradation of Rhodamine B and Tetracycline. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2315. [PMID: 37630902 PMCID: PMC10459443 DOI: 10.3390/nano13162315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
A two-dimensional/two-dimensional (2D/2D) TiO2/ZnIn2S4 photocatalyst was reasonably proposed and constructed by a two-step oil bath-hydrothermal method. TiO2 nanosheets uniformly grown on the surface of ZnIn2S4 nanosheets and a synergetic effect between the TiO2 and ZnIn2S4 could highly contribute to improving the specific surface area and hydrophilicity of ZnIn2S4 as well as accelerating the separation and transfer of photon-generated e--h+ pairs, and thus enhancing the visible-light photocatalytic degradation and H2 evolution performance of ZnIn2S4. Rhodamine B (RhB) and tetracycline (TC) were simultaneously selected as the target pollutants for degradation in the work. The optimum photocatalytic RhB and TC degradation properties of TiO2/ZnIn2S4-10 wt% were almost 3.11- and 8.61-fold higher than that of pure ZnIn2S4, separately, while the highest photocatalytic hydrogen evolution rate was also observed in the presence of TiO2/ZnIn2S4-10wt% and 4.28-fold higher than that of ZnIn2S4. Moreover, the possible photocatalytic mechanisms for enhanced visible-light photocatalytic degradation and H2 evolution were investigated and proposed in detail. Our research results open an easy pathway for developing efficient bifunctional photocatalysts.
Collapse
Affiliation(s)
- Yue Chen
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.C.); (L.Z.); (Y.S.); (J.L.); (L.Q.); (X.X.); (D.M.)
| | - Liezhen Zhu
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.C.); (L.Z.); (Y.S.); (J.L.); (L.Q.); (X.X.); (D.M.)
| | - Youliang Shen
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.C.); (L.Z.); (Y.S.); (J.L.); (L.Q.); (X.X.); (D.M.)
| | - Jing Liu
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.C.); (L.Z.); (Y.S.); (J.L.); (L.Q.); (X.X.); (D.M.)
| | - Jiangbo Xi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Lingfang Qiu
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.C.); (L.Z.); (Y.S.); (J.L.); (L.Q.); (X.X.); (D.M.)
| | - Xun Xu
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.C.); (L.Z.); (Y.S.); (J.L.); (L.Q.); (X.X.); (D.M.)
| | - Dandan Men
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.C.); (L.Z.); (Y.S.); (J.L.); (L.Q.); (X.X.); (D.M.)
| | - Ping Li
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.C.); (L.Z.); (Y.S.); (J.L.); (L.Q.); (X.X.); (D.M.)
| | - Shuwang Duo
- Jiangxi Key Laboratory of Surface Engineering, School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.C.); (L.Z.); (Y.S.); (J.L.); (L.Q.); (X.X.); (D.M.)
| |
Collapse
|
6
|
Shi K, Zhou M, Wang F, Li X, Huang W, Lu K, Yang K, Yu C. Perylene diimide/iron phthalocyanine Z-scheme heterojunction with strong interfacial charge transfer through π-π interaction: Efficient photocatalytic degradation of tetracycline hydrochloride. CHEMOSPHERE 2023; 329:138617. [PMID: 37037355 DOI: 10.1016/j.chemosphere.2023.138617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The development of an all-organic Z-scheme heterojunction photocatalyst with the matched band structure, efficient electron transfer and excellent photocatalytic performance is valuable for a sustainable future. A novel perylene diimide/phthalocyanine iron (PDI/FePc) heterojunctions with strong π-π interaction were synthesized by a self-assembled method, which exhibited strong visible-light-driven photocatalytic degradation activities of tetracycline hydrochloride (TC). The TC removal rate over PDI/FePc was achieved three times and 87.5 times higher than that of PDI and FePc. PDI/FePc (131.1 mv·dec-1) presented a lower Taffel slope than that of PDI (228.6 mv·dec-1) for the oxidation. This may be due to the strong π-π interactions between PDI and FePc, which can reduce the layer spacing of the supramolecular structure and facilitate the separation and transfer of photogenerated carriers in the built-in electric field. In addition, radical quenching tests revealed that superoxide radicals (•O2-) acted as a dominant role in photocatalytic oxidation. An increscent specific surface area of PDI decorated by FePc also gave the rapid pathway for charge transfer and enhanced the adsorption ability. This provides a new idea for the formation of heterojunction to improve the photocatalytic activity of organic supramolecular materials.
Collapse
Affiliation(s)
- Kaiyang Shi
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Man Zhou
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fulin Wang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Xiangwei Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Weiya Huang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Kangqiang Lu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China.
| | - Changlin Yu
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
7
|
Constructing Z-Scheme 0D/2D TiO2 Nanoparticles/Bi2O3 Nanosheet Heterojunctions with Enhanced Visible Light Induced Photocatalytic Antibiotics Degradation and Hydrogen Evolution. Catalysts 2023. [DOI: 10.3390/catal13030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Photocatalysis has been regarded as a promising technology for degrading organic pollutants in wastewater and producing hydrogen. In this paper, TiO2 nanoparticles (NPs) were synthesized to improve the visible light absorption of TiO2, which were further combined with Bi2O3 nanosheets to synthesize a series of 0D/2D TiO2 NPs/Bi2O3 nanosheet heterojunctions. The visible light induced photocatalytic activities of the as-synthesized TiO2/Bi2O3 heterojunctions were studied. The optimized catalyst TB-3 with 15 wt% of Bi2O3/TiO2 exhibited the best photocatalytic degradation of tetracycline hydrochloride (TC). The degradation rate constant k of TC over TB-3 was approximately eight times and 39 times greater than that of P25 and Bi2O3, respectively. Additionally, TB-3 showed the highest amount of hydrogen evolution, while that of Bi2O3 was almost zero. The enhancement of photocatalytic performances was ascribed to the improved visible light absorption and the Z-scheme charge transfer path of the TiO2/Bi2O3 heterojunctions, which enhanced the separation efficiency and reduced recombination of photogenerated charge carries, as evidenced by UV–Visible diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and electrochemistry measurements. The active species trapping experiments and the electron spin resonance (ESR) results revealed that ·O2− was the main active substance in the photocatalytic degradation. The possible degradation pathway and intermediate products of TC have been proposed. This work provides experimental evidence supporting the construction of Z-scheme heterojunctions to achieve excellent visible light induced photocatalytic activity.
Collapse
|
8
|
Hu B, Xiao M, Liu C, Che G, Jia J, Yan L, Dong H. Fabricate dual interface build-in electric fields by introducing Au nanospecies into Z-scheme heterojunction to propel photocatalytic CO2 reduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Liu X, Wang Y, Wang Q, Yang W. Chloroplast inspired Z-scheme photocatalyst for efficient degradation of antibiotics: synergistic effect of full-visible light response, multi-channel electron transport and enhanced molecular oxygen activation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Tan Y, Huang W, Lei Q, Huang S, Yang K, Chen X, Li D. Insight into the adsorption of magnetic microspheres with large mesopores: Tailoring mesoporous structure and ethylenediamine functionalization for ultrahigh Congo red removal. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
In situ XPS proved Graphdiyne (CnH2n-2)-based CoFe LDH/CuI/GD double S-scheme heterojunction photocatalyst for hydrogen evolution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Jin H, Guo Y, Zhao J, Bei Y, Wu Z, Shang Q. Oxygen vacancy construction and in situ reduction of metal ions to enhance the photocatalytic performance of Bi5Nb3O15. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Huang L, Wang D, Zeng H, Zheng L, Lai S, Zou JP. Synergistically interactive P-Co-N bonding states in cobalt phosphide-decorated covalent organic frameworks for enhanced photocatalytic hydrogen evolution. NANOSCALE 2022; 14:18209-18216. [PMID: 36468582 DOI: 10.1039/d2nr05076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Non-noble materials with high efficiency and stability are essential for renewable energy applications. Herein, cobalt phosphide nanoparticles-decorated covalent organic frameworks (CTF-CoP) are synthesized via an in situ self-assembly method combined with the calcination process. In such a configuration, an intimate interaction between CoP and CTF matrix is gained through the Co-N chemical bonds, which not only significantly enhance the recyclability of CoP nanoparticles but also significantly improve the charge separation efficiency. Besides, the synergistically interactive Pδ--Coδ+-Nδ- states induced by the polarization effect of N-anchoring sites benefit for the adsorption and dissociation of water molecules in CTF-CoP. Consequently, CTF-CoP exhibits a higher photocatalytic hydrogen evolution rate (261.7 μmol g-1 h-1) and better durability as compared with the physically fixed CTF/CoP composite (64.8 μmol g-1 h-1) and even the noble metal-based CTF-Pt (191.3 μmol g-1 h-1). This work provides an avenue to construct highly stable non-noble photocatalyst for energy conversion and also emphasizes the potential of CTFs in constructing efficient heterojunctions.
Collapse
Affiliation(s)
- Lumei Huang
- College of Environmental Science and Engineering, Guilin University of technology, Guilin 541004, P. R. China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China.
| | - Dengke Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China.
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of technology, Guilin 541004, P. R. China
| | - Lingling Zheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China.
| | - Shiqin Lai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China.
| | - Jian-Ping Zou
- College of Environmental Science and Engineering, Guilin University of technology, Guilin 541004, P. R. China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China.
| |
Collapse
|
14
|
Hashemi E, Poursalehi R, Delavari H. Structural, Optical and Photocatalytic Activity of Multi-heterojunction Bi 2O 3/Bi 2O 2CO 3/(BiO) 4CO 3(OH) 2 Nanoflakes Synthesized via Submerged DC Electrical Discharge in Urea Solution. NANOSCALE RESEARCH LETTERS 2022; 17:75. [PMID: 35974251 PMCID: PMC9381681 DOI: 10.1186/s11671-022-03714-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
In this research, a novel ternary multi-heterojunction Bi2O3/Bi2O2CO3/(BiO)4CO3(OH)2 photocatalyst is fabricated via submerged DC electrical arc discharge in urea solution. FT-IR, XRD, EDS and PL results confirm the formation of Bi2O3/Bi2O2CO3/(BiO)4CO3(OH)2 multi-heterojunction. Formation of nanoflake morphology is revealed by FE-SEM and TEM images. The optical properties and intense absorption edge of Bi2O3/Bi2O2CO3/(BiO)4CO3(OH)2 reveal the proper visible light absorbing ability. The photocatalytic performance of the sample is investigated via the degradation of methylene orange (MeO) and rhodamine B (RB) under visible light irradiation. The photocatalytic activity of Bi2O3/Bi2O2CO3/(BiO)4CO3(OH)2 is compared with the synthesized sample in water, Bi2O3/Bi/Bi(OH)3, which exhibits much higher photocatalytic activity. Also, the stable photodegradation efficiency of Bi2O3/Bi2O2CO3/(BiO)4CO3(OH)2 after four cycles reveals the long-term stability and reusability of the synthesized photocatalyst. The PL intensity of Bi2O3/Bi2O2CO3/(BiO)4CO3(OH)2 shows an improved separation rate of electron-hole pairs and so enhanced photocatalytic performance. The improved photocatalytic activity can be ascribed to the formation of multi-heterojunctions, flake morphology and intrinsic internal electric field (IEF). Multi-heterojunction nanoflakes enhance the absorbance of visible light and facilitate the separation and transport of photogenerated electron holes through large IEF. Our work offers an effective method for the production of innovative bismuth-based photocatalyst with excellent prospects for the degradation of environmental pollutants and light harvesting for renewable energy generation under visible light.
Collapse
Affiliation(s)
- E Hashemi
- Department of Materials Engineering, Tarbiat Modares University, Tehran, 14115-143, Iran
| | - R Poursalehi
- Department of Materials Engineering, Tarbiat Modares University, Tehran, 14115-143, Iran.
| | - H Delavari
- Department of Materials Engineering, Tarbiat Modares University, Tehran, 14115-143, Iran
| |
Collapse
|