1
|
Zhang Q, Liang XY, Wang ZS, Sun A, Cao TB, Zhang YP, Li N, Yi TY, Qu KP. Efficacy of immune checkpoint inhibitors for NSCLC in patients with different age: A systematic review and meta-analysis. Asian J Surg 2024; 47:4691-4698. [PMID: 38641539 DOI: 10.1016/j.asjsur.2024.03.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVE This article is a Meta-analysis aiming to systematically evaluate the difference in efficacy of immune checkpoint inhibitor in patients with non-small cell lung cancer (NSCLC) by age. METHODS We performed a Meta-analysis of published randomized controlled trials concerning for patients with NSCLC by age. We compared overall survival among three groups (age <65 years, age 65-75 years, age ≥75 years). Hazard ratios (HRs) and 95% confidence intervals (CIs) were collected and pooled. RESULTS A total of 10,291 patients from 17 RCTs were included. In the group under age 65 years, immune checkpoint inhibitor can significantly prolong the overall survival of patients with NSCLC (HR = 0.73, 95% CI: 0.66∼0.81, P < 0.00001). In the age 65-75 years group, immune checkpoint inhibitors prolonged overall survival in patients with NSCLC (HR = 0.78, 95% CI:0.71∼0.84, P < 0.00001). However, it has no significant effect on the overall survival of NSCLC patients (HR = 0.88, 95% CI:0.72∼1.08, P > 0.05) in the group older than 75 years. CONCLUSIONS Immune checkpoint inhibitors prolonged the overall survival of NSCLC patients in the age <65 years group and the age 65-75 years group, but in the age ≥75 years group, there was no significant effect on overall survival. This may be related to innate immune and adaptive immune dysregulation due to "immunosenescence" in older patients.
Collapse
Affiliation(s)
- Qi Zhang
- Gansu Provincial Central Hospital, Lanzhou, China
| | | | | | - An Sun
- Gansu Provincial Central Hospital, Lanzhou, China
| | - Tin-Bao Cao
- Gansu Provincial Central Hospital, Lanzhou, China
| | | | - Nan Li
- Gansu Provincial Central Hospital, Lanzhou, China
| | - Tong-Ying Yi
- Gansu Provincial Central Hospital, Lanzhou, China
| | - Kun-Peng Qu
- Gansu Provincial Central Hospital, Lanzhou, China.
| |
Collapse
|
2
|
Kavaliauskas P, Grybaitė B, Sapijanskaite-Banevič B, Anusevičius K, Jonuškienė I, Stankevičienė R, Petraitienė R, Petraitis V, Grigalevičiūtė R, Meškinytė E, Stankevičius R, Mickevičius V. Identification of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Anticancer Candidates with Promising Antioxidant Properties. Molecules 2024; 29:3125. [PMID: 38999077 PMCID: PMC11243380 DOI: 10.3390/molecules29133125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Various cancer-associated morbidities remain a growing global health challenge, resulting in a significant burden on healthcare systems worldwide due to high mortality rates and a frequent lack of novel therapeutic options for advanced and localized disease. Reactive oxygen species (ROS) play an important role in cancer pathogenesis and response to chemotherapeutics; therefore, it is crucial to develop novel compounds with both antioxidant and anticancer activity. In this study, a series of previously reported 3-((4-hydroxyphenyl)amino)propanoic acid derivatives (compounds 1-36) were evaluated for their anticancer and antioxidant activities. Compounds 12, 20-22, and 29 were able to reduce A549 cell viability by 50% and suppress A549 cell migration in vitro. These compounds also showed favorable cytotoxicity properties towards noncancerous Vero cells. The most promising candidate, compound 20, exhibited potent antioxidant properties in the DPPH radical scavenging assay. These results demonstrate that 3-((4-hydroxyphenyl)amino)propanoic acid could be further explored as an attractive scaffold for the development of novel anticancer and antioxidant candidates.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Birute Sapijanskaite-Banevič
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Kazimieras Anusevičius
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Rima Stankevičienė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Rūta Petraitienė
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania
| | - Vidmantas Petraitis
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
- Department of Animal Nutrition, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Edita Meškinytė
- Center of Animal Production Research and Innovation, Agriculture Academy, Vytautas Magnus University, LT-44248 Kaunas, Lithuania;
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| |
Collapse
|
3
|
Lim S, Ha Y, Lee B, Shin J, Rhim T. Calnexin as a dual-role biomarker: antibody-based diagnosis and therapeutic targeting in lung cancer. BMB Rep 2024; 57:155-160. [PMID: 38303563 PMCID: PMC10979343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Lung cancer carries one of the highest mortality rates among all cancers. It is often diagnosed at more advanced stages with limited treatment options compared to other malignancies. This study focuses on calnexin as a potential biomarker for diagnosis and treatment of lung cancer. Calnexin, a molecular chaperone integral to N-linked glycoprotein synthesis, has shown some associations with cancer. However, targeted therapeutic or diagnostic methods using calnexin have been proposed. Through 1D-LCMSMS, we identified calnexin as a biomarker for lung cancer and substantiated its expression in human lung cancer cell membranes using Western blotting, flow cytometry, and immunocytochemistry. Anti-calnexin antibodies exhibited complement-dependent cytotoxicity to lung cancer cell lines, resulting in a notable reduction in tumor growth in a subcutaneous xenograft model. Additionally, we verified the feasibility of labeling tumors through in vivo imaging using antibodies against calnexin. Furthermore, exosomal detection of calnexin suggested the potential utility of liquid biopsy for diagnostic purposes. In conclusion, this study establishes calnexin as a promising target for antibody-based lung cancer diagnosis and therapy, unlocking novel avenues for early detection and treatment. [BMB Reports 2024; 57(3): 155-160].
Collapse
Affiliation(s)
- Soyeon Lim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Youngeun Ha
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Boram Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Junho Shin
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Taiyoun Rhim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
4
|
Chung M, Phillips I, Allan L, Westran N, Hug A, Evans PM. Early dietitian referral in lung cancer: use of machine learning. BMJ Support Palliat Care 2024; 14:56-59. [PMID: 35045981 DOI: 10.1136/bmjspcare-2021-003487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/28/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The Dietetic Assessment and Intervention in Lung Cancer (DAIL) study was an observational cohort study. It triaged the need for dietetic input in patients with lung cancer, using questionnaires with 137 responses. This substudy tested if machine learning could predict need to see a dietitian (NTSD) using 5 or 10 measures. METHODS 76 cases from DAIL were included (Royal Surrey NHS Foundation Trust; RSH: 56, Frimley Park Hospital; FPH 20). Univariate analysis was used to find the strongest correlates with NTSD and 'critical need to see a dietitian' CNTSD. Those with a Spearman correlation above ±0.4 were selected to train a support vector machine (SVM) to predict NTSD and CNTSD. The 10 and 5 best correlates were evaluated. RESULTS 18 and 13 measures had a correlation above ±0.4 for NTSD and CNTSD, respectively, producing SVMs with 3% and 7% misclassification error. 10 measures yielded errors of 7% (NTSD) and 9% (CNTSD). 5 measures yielded between 7% and 11% errors. SVM trained on the RSH data and tested on the FPH data resulted in errors of 20%. CONCLUSIONS Machine learning can predict NTSD producing misclassification errors <10%. With further work, this methodology allows integrated early referral to a dietitian independently of a healthcare professional.
Collapse
Affiliation(s)
| | - Iain Phillips
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, UK
| | - Lindsey Allan
- Department of Nutrition and Dietetics, Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | - Naomi Westran
- Department of Nutrition and Dietetics, Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | - Adele Hug
- Department of Nutrition and Dietetics, Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | - Philip M Evans
- CVSSP, University of Surrey, Guildford, UK
- Chemical, Medical and Environmental Science, National Physical Laboratory, Teddington, UK
| |
Collapse
|
5
|
Zhu X, Wan J, You X, Yang W, Zhao L. Circular non-coding RNA circ_0072088 serves as a ceRNA, targeting the miR-1225-5p/WT1 axis to regulate non-small cell lung cancer cell malignant behavior. Thorac Cancer 2023. [PMID: 37220935 DOI: 10.1111/1759-7714.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Circular RNA (circRNA) circ_0072088 has been reported to be associated with NSCLC cell growth, migration, and invasion. However, the role and mechanism of circ_0072088 on NSCLC development have not yet been determined. METHODS Circ_0072088, microRNA-1225 (miR-1225-5p), and Wilms' tumor (WT1) suppressor gene level was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Migration, invasion, and apoptosis were detected using transwell and flow cytometry assays. Matrix metallopeptidase 9 (MMP9), hexokinase 2 (HK2), and WT1 were examined using western blot assay. The biological role of circ_0072088 on NSCLC tumor growth was examined by the xenograft tumor model in vivo. Circular RNA Interactome and TargetScan were used to predict the binding between miR-1225-5p and circ_0072088 or WT1, followed by confirmation using a dual-luciferase reporter. RESULTS Circ_0072088 and WT1 were highly expressed in NSCLC tissues and cells, and miR-1225-5p was decreased. Knockdown of circ_0072088 might repress migration, invasion, and glycolysis, and facilitate apoptosis of NSCLC cells in vitro. Circ_0072088 silencing also blocked NSCLC tumor growth in vivo. Mechanistically, circ_0072088 acted as a sponge of miR-1225-5p to regulate WT1 expression. CONCLUSION Circ_0072088 knockdown could inhibit cell growth, migration, invasion, and glycolysis partially by regulating the miR-1225-5p/WT1 axis, thus providing a promising therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Emergency Department, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Jing Wan
- Emergency Department, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Xu You
- Emergency Department, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Wanli Yang
- Emergency Department, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Lei Zhao
- Emergency Department, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Tie X, Chen L, Li X, Zha W, Liu Y. A nomogram model of postoperative prognosis for metastatic lung adenocarcinoma: A study based on the SEER database. Medicine (Baltimore) 2022; 101:e31083. [PMID: 36254027 PMCID: PMC9575752 DOI: 10.1097/md.0000000000031083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We have observed that patients with metastatic lung adenocarcinoma can obtain survival benefits from surgical resection of the primary tumor. A model was developed to evaluate the prognosis of patients. The patients with metastatic lung adenocarcinoma were identified in the Surveillance, Epidemiology, and End Results database and divided into surgery group and non-surgical group. Through Kaplan-Meier analysis, the survival rate of the non-surgical group was found to be significantly lower no matter before or after propensity score matching. One thousand one hundred and seventy surgical patients were divided into a training group and a verification group. In the training group, univariate and multivariate Cox models were used to explore the prognostic factors, and logistic regression was used to establish a nomogram based on significant predictors. In total, 12,228 patients with metastatic lung adenocarcinoma were recognized; primary tumor surgery accounted for 9.5%. After propensity score matching, the median survival time of 2 groups was significantly different. For the training group, univariate and multivariate COX analysis was conducted, and a nomogram was constructed. Acceptable agreement has been achieved between the predicted and observed survival rates, and the nomogram can divide patients with metastatic lung adenocarcinoma into different risk groups and predict their prognostic survival rate.
Collapse
Affiliation(s)
- Xiaowei Tie
- Taixing People’s Hospital Affiliated with Bengbu Medical College, Bengbu, China
| | - Lianlian Chen
- Taixing People’s Hospital Affiliated with Bengbu Medical College, Bengbu, China
| | - Xiaomin Li
- Taixing People’s Hospital Affiliated with Bengbu Medical College, Bengbu, China
| | - Wenjuan Zha
- Taixing People’s Hospital Affiliated with Bengbu Medical College, Bengbu, China
| | - Yangchen Liu
- Taixing People’s Hospital Affiliated with Bengbu Medical College, Bengbu, China
- *Correspondence: Yang Chen Liu, Taixing People’s Hospital Affiliated with Bengbu Medical College, Bengbu, China (e-mail: )
| |
Collapse
|
7
|
Effects of Afatinib on Development of Non-Small-Cell Lung Cancer by Regulating Activity of Wnt/ β-Catenin Signaling Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5213016. [PMID: 35799670 PMCID: PMC9256313 DOI: 10.1155/2022/5213016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 01/10/2023]
Abstract
Lung cancer has been one of the deadliest cancers in the world. Afatinib is an ErbB family irreversible blocker that was authorized by the FDA and EMA in 2013 for the treatment of advanced EGFR mutation-positive NSCLC. Therefore, we aim to discover the impact of Afatinib on the development of non-small-cell lung cancer (NSCLC) via modulating the Wnt/β-catenin signaling pathway. The objective remission rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS) in 22 patients with clinical NSCLC were analyzed as follow-up targets after Afatinib therapy. The differences between the effects of Afatinib treatment and DDP+PEM treatment for conventional chemotherapy were used to measure NSCLC cell proliferation by CCK-8 assay; then those on NSCLC apoptosis were measured by flow cytometry. Patients who received Afatinib had better ORR, DCR, PFS, and OS than those in the conventional chemotherapy group. Meanwhile, CCK-8 assay shows that the number of colony formation of NSCLC cells after Afatinib treatment was less than that in the DDP+PEM group. And NSCLC apoptosis was higher than that in the DDP+PEM group. Phenomenologically, experimental results show that Afatinib can affect the behaviors of NSCLC cells. After treating NSCLC cells with Afatinib, the protein expressions of three serum tumor markers (CEA, CA125, and CY-FRA21-1) were detected by Western blotting, with the findings indicating that the protein expressions in NSCLC cells treated with Afatinib were lower than those of the DDP+PEM group, which indicates that Afatinib treatment can reduce the expressions of tumor markers, and inhibit the development of tumors. Afatinib can affect the progression of NSCLC by modulating the Wnt/β-catenin signaling pathway's activity as a new potential therapeutic drug for NSCLC.
Collapse
|
8
|
Ubiquitin-specific protease 35 (USP35) mediates cisplatin-induced apoptosis by stabilizing BIRC3 in non-small cell lung cancer. J Transl Med 2022; 102:524-533. [PMID: 35022505 DOI: 10.1038/s41374-021-00725-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin-specific protease 35 (USP35) is a member of the ubiquitin-specific protease family (USP), which influences the progression of multiple cancers by deubiquitinating a variety of substrates. In recent years, the specific role of USP35 was begun to be understood. In this study, we investigated the role and underlying molecular mechanisms of USP35 in chemoresistance of non-small cell lung cancer (NSCLC) to cisplatin. Depletion of USP35 increased the sensitivity of NSCLC to cisplatin-induced apoptosis. We screened and identified a potential substrate of USP35, baculoviral IAP repeat containing 3 (BIRC3). Overexpression of USP35 in H460 cells increased the abundance of BIRC3, while USP35 knockdown in Anip973 cells decreased BIRC3 abundance. Notably, USP35 directly interacted with and stabilized BIRC3 through lys48-mediated polyubiquitination via its deubiquitinating enzyme activity. USP35 alleviated cisplatin-induced cell apoptosis by regulating BIRC3 levels in NSCLC cells. Moreover, a significant positive correlation between USP35 and BIRC3 protein expression levels was observed in human NSCLC tissues. Taken together, USP35 plays a vital role in resistance to cisplatin-induced cell death through the overexpression of BIRC3. USP35 might be a potentially novel therapeutic target in human NSCLC.
Collapse
|
9
|
Zhang X, Angelova A, Sun W, Zhang F, Li N, Zou A. A Lipidated Peptide with Mitochondrial Membrane Localization in Human A549 Lung Cells: From Enhanced Cell-Penetrating Properties to Biological Activity Mechanism. ACS APPLIED BIO MATERIALS 2021; 4:8277-8290. [PMID: 35005910 DOI: 10.1021/acsabm.1c00815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, a lipidated peptide Pal-pHK-pKV with self-assembly properties and the ability to provoke the disruption of the mitochondrial voltage-dependent anion channel-1 protein (VDAC1)-hexokinase-II (HK-II) complex is reported. The effects of the peptide pHK (N-terminal 15-amino acid fragment of HK-II that specifically binds VDAC1) are compared to those of a designed biomimetic amphiphilic pHK-pKV conjugate (pHK coupled with a cell-penetrating peptide pKV) and Pal-pHK-pKV (a lipidated conjugate modified with a hydrophobic palmitic (Pal) alkyl chain). The Pal-pHK-pKV exhibits a stronger interaction with the membrane as compared to pHK-pKV, which is demonstrated by the Langmuir-Blodgett technique and two-photon excitation microscopy. The amphiphilic peptide derivatives are cytotoxic to the A549 cells, but Pal-pHK-pKV is more cytotoxic. The inhibitory effects of the pHK derivatives on the A549 cells growth are investigated through induced apoptosis pathway, depolarized mitochondrial membrane potential, inhibited glycolysis, and activated caspase. The results of the immunofluorescence evidence the specific mitochondrial targeting by those derivatives.
Collapse
Affiliation(s)
- Xinlei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay UMR8612, Châtenay-Malabry F-92296, France
| | - Wanfeng Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Fan Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Na Li
- National Facility for Protein Science in Shanghai Zhangjiang Laboratory, Shanghai Advanced Research Institute, CAS, No.333, Haike Road, Shanghai 20124, People's Republic of China
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.,College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| |
Collapse
|
10
|
Li N, Xu Y, Fan Y. [Current Advance in Targeted Treatment and Immunotherapy for BRAF-mutant
Advanced Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:714-722. [PMID: 34696543 PMCID: PMC8560979 DOI: 10.3779/j.issn.1009-3419.2021.101.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
随着精准医学的发展,靶向驱动基因的治疗显著改善了晚期非小细胞肺癌(non-small cell lung cancer, NSCLC)患者的预后和生活质量。其中鼠类肉瘤病毒癌基因同源物B1(v-raf murine sar-coma viral oncogene homolog B1, BRAF)基因突变的NSCLC较为罕见,传统治疗遵循无驱动基因突变NSCLC的治疗方案,远远没有满足临床需求。近年来,针对BRAF V600E突变NSCLC的靶向治疗疗效显著,其他BRAF突变亚型靶向治疗仍在探索阶段。免疫疗法在BRAF V600E和非V600E亚型的NSCLC中也显示出积极的抗肿瘤活性。本文就BRAF阳性NSCLC患者的靶向和免疫治疗研究进展作一综述。
Collapse
Affiliation(s)
- Na Li
- Wenzhou Medical University, Wenzhou 325035, China
| | - Yanjun Xu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of
Sciences, Hangzhou 310022, China.,Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Yun Fan
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of
Sciences, Hangzhou 310022, China.,Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
11
|
Lan B, Wang Y, Wu J, Wang K, Wang P. The predictive and prognostic effects of PD-L1 expression on TKI treatment and survival of EGFR-mutant NSCLC: A meta-analysis. Medicine (Baltimore) 2021; 100:e27038. [PMID: 34449486 PMCID: PMC8389972 DOI: 10.1097/md.0000000000027038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Whether programmed death-ligand 1 (PD-L1) expression could predict the outcome of tyrosine kinase inhibitor (TKI) treatment and prognosis of epidermal growth factor receptor (EGFR)-mutant nonsmall cell lung cancer (NSCLC) is remaining controversial.Potential studies were search from PubMed, Embase, and Web of Science databases. Pooled odds ratio of objective response rate was used to describe the relationship between PD-L1 expression and primary resistance to EGFR-TKIs. Pooled hazard ratios (HRs) of progression-free survival (PFS) and overall survival (OS) were included to assess the effects of PD-L1 status on the outcome of EGFR-TKI treatment and survival of EGFR-mutant NSCLCs.Eighteen eligible studies (1986 EGFR-mutant NSCLCs) were included in this meta-analysis. Positive PD-L1 expression correlated with lower objective response rate of EGFR-TKI treatment (odds ratio [95% confidence interval {CI}] = 0.52 [0.28-0.98], P = .043), while PFS (adjusted HR [95% CI] = 1.49 [0.96-1.89], P = .332) and OS (HR [95% CI] = 1.24 [0.70-2.20], P = .456) of EGFR-TKI treatment did not correlated with PD-L1 status. Furthermore, PD-L1 expression was not a predictive biomarker for the OS (HR [95% CI] = 1.43 [0.98-2.08], P = .062) in overall EGFR-mutant cohort.Positive PD-L1 expression indicated a higher incidence of primary resistance, but did not correlate with the PFS or OS of EGFR-TKI therapy. In addition, PD-L1 expression was unlikely a predictive biomarker for prognosis of EGFR-mutant NSCLCs.
Collapse
Affiliation(s)
- Bo Lan
- Department of Respiratory Medicine, The Third People's Hospital of Hangzhou, Hangzhou, China
| | - Yongfang Wang
- Department of Allergy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingni Wu
- Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Wang
- Department of Respiratory Medicine, Forth Affiliated Hospital, Z School of Medicine, Zhejiang University, Jinhua, China
| | - Pingli Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Luo R, Zhuo Y, Du Q, Xiao R. POU2F2 promotes the proliferation and motility of lung cancer cells by activating AGO1. BMC Pulm Med 2021; 21:117. [PMID: 33832481 PMCID: PMC8034198 DOI: 10.1186/s12890-021-01476-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/23/2021] [Indexed: 01/11/2023] Open
Abstract
Background To detect and investigate the expression of POU domain class 2 transcription factor 2 (POU2F2) in human lung cancer tissues, its role in lung cancer progression, and the potential mechanisms. Methods Immunohistochemical (IHC) assays were conducted to assess the expression of POU2F2 in human lung cancer tissues. Immunoblot assays were performed to assess the expression levels of POU2F2 in human lung cancer tissues and cell lines. CCK-8, colony formation, and transwell-migration/invasion assays were conducted to detect the effects of POU2F2 and AGO1 on the proliferaion and motility of A549 and H1299 cells in vitro. CHIP and luciferase assays were performed for the mechanism study. A tumor xenotransplantation model was used to detect the effects of POU2F2 on tumor growth in vivo. Results We found POU2F2 was highly expressed in human lung cancer tissues and cell lines, and associated with the lung cancer patients’ prognosis and clinical features. POU2F2 promoted the proliferation, and motility of lung cancer cells via targeting AGO1 in vitro. Additionally, POU2F2 promoted tumor growth of lung cancer cells via AGO1 in vivo. Conclusion We found POU2F2 was highly expressed in lung cancer cells and confirmed the involvement of POU2F2 in lung cancer progression, and thought POU2F2 could act as a potential therapeutic target for lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01476-9.
Collapse
Affiliation(s)
- Ronggang Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Fuzhou City, 350005, Fujian Province, China
| | - Yi Zhuo
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Fuzhou City, 350005, Fujian Province, China.
| | - Quan Du
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Fuzhou City, 350005, Fujian Province, China
| | - Rendong Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Fuzhou City, 350005, Fujian Province, China
| |
Collapse
|
13
|
Deng H, Zhou C. From CheckMate 227 to CheckMate 9LA: rethinking the status of chemotherapy in the immunotherapy era-chemo-free or chemo-reform? Transl Lung Cancer Res 2021; 10:1924-1927. [PMID: 34012802 PMCID: PMC8107757 DOI: 10.21037/tlcr-21-179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Haiyi Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Lv W, Cheng H, Shao D, Wei Y, Zhu W, Wu K, Jiang W, Hu L, Sha Z, Zhong B, Pei X. Treatment Patterns and Survival of Patients With Advanced Non-Small Cell Lung Cancer Guided by Comprehensive Genomic Profiling: Real-World Single-Institute Study in China. Front Oncol 2021; 11:630717. [PMID: 33777783 PMCID: PMC7988081 DOI: 10.3389/fonc.2021.630717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Although the National Comprehensive Cancer Network and the Chinese Society of Clinical Oncology guidelines recommend comprehensive genomic profiling of lung adenocarcinoma, it has not been widely applied in Chinese hospitals. This observational study aimed to determine real-world evidence of whether comprehensive genomic profiling can benefit the survival of patients with lung cancer. We investigated the frequency of genomic alterations, treatment strategies, and clinical outcomes in 233 patients with advanced non-small cell lung carcinoma who were routinely screened using a 508-gene panel. The most prevalent drivers were mutations of EGFR (51%), KRAS (9%), PIK3CA (7%), ALK (7%), MET (6%), and BRAF (5%). Mutations in tumor suppressor genes included TP53, KEAP1, RB1, PTEN, and APC. Median overall survival (OS) was significantly shorter among patients harboring KRAS (mutant, n = 17; WT, n = 154) and TP53 (mutant, n = 103; WT n =68) mutations (11.3 vs. 24.0 months; P = 0.16 and 18.7 vs. 28.7 months; P = 0.018, respectively). The OS was longer among patients with tumors harboring EGFR (P = 0.069) and ALK (P = 0.51) mutations. Most patients (65.4%) with the driver gene-positive (EGFR, ALK, and ROS1) tumors were received TKI treatment, whereas those with driver gene wild tumors (53.1%) chose platinum-based therapy. Univariate and multivariate analyses associated a shorter OS among patients with tumors harboring concomitant TP53 and EGFR mutations. These findings provide additional evidence from real-world on the potential importance of targeted therapies as a treatment option in NSCLC patients harboring clinically actionable mutation.
Collapse
Affiliation(s)
- Weize Lv
- Department of Interventional Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hua Cheng
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Cardiothoracic Surgery, Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, China
| | - Di Shao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yajun Wei
- Department of Interventional Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Weiping Zhu
- Department of Nephrology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China
| | | | - Liyang Hu
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Thoracic Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhou Sha
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Thoracic Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Beilong Zhong
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Cardiothoracic Surgery, Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, China
| | - Xiaofeng Pei
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Thoracic Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
15
|
Optimising patient fitness: strategies to reduce the effects of cancer cachexia in patients with advanced lung cancer. Curr Opin Support Palliat Care 2020; 14:304-308. [PMID: 33181607 DOI: 10.1097/spc.0000000000000525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Outcomes for patients with advanced lung cancer have traditionally been very poor. This patient group are often comorbid, less fit and experience multiple symptoms. This review discusses strategies for minimizing the impact of cachexia on patients with advanced lung cancer. This is timely, as in recent years there has been a rapid increase in available systemic therapy options, with the potential of long-term survival for some patients. RECENT FINDINGS The review discusses current strategies in combating cachexia, including: symptom control, systemic therapy for cancer and for cachexia, nutritional interventions and exercise interventions. It discusses current clinical trials, combining interventions and the paradigm of prehabilitation. SUMMARY It is likely that the optimal way of minimizing the impact of cachexia in advanced lung cancer is through a combination of early interventions including symptom management.
Collapse
|
16
|
Xu Q, Jia X, Wu Q, Shi L, Ma Z, Ba N, Zhao H, Xia X, Zhang Z. Esomeprazole affects the proliferation, metastasis, apoptosis and chemosensitivity of gastric cancer cells by regulating lncRNA/circRNA-miRNA-mRNA ceRNA networks. Oncol Lett 2020; 20:329. [PMID: 33101498 PMCID: PMC7577076 DOI: 10.3892/ol.2020.12193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, proton pump inhibitors have become a hot research topic in the field of cancer drug research. However, the specific anti-tumor effect and underlying mechanisms of esomeprazole (ESO) in gastric cancer (GC) have remained elusive. In the present study, the toxic effects of ESO on the GC cell line AGS were investigated. MTT assays confirmed that ESO inhibited the proliferation of AGS cells and significantly enhanced their chemosensitivity. Transwell assays were performed to determine the anti-metastatic effects of ESO in AGS cells. Flow cytometry demonstrated that ESO induced cell apoptosis and caused cell cycle arrest in the S and G2/M phases. Furthermore, the differential expression of 948 long non-coding RNAs (lncRNAs), 114 circular RNAs (circRNAs), 1,197 mRNAs and 199 microRNAs (miRNAs) was detected in AGS cells via microarray analysis and RNA-sequencing. The top 10 differently expressed genes were mostly located on chromosomes 10 and 19. In addition, Gene Ontology analysis indicated that the genes were accumulated in functional terms associated with DNA replication, the cell cycle and the apoptotic signaling pathway. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed a variety of significantly dysregulated signaling pathways and targets, including the EGFR tyrosine kinase inhibitor resistance pathway, forkhead box O signaling pathway, p53 signaling pathway and platinum drug resistance pathway. Subsequently, the interactions of microtubule-associated protein 2 (MAP2), homeodomain-interacting protein kinase 2 (HIPK2) and ankyrin 2 (ANK2) were noted in a competing endogenous RNA (ceRNA) network, which may be important targets of ESO, exerting an anti-tumor effect in AGS cells. Collectively, ESO affects the proliferation, metastasis, apoptosis and chemosensitivity of gastric cancer cells by regulating long non-coding RNA/circRNA-miRNA-mRNA ceRNA networks.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiyun Jia
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qian Wu
- Department of Gastroenterology, Huanghe Central Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Lei Shi
- Department of Clinical Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zihan Ma
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Nan Ba
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Han Zhao
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xingzhou Xia
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zisen Zhang
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|