1
|
Dröge F, Noakes FF, Archer SA, Sreedharan S, Raza A, Robertson CC, MacNeil S, Haycock JW, Carson H, Meijer AJHM, Smythe CGW, Bernardino de la Serna J, Dietzek-Ivanšić B, Thomas JA. A Dinuclear Osmium(II) Complex Near-Infrared Nanoscopy Probe for Nuclear DNA. J Am Chem Soc 2021; 143:20442-20453. [PMID: 34808044 DOI: 10.1021/jacs.1c10325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the aim of developing photostable near-infrared cell imaging probes, a convenient route to the synthesis of heteroleptic OsII complexes containing the Os(TAP)2 fragment is reported. This method was used to synthesize the dinuclear OsII complex, [{Os(TAP)2}2tpphz]4+ (where tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2''-h:2‴,3'''-j]phenazine and TAP = 1,4,5,8- tetraazaphenanthrene). Using a combination of resonance Raman and time-resolved absorption spectroscopy, as well as computational studies, the excited state dynamics of the new complex were dissected. These studies revealed that, although the complex has several close lying excited states, its near-infrared, NIR, emission (λmax = 780 nm) is due to a low-lying Os → TAP based 3MCLT state. Cell-based studies revealed that unlike its RuII analogue, the new complex is neither cytotoxic nor photocytotoxic. However, as it is highly photostable as well as live-cell permeant and displays NIR luminescence within the biological optical window, its properties make it an ideal probe for optical microscopy, demonstrated by its use as a super-resolution NIR STED probe for nuclear DNA.
Collapse
Affiliation(s)
- Fabian Dröge
- Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany; Institute of Photonic Technology Jena e.V., Albert-Einstein-Straße 9, 07749 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | - Jorge Bernardino de la Serna
- Central Laser Facility, Rutherford Appleton Laboratory, Research Complex at Harwell, Science and Technology Facilities Council, Harwell-Oxford, Didcot OX11 0QX, United Kingdom; National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany; Institute of Photonic Technology Jena e.V., Albert-Einstein-Straße 9, 07749 Jena, Germany
| | | |
Collapse
|
2
|
Mkhatshwa M, Moremi JM, Makgopa K, Manicum ALE. Nanoparticles Functionalised with Re(I) Tricarbonyl Complexes for Cancer Theranostics. Int J Mol Sci 2021; 22:6546. [PMID: 34207182 PMCID: PMC8235741 DOI: 10.3390/ijms22126546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022] Open
Abstract
Globally, cancer is the second (to cardiovascular diseases) leading cause of death. Regardless of various efforts (i.e., finance, research, and workforce) to advance novel cancer theranostics (diagnosis and therapy), there have been few successful attempts towards ongoing clinical treatment options as a result of the complications posed by cancerous tumors. In recent years, the application of magnetic nanomedicine as theranostic devices has garnered enormous attention in cancer treatment research. Magnetic nanoparticles (MNPs) are capable of tuning the magnetic field in their environment, which positively impacts theranostic applications in nanomedicine significantly. MNPs are utilized as contrasting agents for cancer diagnosis, molecular imaging, hyperfusion region visualization, and T cell-based radiotherapy because of their interesting features of small size, high reactive surface area, target ability to cells, and functionalization capability. Radiolabelling of NPs is a powerful diagnostic approach in nuclear medicine imaging and therapy. The use of luminescent radioactive rhenium(I), 188/186Re, tricarbonyl complexes functionalised with magnetite Fe3O4 NPs in nanomedicine has improved the diagnosis and therapy of cancer tumors. This is because the combination of Re(I) with MNPs can improve low distribution and cell penetration into deeper tissues.
Collapse
Affiliation(s)
| | | | - Katlego Makgopa
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa; (M.M.); (J.M.M.)
| | - Amanda-Lee Ezra Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa; (M.M.); (J.M.M.)
| |
Collapse
|
3
|
Kuznetsov KM, Kritchenkov IS, Shakirova JR, Gurzhiy VV, Pavlovskiy VV, Porsev VV, Sokolov VV, Tunik SP. Red‐to‐NIR Iridium(III) Emitters: Synthesis, Photophysical and Computational Study, the Effects of Cyclometallating and β‐Diketonate Ligands. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kirill M. Kuznetsov
- Institute of Chemistry St. Petersburg State University Universitetskii pr. 26 198504 St. Petersburg Russia
| | - Ilya S. Kritchenkov
- Institute of Chemistry St. Petersburg State University Universitetskii pr. 26 198504 St. Petersburg Russia
| | - Julia R. Shakirova
- Institute of Chemistry St. Petersburg State University Universitetskii pr. 26 198504 St. Petersburg Russia
| | - Vladislav V. Gurzhiy
- Institute of Earth Sciences St. Petersburg State University University emb. 7/9 199034 St. Petersburg Russia
| | - Vladimir V. Pavlovskiy
- Institute of Chemistry St. Petersburg State University Universitetskii pr. 26 198504 St. Petersburg Russia
| | - Vitaly V. Porsev
- Institute of Chemistry St. Petersburg State University Universitetskii pr. 26 198504 St. Petersburg Russia
| | - Viktor V. Sokolov
- Institute of Chemistry St. Petersburg State University Universitetskii pr. 26 198504 St. Petersburg Russia
| | - Sergey P. Tunik
- Institute of Chemistry St. Petersburg State University Universitetskii pr. 26 198504 St. Petersburg Russia
| |
Collapse
|
4
|
Mansour AM, Radacki K, Shehab OR. Role of the ancillary ligand in controlling the lysozyme affinity and electronic properties of terpyridine fac-Re(CO) 3 complexes. Dalton Trans 2021; 50:1197-1201. [PMID: 33475110 DOI: 10.1039/d0dt04140h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lysozyme binding affinity and the electronic properties of [ReX(CO)3(terpy-κ2N1,N2)] (X = Br- and triazolateCOOCH2CH3,CF3) were reported. The triazolate complex was prepared in a [3 + 2] cycloaddition click reaction. The bromo compound reacted with lysozyme affording adducts with Re(CO)3+ fragments, while the triazolate compound persisted. A red shift of the MLCT band of the triazolate compound in progressively less polar solvents may be due to the negative solvatochromism.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| |
Collapse
|
5
|
Mansour AM, Radacki K. Terpyridine based ReX(CO)3 compounds (X = Br–, N3– and triazolate): Spectroscopic and DFT studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Mansour AM. Tricarbonyl triazolato Re( i) compounds of pyridylbenzimidazole ligands: spectroscopic and antimicrobial activity evaluation. RSC Adv 2021; 11:22715-22722. [PMID: 35480466 PMCID: PMC9034272 DOI: 10.1039/d1ra03063a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Catalyst-free [3+2] cycloaddition coupling between [Ren(N3)n(CO)3nL] (n = 1, L = 1-ethyl-2-(pyridin-2-yl)benzimidazole (L1) and n = 2, L = 1,1′-(hexane-1,6-diyl)bis[2-(pyridin-2-yl)-1H-benzimidazole] (L2)) and dimethyl acetylene dicarboxylate (DMAD) afforded mono- and binuclear triazolate complexes. Spectroscopic data presented unambiguous evidence for isomerization of the kinetically formed N(1) bound triazolate isomer into the N(2) analogue. The solvatochromism properties were assessed by UV/Vis spectroscopy with the aid of time dependent density functional theory calculations. The free ligands and their tricarbonyl triazolato Re(i) complexes were screened for their potential antimicrobial activity against different bacterial and fungal pathogens. The antimicrobial activity and solvatochromism properties of mono- and binuclear tricarbonyl triazolato Re(i) complexes of pyridylbenzimidazole, formed by catalyst-free [3+2] cycloaddition reaction, were examined.![]()
Collapse
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry
- Faculty of Science
- Cairo University
- Cairo 12613
- Egypt
| |
Collapse
|
7
|
Saleh N, Kundu D, Vanthuyne N, Olesiak-Banska J, Pniakowska A, Matczyszyn K, Chang VY, Muller G, Williams JAG, Srebro-Hooper M, Autschbach J, Crassous J. Dinuclear Rhenium Complexes with a Bridging Helicene-bis-bipyridine Ligand: Synthesis, Structure, and Photophysical and Chiroptical Properties. Chempluschem 2020; 85:2446-2454. [PMID: 32965092 PMCID: PMC7745256 DOI: 10.1002/cplu.202000559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Indexed: 12/19/2022]
Abstract
By attaching pyridine groups to a diaza[6]helicene, a helical, bis-ditopic, bis-N N-coordinating ligand can be accessed. Dinuclear rhenium complexes featuring this bridging ligand, of the form [{Re(CO)3 Cl}2 (N N-N N)], have been prepared and resolved to give enantiopure complexes. These complexes are phosphorescent in solution at room temperature under one- and two-photon excitation. Their experimental chiroptical properties (optical rotation, electronic circular dichroism and circularly polarized emission) have been measured. They show, for instance, emission dissymmetry factors of c.a. ±3x10-3 . Quantum-chemical calculations indicate the importance of stereochemistry on the optical activity, pointing towards further design improvements in such types of complexes.
Collapse
Affiliation(s)
- Nidal Saleh
- Univ Rennes, CNRS, ISCR - UMR 6226, 35000, Rennes, France
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Debsouri Kundu
- Univ Rennes, CNRS, ISCR - UMR 6226, 35000, Rennes, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale, Marseille, iSm2, 13284, France
| | - Joanna Olesiak-Banska
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Anna Pniakowska
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Victoria Y Chang
- Department of Chemistry, San José State University, San José, CA, 95192-0101, USA
| | - Gilles Muller
- Department of Chemistry, San José State University, San José, CA, 95192-0101, USA
| | | | - Monika Srebro-Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Jochen Autschbach
- Department of Chemistry University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | | |
Collapse
|
8
|
Synthesis, characterization, molecular structure and computational study of tetrahedral pentamethylcyclopentadienyl iridacycle complexes with α,β-conjugated Schiff base ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Patra R, Maity A, Rajak KK. Synthesis, crystal structure, DFT calculation and trans → cis isomerisation studies of bipyridyl ruthenium(II) complexes bearing 8-oxyquinolate azo ligands. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01846-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Solomatina AI, Slobodina AD, Ryabova EV, Bolshakova OI, Chelushkin PS, Sarantseva SV, Tunik SP. Blood-Brain Barrier Penetrating Luminescent Conjugates Based on Cyclometalated Platinum(II) Complexes. Bioconjug Chem 2020; 31:2628-2637. [DOI: 10.1021/acs.bioconjchem.0c00542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Aleksandra D. Slobodina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre ≪Kurchatov Institute≫, Gatchina 188300, Russia
| | - Elena V. Ryabova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre ≪Kurchatov Institute≫, Gatchina 188300, Russia
| | - Olga I. Bolshakova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre ≪Kurchatov Institute≫, Gatchina 188300, Russia
| | - Pavel S. Chelushkin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Svetlana V. Sarantseva
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre ≪Kurchatov Institute≫, Gatchina 188300, Russia
| | - Sergey P. Tunik
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| |
Collapse
|
11
|
Petyuk MY, Berezin AS, Bagryanskaya IY, Artyushin OI, Brel VK, Artem'ev AV. A dinuclear Re(I) tricarbonyl complex showing thermochromic luminescence. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Stout MJ, Skelton BW, Sobolev AN, Raiteri P, Massi M, Simpson PV. Synthesis and Photochemical Properties of Re(I) Tricarbonyl Complexes Bound to Thione and Thiazol-2-ylidene Ligands. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew J. Stout
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley 6102, Perth, Western Australia, Australia
| | - Brian W. Skelton
- School of Molecular Sciences and CMCA, the University of Western Australia, 35 Stirling Highway, 6009 Perth, Western Australia, Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences and CMCA, the University of Western Australia, 35 Stirling Highway, 6009 Perth, Western Australia, Australia
| | - Paolo Raiteri
- Curtin Institute for Computation and School of Life and Molecular Sciences, Curtin University, Kent Street, Bentley 6102, Perth, Western Australia, Australia
| | - Massimiliano Massi
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley 6102, Perth, Western Australia, Australia
| | - Peter V. Simpson
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley 6102, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Smitten KL, Scattergood PA, Kiker C, Thomas JA, Elliott PIP. Triazole-based osmium(ii) complexes displaying red/near-IR luminescence: antimicrobial activity and super-resolution imaging. Chem Sci 2020; 11:8928-8935. [PMID: 34123147 PMCID: PMC8163367 DOI: 10.1039/d0sc03563g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular uptake, luminescence imaging and antimicrobial activity against clinically relevant methicillin-resistant S. aureus (MRSA) bacteria are reported. The osmium(ii) complexes [Os(N^N)3]2+ (N^N = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (1 2+); 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (2 2+); 1-benzyl-4-(pyrazin-2-yl)-1,2,3-triazole (3 2+)) were prepared and isolated as the chloride salts of their meridional and facial isomers. The complexes display prominent spin-forbidden ground state to triplet metal-to-ligand charge transfer (3MLCT) state absorption bands enabling excitation as low as 600 nm for fac/mer-3 2+ and observation of emission in aqueous solution in the deep-red/near-IR regions of the spectrum. Cellular uptake studies within MRSA cells show antimicrobial activity for 1 2+ and 2 2+ with greater toxicity for the meridional isomers in each case and mer-1 2+ showing the greatest potency (32 μg mL-1 in defined minimal media). Super-resolution imaging experiments demonstrate binding of mer- and fac-1 2+ to bacterial DNA with high Pearson's colocalisation coefficients (up to 0.95 using DAPI). Phototoxicity studies showed the complexes exhibited a higher antimicrobial activity upon irradiation with light.
Collapse
Affiliation(s)
- Kirsty L Smitten
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Paul A Scattergood
- Department of Chemistry & Centre for Functional Materials, University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Charlotte Kiker
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Paul I P Elliott
- Department of Chemistry & Centre for Functional Materials, University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| |
Collapse
|
14
|
Smitten KL, Thick EJ, Southam HM, Bernardino de la Serna J, Foster SJ, Thomas JA. Mononuclear ruthenium(ii) theranostic complexes that function as broad-spectrum antimicrobials in therapeutically resistant pathogens through interaction with DNA. Chem Sci 2020; 11:8828-8838. [PMID: 34123136 PMCID: PMC8163430 DOI: 10.1039/d0sc03410j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/28/2020] [Indexed: 01/20/2023] Open
Abstract
Six luminescent, mononuclear ruthenium(ii) complexes based on the tetrapyridophenazine (tpphz) and dipyridophenazine (dppz) ligands are reported. The therapeutic activities of the complexes against Gram-negative bacteria (E. coli, A. baumannii, P. aeruginosa) and Gram-positive bacteria (E. faecalis and S. aureus) including pathogenic multi- and pan-drug resistant strains were assessed. Estimated minimum inhibitory and bactericidal concentrations show the activity of the lead compound is comparable to ampicillin and oxacillin in therapeutically sensitive strains and this activity was retained in resistant strains. Unlike related dinuclear analogues the lead compound does not damage bacterial membranes but is still rapidly taken up by both Gram-positive and Gram-negative bacteria in a glucose independent manner. Direct imaging of the complexes through super-resolution nanoscopy and transmission electron microscopy reveals that once internalized the complexes' intracellular target for both Gram-negative and Gram-positive strains is bacterial DNA. Model toxicity screens showed the compound is non-toxic to Galleria mellonella even at exposure concentrations that are orders of magnitude higher than the bacterial MIC.
Collapse
Affiliation(s)
- Kirsty L Smitten
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
- Department of Molecular Biology and Biotechnology, The University of Sheffield Western Bank Sheffield UK
| | - Eleanor J Thick
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Hannah M Southam
- Department of Molecular Biology and Biotechnology, The University of Sheffield Western Bank Sheffield UK
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, South Kensington Campus London SW7 2AZ UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Central Laser Facility, United Kingdom Research and Innovation OX11 0FA UK
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, The University of Sheffield Western Bank Sheffield UK
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| |
Collapse
|
15
|
Abstract
Nitrogenase is the only enzyme capable of reducing N2 to NH3. This challenging reaction requires the coordinated transfer of multiple electrons from the reductase, Fe-protein, to the catalytic component, MoFe-protein, in an ATP-dependent fashion. In the last two decades, there have been significant advances in our understanding of how nitrogenase orchestrates electron transfer (ET) from the Fe-protein to the catalytic site of MoFe-protein and how energy from ATP hydrolysis transduces the ET processes. In this review, we summarize these advances, with focus on the structural and thermodynamic redox properties of nitrogenase component proteins and their complexes, as well as on new insights regarding the mechanism of ET reactions during catalysis and how they are coupled to ATP hydrolysis. We also discuss recently developed chemical, photochemical, and electrochemical methods for uncoupling substrate reduction from ATP hydrolysis, which may provide new avenues for studying the catalytic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Hannah L Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
16
|
Zhang W, Xi X, Wang YL, Du Z, Liu C, Liu J, Song B, Yuan J, Zhang R. Responsive ruthenium complex probe for phosphorescence and time-gated luminescence detection of bisulfite. Dalton Trans 2020; 49:5531-5538. [PMID: 32270143 DOI: 10.1039/c9dt04614c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sensitive and selective quantification of specific analytes is of great significance in analytical and environmental sciences, as well as in the food industry. Herein, we report the design, synthesis, characterization, and application of a responsive ruthenium(ii) complex probe, Ru-azo, for phosphorescence and time-gated luminescence (TGL) detection of bisulfite, an important additive in the food industry. Upon a specific nucleophilic addition reaction between bisulfite and the azo group of Ru-azo, a new ruthenium(ii) complex, Ru-SO3, was obtained, which resulted in a remarkable increase in phosphorescence intensity, allowing the bisulfite detection to be achieved. In addition, long-lived emissions of Ru-azo (τ = 258 ns) and Ru-SO3 (τ = 261 ns) also enabled the TGL detection of bisulfite in autofluorescence-rich food samples. Through theoretical computations, the photoinduced electron transfer (PET) process within the ruthenium(ii) complex was validated, which unveiled the rationality of the luminescence "off-on" response of Ru-azo to bisulfite. The probe showed advantages of good water solubility, and high sensitivity, selectivity and accuracy for responding to bisulfite, facilitating its application in phosphorescence and TGL detection of bisulfite in aqueous and food samples.
Collapse
Affiliation(s)
- Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ma DL, Wong SY, Kang TS, Ng HP, Han QB, Leung CH. Iridium(III)-based chemosensors for the detection of metal ions. Methods 2019; 168:3-17. [DOI: 10.1016/j.ymeth.2019.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 01/10/2023] Open
|
18
|
Roy P, Sarkar D, Ghosh P, Naskar R, Murmu N, Mondal TK. Luminescent rhenium(I) carbonyl complex with redox noninnocent ONS donor azo-phenol ligand: Synthesis, X-ray structure, photophysical properties and live cell imaging. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Synthesis, photo- and electro-luminescence of dinuclear Ir(III) complexes containing bis-β-diketonate carbazole ligand. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Keller SG, Pannwitz A, Schwizer F, Klehr J, Wenger OS, Ward TR. Light-driven electron injection from a biotinylated triarylamine donor to [Ru(diimine)3](2+)-labeled streptavidin. Org Biomol Chem 2018; 14:7197-201. [PMID: 27411288 DOI: 10.1039/c6ob01273f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electron transfer from a biotinylated electron donor to photochemically generated Ru(iii) complexes covalently anchored to streptavidin is demonstrated by means of time-resolved laser spectroscopy. Through site-selective mutagenesis, a single cysteine residue was engineered at four different positions on streptavidin, and a Ru(ii) tris-diimine complex was then bioconjugated to the exposed cysteines. A biotinylated triarylamine electron donor was added to the Ru(ii)-modified streptavidins to afford dyads localized within a streptavidin host. The resulting systems were subjected to electron transfer studies. In some of the explored mutants, the phototriggered electron transfer between triarylamine and Ru(iii) is complete within 10 ns, thus highlighting the potential of such artificial metalloenzymes to perform photoredox catalysis.
Collapse
Affiliation(s)
- Sascha G Keller
- Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| | - Andrea Pannwitz
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland.
| | - Fabian Schwizer
- Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| | - Juliane Klehr
- Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland.
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| |
Collapse
|
21
|
Sensitive determination of lysozyme by using a luminescent and colorimetric probe based on the aggregation of gold nanoparticles induced by an anionic ruthenate(II) complex. Mikrochim Acta 2018; 185:428. [PMID: 30135991 DOI: 10.1007/s00604-018-2963-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
Abstract
The negatively charged ruthenate(II) complex [Ru(bpy)(PPh3)(CN)3]- and gold nanoparticles (AuNPs) were used for detecting lysozyme (LYS). The luminescence of the ruthenate(II) complex is quenched by AuNPs, and this induces the aggregation of AuNPs and a color change from red to blue. After addition of lysozyme, the positively charged lysozyme and the negatively charged ruthenate(II) complex bind each other by electrostatic interaction firstly. This prevents AuNPs from aggregation and quenches the emission of the ruthenate(II) complex. Its luminescence and the degree of aggregation of the AuNPs can be used to quantify LYS. The fluorometric calibration plot is linear in the 0.01 to 0.20 μM LYS concentration range, and the calibration plot is linear between 0.02 and 0.20 μM of LYS. The color of the solution can be easily distinguished by bare eyes at 0.08 μM or higher concentration of LYS. The applicability of the method was verified by the correct analysis of LYS in chicken egg white. Graphical abstract Schematic of a luminometric and colorimetric probe based on the induced aggregation of gold nanoparticles by an anionic luminescent ruthenate(II) complex or sensitive lysozyme detection.
Collapse
|
22
|
Govindarajan R, Divya D, Nagarajaprakash R, Manimaran B. Synthesis and Characterization of Aminoquinonato Bridged Re(I)-Based Amide Functionalized Dinuclear Metallastirrups and Tetranuclear Lemniscate Metallacycles. ChemistrySelect 2018. [DOI: 10.1002/slct.201800296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Dhanaraj Divya
- Department of Chemistry; Pondicherry University; Puducherry 605014 India
| | | | - Bala. Manimaran
- Department of Chemistry; Pondicherry University; Puducherry 605014 India
| |
Collapse
|
23
|
Wei W, Lima SA, Djurovich PI, Bossi A, Whited MT, Thompson ME. Synthesis and characterization of phosphorescent isomeric iridium complexes with a rigid cyclometalating ligand. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Liu X, Liu Y, Yu T, Su W, Niu Y, Li Y, Zhao Y, Zhang H. Efficient green phosphorescent Ir(iii) complexes with β-diketonate ancillary ligands. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00489g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three new iridium complexes with β-diketonate ancillary ligands were synthesized as emissive materials for organic light-emitting devices.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
- School of Mechatronic Engineering
| | - Ying Liu
- Printable electronics research center
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Tianzhi Yu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Wenming Su
- Printable electronics research center
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Yuying Niu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Yanmei Li
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Yuling Zhao
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Hui Zhang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| |
Collapse
|
25
|
Yu T, Yang Q, Zhu Z, Zhao Y, Liu X, Wei C, Zhang H. Synthesis, characterization and photophysical properties of a new Cu 2+ selective phosphorescent sensor. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Keller SG, Pannwitz A, Mallin H, Wenger OS, Ward TR. Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation. Chemistry 2017; 23:18019-18024. [PMID: 29024136 DOI: 10.1002/chem.201703885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 01/03/2023]
Abstract
Long-lived photo-driven charge separation is demonstrated by assembling a triad on a protein scaffold. For this purpose, a biotinylated triarylamine was added to a RuII -streptavidin conjugate bearing a methyl viologen electron acceptor covalently linked to the N-terminus of streptavidin. To improve the rate and lifetime of the electron transfer, a negative patch consisting of up to three additional negatively charged amino acids was engineered through mutagenesis close to the biotin-binding pocket of streptavidin. Time-resolved laser spectroscopy revealed that the covalent attachment and the negative patch were beneficial for charge separation within the streptavidin hosted triad; the charge separated state was generated within the duration of the excitation laser pulse, and lifetimes up to 3120 ns could be achieved with the optimized supramolecular triad.
Collapse
Affiliation(s)
- Sascha G Keller
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002, Basel, Switzerland
| | - Andrea Pannwitz
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Hendrik Mallin
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002, Basel, Switzerland
| |
Collapse
|
27
|
|
28
|
Synthesis, characterization and computational studies of luminescent rhenium(I) tricarbonyl diimine complexes with 8-hydroxyquinoline-containing alkynyl ligands. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Synthesis, physicochemical properties, thermal analysis and biological application of phosphorescent cationic iridium(III) complexes. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.07.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Fiorini V, Zanoni I, Zacchini S, Costa AL, Hochkoeppler A, Zanotti V, Ranieri AM, Massi M, Stefan A, Stagni S. Methylation of Ir(iii)-tetrazolato complexes: an effective route to modulate the emission outputs and to switch to antimicrobial properties. Dalton Trans 2017; 46:12328-12338. [PMID: 28891573 DOI: 10.1039/c7dt02352a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two neutral cyclometalated Ir(iii)-tetrazolato complexes that differ by variations of the substituents on either the phenylpyridine or the tetrazolate ligand have been converted into the corresponding methylated and cationic analogues. NMR (1H and 13C) characterization of the Ir(iii) complexes provided the results in agreement with the chemo- and regioselective character of methylation at the N-3 position of the Ir(iii)-coordinated tetrazolato ring. This evidence was further corroborated by the analysis of the molecular structures of the cationic complexes obtained by X-ray diffraction. In view of the photophysical properties, the addition of a methyl moiety to neutral Ir(iii) tetrazolates, which behave as sky-blue or orange phosphors, caused a systematic red shift of their phosphorescence output. The transformation of neutral Ir(iii) tetrazolates into cationic Ir(iii)-tetrazole complexes was screened for any eventual antimicrobial activity in vitro against Gram negative (E. coli) and Gram positive (D. radiodurans) microorganisms. While both kinds of complexes were not active against E. coli, the conversion of the neutral Ir(iii) tetrazolates into the corresponding methylated and cationic Ir(iii)tetrazole derivatives determined the turn-on of a good to excellent antimicrobial activity toward Gram positive Deinococcus radiodurans, a non-pathogenic bacterium that is listed as one of the toughest microorganisms in light of its outstanding resistance to radiation and oxidative stress.
Collapse
Affiliation(s)
- Valentina Fiorini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Ilaria Zanoni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy. and CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Via Granarolo 64 I-48018, Faenza, RA, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Anna Luisa Costa
- CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Via Granarolo 64 I-48018, Faenza, RA, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy. and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Valerio Zanotti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Anna Maria Ranieri
- Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U 1987, Perth, Australia 6845.
| | - Massimiliano Massi
- Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U 1987, Perth, Australia 6845.
| | - Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy. and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| |
Collapse
|
31
|
Singha K, Laha P, Chandra F, Dehury N, Koner AL, Patra S. Long-Lived Polypyridyl Based Mononuclear Ruthenium Complexes: Synthesis, Structure, and Azo Dye Decomposition. Inorg Chem 2017; 56:6489-6498. [PMID: 28509536 DOI: 10.1021/acs.inorgchem.7b00536] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two mononuclear ruthenium complexes [(bpy)2RuIIL1/L2](ClO4)2 ([1]2+/[2]2+) (bpy-2,2' bipyridine, L1 = 2,3-di(pyridin-2-yl)pyrazino[2,3-f][1,10]phenanthroline) and L2 = 2,3-di(thiophen-2-yl)pyrazino[2,3-f][1,10]phenanthroline have been synthesized. The complexes have been characterized using various analytical techniques. The complex [1]2+ has further been characterized by its single crystal X-ray structure suggesting ruthenium is coordinating through the N donors of phenanthroline end. Theoretical investigation suggests that the HOMOs of both complexes are composed of pyridine and pyrazine unit of ligands L1 and L2 whereas the LUMOs are formed by the contribution of bipyridine units. The low energy bands at ∼480 nm of the complexes can be assigned as MLCT with partial contribution from ligand transitions, whereas the rest are ligand centered. The complexes have shown RuII/RuIII oxidation couples at E1/2 at 1.26 (70 mV) V and 1.28 (62 mV) V for [1]2+ and [2]2+ vs Ag/AgCl, respectively, suggesting no significant role of distal thiophene or pyridine units of the ligands. The complexes are emissive and display solvent dependent emission properties. Both complexes have shown highest emission quantum yield and lifetime in DMSO (ϕ = 0.05 and τavg = 460 ns and λmaxem at 620 nm for [1]2+; ϕ = 0.043 and τavg = 425 ns and λmaxem at 635 nm for [2]2+). Further, the long luminescent lifetime of these complexes has been utilized to generate reactive oxygen species for efficient azo dye decomposition.
Collapse
Affiliation(s)
- Koushik Singha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar , Argul 752050, India
| | - Paltan Laha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar , Argul 752050, India
| | - Falguni Chandra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal , Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Niranjan Dehury
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar , Argul 752050, India
| | - Apurba L Koner
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal , Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Srikanta Patra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar , Argul 752050, India
| |
Collapse
|
32
|
Chakraborty I, Jimenez J, Sameera WMC, Kato M, Mascharak PK. Luminescent Re(I) Carbonyl Complexes as Trackable PhotoCORMs for CO delivery to Cellular Targets. Inorg Chem 2017; 56:2863-2873. [PMID: 28225252 PMCID: PMC5731781 DOI: 10.1021/acs.inorgchem.6b02999] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A family of Re(I) carbonyl complexes of general formula [ReX(CO)3(phen)]0/1+ (where X = Cl-, CF3SO3-, MeCN, PPh3, and methylimidazole) derived from 1,10-phenanthroline (phen) exhibits variable emission characteristics depending on the presence of the sixth ancillary ligand/group (X). All complexes but with X = MeCN exhibit moderate CO release upon irradiation with low-power UV light and are indefinitely stable in anaerobic/aerobic environment in solution as well as in solid state when kept under dark condition. These CO donors liberate three, one, or no CO depending on the nature of sixth ligand upon illumination as studied with the aid of time-dependent IR spectroscopy. Results of excited-state density functional theory (DFT) and time-dependent DFT calculations provided insight into the origin of the emission characteristics of these complexes. The luminescent rheinum(I) photoCORMs uniformly displayed efficient cellular internalization by the human breast adenocarcinoma cells, MDA-MB-231, while the complex with PPh3 as ancillary ligand showed moderate nuclear localization in addition to the cytosolic distribution. These species hold significant promise as theranostic photoCORMs (photoinduced CO releasing molecules), where the entry of the pro-drug can be tracked within the cellular matrices.
Collapse
Affiliation(s)
- Indranil Chakraborty
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Jorge Jimenez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - W. M. C. Sameera
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
33
|
Yu T, Yang F, Chen X, Su W, Zhao Y, Zhang H, Li J. Synthesis and characterization of green-emitting Ir(iii) complexes based on a functionalized benzimidazole ligand. NEW J CHEM 2017. [DOI: 10.1039/c6nj03532a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new Ir(iii) complexes containing a functionalized benzimidazole ligand (L) were successfully synthesized for use in green phosphorescent organic light-emitting diodes.
Collapse
Affiliation(s)
- Tianzhi Yu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Fuzhi Yang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Xiaolian Chen
- Printable Electronics Research Center
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Wenming Su
- Printable Electronics Research Center
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Yuling Zhao
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Hui Zhang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Jianfeng Li
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| |
Collapse
|
34
|
Benjamin H, Fox MA, Batsanov AS, Al-Attar HA, Li C, Ren Z, Monkman AP, Bryce MR. Pyridylpyrazole N^N ligands combined with sulfonyl-functionalised cyclometalating ligands for blue-emitting iridium(iii) complexes and solution-processable PhOLEDs. Dalton Trans 2017; 46:10996-11007. [DOI: 10.1039/c7dt02289a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A blue phosphorescent emitter for PhOLEDs with brightness of 5400 cd m−2 at 10 V and λELmax 460 nm, CIEx,y (0.15, 0.21).
Collapse
Affiliation(s)
- Helen Benjamin
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | - Mark A. Fox
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | | | | | - Chensen Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | | | | |
Collapse
|
35
|
Li J, Cheng M, Li MJ. A luminescent and colorimetric probe based on the functionalization of gold nanoparticles by ruthenium(ii) complexes for heparin detection. Analyst 2017; 142:3733-3739. [DOI: 10.1039/c7an01253e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric and luminescent bifunctional Ru(ii) complex-modified gold nanoprobe for the sensing of heparin in Tris-HCl buffer (pH 7.4) and 1% fetal bovine serum (FBS) was developed.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education)
- Key Laboratory of Analysis and Detection Technology for Food Safety (Fujian Province)
- Department of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Meng Cheng
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education)
- Key Laboratory of Analysis and Detection Technology for Food Safety (Fujian Province)
- Department of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Mei-Jin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education)
- Key Laboratory of Analysis and Detection Technology for Food Safety (Fujian Province)
- Department of Chemistry
- Fuzhou University
- Fuzhou 350116
| |
Collapse
|
36
|
Scarpelli F, Ionescu A, Ricciardi L, Plastina P, Aiello I, La Deda M, Crispini A, Ghedini M, Godbert N. A novel route towards water-soluble luminescent iridium(iii) complexes via a hydroxy-bridged dinuclear precursor. Dalton Trans 2016; 45:17264-17273. [PMID: 27722340 DOI: 10.1039/c6dt02976k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis and photophysical characterization of a new family of luminescent water-soluble ionic iridium(iii) complexes of the general formula [(ppy)2Ir(bpy)]X are reported. The Ir(iii) complexes incorporate a cyclometalated 2-phenylpyridine (ppy), the ancillary ligand 2,2'-bipyridyl (bpy) and different counterions (X- = EtO-, OH-, EtOCH2CO2-, MeOCH2CO2-). These complexes were obtained starting from the cyclometalated Ir(iii) chloro-bridged dimer [(ppy)2Ir(μ-Cl)]2, for the first time synthesized through a new microwave assisted synthetic procedure, and subsequently converted into the corresponding hydroxy-bridged dimer [(ppy)2Ir(μ-OH)]2. The latter was eventually used as a sole reagent for the synthesis of all the reported complexes by simply varying the nature of the reaction solvent from water to alcohols and glycol ethers. This study demonstrates the versatility of the [(ppy)2Ir(μ-OH)]2 complex as a precursor to water soluble ionic Ir(iii) complexes. Indeed, [(ppy)2Ir(μ-OH)]2 has shown its peculiar chemical reactivity due to both a strong base character and an unexpected oxidative ability towards the alcoholic function of glycol ethers. All the synthesized complexes exhibit, in water solution, an orange emission centred at 606 nm. Moreover, all complexes display the ability to give rise to gel phases in water upon increasing their concentration, and the photophysical study evidenced the various interactions governing the gelification process. The water-solubility of these new luminescent Ir(iii) complexes makes them potentially useful in bio-related systems.
Collapse
Affiliation(s)
- Francesca Scarpelli
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy.
| | - Andreea Ionescu
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy.
| | - Loredana Ricciardi
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy. and Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia - Nanotec, UOS di Cosenza, Ponte Pietro Bucci Cubo 31/C, 87036 Rende, CS, Italy
| | - Pierluigi Plastina
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy.
| | - Iolinda Aiello
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy. and Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia - Nanotec, UOS di Cosenza, Ponte Pietro Bucci Cubo 31/C, 87036 Rende, CS, Italy
| | - Massimo La Deda
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy. and Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia - Nanotec, UOS di Cosenza, Ponte Pietro Bucci Cubo 31/C, 87036 Rende, CS, Italy
| | - Alessandra Crispini
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy. and Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia - Nanotec, UOS di Cosenza, Ponte Pietro Bucci Cubo 31/C, 87036 Rende, CS, Italy
| | - Mauro Ghedini
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy. and Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia - Nanotec, UOS di Cosenza, Ponte Pietro Bucci Cubo 31/C, 87036 Rende, CS, Italy
| | - Nicolas Godbert
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy. and Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia - Nanotec, UOS di Cosenza, Ponte Pietro Bucci Cubo 31/C, 87036 Rende, CS, Italy
| |
Collapse
|
37
|
Thamilarasan V, Karunakaran P, Kavitha N, Selvaraju C, Sengottuvelan N. Red emitting cyclometallated iridium(III) complexes: Synthesis, characterization and evaluation of biological activities. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Lepeltier M, Appaix F, Liao YY, Dumur F, Marrot J, Le Bahers T, Andraud C, Monnereau C. Carbazole-Substituted Iridium Complex as a Solid State Emitter for Two-Photon Intravital Imaging. Inorg Chem 2016; 55:9586-9595. [DOI: 10.1021/acs.inorgchem.6b01253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marc Lepeltier
- Institut Lavoisier
de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des Etats-Unis, 78035 Cedex Versailles, France
| | - Florence Appaix
- Univ. Grenoble Alpes, Grenoble Institut
des Neurosciences, GIN, Inserm, U1216, F0-38000 Grenoble, France
| | - Yuan Yuan Liao
- Laboratoire de Chimie, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard, Université de Lyon, F69342 Lyon, France
| | - Frédéric Dumur
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, F-13397 Marseille, France
| | - Jérôme Marrot
- Institut Lavoisier
de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des Etats-Unis, 78035 Cedex Versailles, France
| | - Tangui Le Bahers
- Laboratoire de Chimie, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard, Université de Lyon, F69342 Lyon, France
| | - Chantal Andraud
- Laboratoire de Chimie, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard, Université de Lyon, F69342 Lyon, France
| | - Cyrille Monnereau
- Laboratoire de Chimie, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard, Université de Lyon, F69342 Lyon, France
| |
Collapse
|
39
|
Benjamin H, Zheng Y, Batsanov AS, Fox MA, Al-Attar HA, Monkman AP, Bryce MR. Sulfonyl-Substituted Heteroleptic Cyclometalated Iridium(III) Complexes as Blue Emitters for Solution-Processable Phosphorescent Organic Light-Emitting Diodes. Inorg Chem 2016; 55:8612-27. [DOI: 10.1021/acs.inorgchem.6b01179] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Helen Benjamin
- Department of Chemistry and ‡Department of
Physics, Durham University, Durham DH1 3LE, U.K
| | - Yonghao Zheng
- Department of Chemistry and ‡Department of
Physics, Durham University, Durham DH1 3LE, U.K
| | - Andrei S. Batsanov
- Department of Chemistry and ‡Department of
Physics, Durham University, Durham DH1 3LE, U.K
| | - Mark A. Fox
- Department of Chemistry and ‡Department of
Physics, Durham University, Durham DH1 3LE, U.K
| | - Hameed A. Al-Attar
- Department of Chemistry and ‡Department of
Physics, Durham University, Durham DH1 3LE, U.K
| | - Andrew P. Monkman
- Department of Chemistry and ‡Department of
Physics, Durham University, Durham DH1 3LE, U.K
| | - Martin R. Bryce
- Department of Chemistry and ‡Department of
Physics, Durham University, Durham DH1 3LE, U.K
| |
Collapse
|
40
|
Tang J, Zhang M, Yin HY, Jing J, Xie D, Xu P, Zhang JL. A photoactivatable Znsalen complex for super-resolution imaging of mitochondria in living cells. Chem Commun (Camb) 2016; 52:11583-6. [DOI: 10.1039/c6cc06531g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the first transition metal complex, Znsalen J-S-Alk, as a photoactivatable probe for super-resolution imaging of mitochondria.
Collapse
Affiliation(s)
- Juan Tang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Mingshu Zhang
- Key Laboratory of RNA Biology
- Institute of Biophysics
- Beijing Key Laboratory of Noncoding RNA
- Chinese Academy of Sciences
- Beijing
| | - Hao-Yan Yin
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jing Jing
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Da Xie
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Pingyong Xu
- Key Laboratory of RNA Biology
- Institute of Biophysics
- Beijing Key Laboratory of Noncoding RNA
- Chinese Academy of Sciences
- Beijing
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
41
|
Yu T, Xu Z, Su W, Zhao Y, Zhang H, Bao Y. Highly efficient phosphorescent materials based on Ir(iii) complexes-grafted on a polyhedral oligomeric silsesquioxane core. Dalton Trans 2016; 45:13491-502. [DOI: 10.1039/c6dt02383e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Three hybrid materials containing a POSS core were synthesized and characterized, in which two materials were used for light-emitting devices.
Collapse
Affiliation(s)
- Tianzhi Yu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Zixuan Xu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Wenming Su
- Printable electronics research center
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Yuling Zhao
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Hui Zhang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Yanjun Bao
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| |
Collapse
|
42
|
Simpson PV, Skelton BW, Raiteri P, Massi M. Photophysical and photochemical studies of tricarbonyl rhenium(i) N-heterocyclic carbene complexes containing azide and triazolate ligands. NEW J CHEM 2016. [DOI: 10.1039/c5nj03301b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhenium NHC complexes bound to azide anions readily react with alkynes to form the corresponding triazolate complexes, a new class of photochemically active species.
Collapse
Affiliation(s)
- Peter V. Simpson
- Nanochemistry Research Institute – Department of Chemistry
- Curtin University
- Bentley 6102 WA
- Australia
| | - Brian W. Skelton
- Centre for Microscopy
- Characterisation and Analysis
- University of Western Australia
- Crawley 6009 WA
- Australia
| | - Paolo Raiteri
- Nanochemistry Research Institute – Department of Chemistry
- Curtin University
- Bentley 6102 WA
- Australia
| | - Massimiliano Massi
- Nanochemistry Research Institute – Department of Chemistry
- Curtin University
- Bentley 6102 WA
- Australia
| |
Collapse
|
43
|
Belyaev AA, Krupenya DV, Grachova EV, Gurzhiy VV, Melnikov AS, Serdobintsev PY, Sinitsyna ES, Vlakh EG, Tennikova TB, Tunik SP. Supramolecular AuI–CuI Complexes as New Luminescent Labels for Covalent Bioconjugation. Bioconjug Chem 2015; 27:143-50. [DOI: 10.1021/acs.bioconjchem.5b00563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrei A. Belyaev
- St. Petersburg State University, Institute of
Chemistry, Universitesky
pr. 26, 198504 St.
Petersburg, Russia
| | - Dmitrii V. Krupenya
- St. Petersburg State University, Institute of
Chemistry, Universitesky
pr. 26, 198504 St.
Petersburg, Russia
| | - Elena V. Grachova
- St. Petersburg State University, Institute of
Chemistry, Universitesky
pr. 26, 198504 St.
Petersburg, Russia
| | - Vladislav V. Gurzhiy
- St. Petersburg State University, Institute of
Earth Sciences, 199034 St. Petersburg, Russia
| | - Alexei S. Melnikov
- St. Petersburg State University, Department
of Physics, 198504 St. Petersburg, Russia
- Institute
of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Pavel Yu. Serdobintsev
- St. Petersburg State University, Department
of Physics, 198504 St. Petersburg, Russia
- Institute
of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Ekaterina S. Sinitsyna
- St. Petersburg State University, Institute of
Chemistry, Universitesky
pr. 26, 198504 St.
Petersburg, Russia
| | - Evgenia G. Vlakh
- St. Petersburg State University, Institute of
Chemistry, Universitesky
pr. 26, 198504 St.
Petersburg, Russia
| | - Tatiana B. Tennikova
- St. Petersburg State University, Institute of
Chemistry, Universitesky
pr. 26, 198504 St.
Petersburg, Russia
| | - Sergey P. Tunik
- St. Petersburg State University, Institute of
Chemistry, Universitesky
pr. 26, 198504 St.
Petersburg, Russia
| |
Collapse
|
44
|
Telleria A, Pérez-Miqueo J, Altube A, García-Lecina E, de Cózar A, Freixa Z. Azobenzene-Appended Bis-Cyclometalated Iridium(III) Bipyridyl Complexes. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00838] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Ainhoa Altube
- Surfaces Division, IK4-CIDETEC, 20009, San Sebastián, Spain
| | | | - Abel de Cózar
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Zoraida Freixa
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|
45
|
Fernández-Cestau J, Giménez N, Lalinde E, Montaño P, Moreno MT, Sánchez S. Synthesis, Characterization, and Properties of Doubly Alkynyl Bridging Dinuclear Cyclometalated Iridium(III) Complexes. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julio Fernández-Cestau
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Nora Giménez
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Elena Lalinde
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Patricia Montaño
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - M. Teresa Moreno
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Sergio Sánchez
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
46
|
Maity S, Kundu S, Saha Roy A, Weyhermüller T, Ghosh P. Orthometalation of Dibenzo[1,2]quinoxaline with Ruthenium(II/III), Osmium(II/III/IV), and Rhodium(III) Ions and Orthometalated [RuNO]6/7 Derivatives. Inorg Chem 2015; 54:1384-94. [DOI: 10.1021/ic502320m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suvendu Maity
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Suman Kundu
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Amit Saha Roy
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Thomas Weyhermüller
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Prasanta Ghosh
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| |
Collapse
|
47
|
Song MX, Wang GF, Wang J, Wang YH, Bai FQ, Qin ZK. Theoretical study on a series of iridium complexes with low efficiency roll-off property. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 134:406-412. [PMID: 25025313 DOI: 10.1016/j.saa.2014.06.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 06/01/2014] [Indexed: 06/03/2023]
Abstract
A series of heteroleptic cyclometalated Ir (III) complexes for OLEDs application have been investigated theoretically to explore their electronic structures and spectroscopic properties. The geometries, electronic structures, and the lowest-lying singlet absorptions and triplet emissions of (piq)₂Ir(acac) (labeled 1) and theoretically designed models (piq)₂Ir(dpis) (labeled 2), (4Fpiq)₂Ir(dpis) (labeled 3), (4F5M-piq)₂Ir(dpis) (labeled 4), (4,5-2F-piq)₂Ir(dpis) (labeled 5) and (5-F-piq)₂Ir(dpis) (labeled 6) were investigated with density functional theory (DFT)-based approaches, where, piq=1-phenylisoquinolato, acac=acetylacetonate and dpis=diphenylimidodisilicate. Their structures in the ground and excited states have been optimized at the DFT/B3LYP/LANL2DZ and TDDFT/B3LYP/LANL2DZ levels, and the lowest absorptions and emissions were evaluated at B3LYP and M062X level of theory, respectively. Furthermore, the energy-transfer mechanism of these complexes also be analyzed here, and the result shown that the complexes 1-6 are having the low efficiency roll-off property. Except that, the oscillator strength analyze shown that the complexes 2-6, which were designed by theory, are suitable for OLED since their high oscillator strength property.
Collapse
Affiliation(s)
- Ming-Xing Song
- College of Information Technology, Jilin Normal University, Siping 136000, People's Republic of China
| | - Guo-Feng Wang
- College of Information Technology, Jilin Normal University, Siping 136000, People's Republic of China
| | - Jin Wang
- College of Information Technology, Jilin Normal University, Siping 136000, People's Republic of China
| | - Yu-Hai Wang
- College of Information Technology, Jilin Normal University, Siping 136000, People's Republic of China
| | - Fu-Quan Bai
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Zheng-Kun Qin
- College of Information Technology, Jilin Normal University, Siping 136000, People's Republic of China.
| |
Collapse
|
48
|
Lam ST, Zhu N, Au VKM, Yam VWW. Synthesis, characterization, electrochemistry and photophysical studies of rhenium(I) tricarbonyl diimine complexes with carboxaldehyde alkynyl ligands. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.03.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Yu T, Wang X, Su W, Zhang C, Zhao Y, Zhang H, Xu Z. Synthesis and photo- and electro-luminescent properties of Ir(iii) complexes attached to polyhedral oligomeric silsesquioxane materials. RSC Adv 2015. [DOI: 10.1039/c5ra16201g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two new POSS materials with an emissive Ir(iii) complex and carbazole units were successfully synthesized. Their photophysical and electrochemical properties, thermal stabilities and solution processed light-emitting devices were investigated.
Collapse
Affiliation(s)
- Tianzhi Yu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Xin Wang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Wenming Su
- Printable Electronics Research Center
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Chengcheng Zhang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Yuling Zhao
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Hui Zhang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Zixuan Xu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| |
Collapse
|
50
|
Shiu HY, Chong HC, Leung YC, Zou T, Che CM. Phosphorescent proteins for bio-imaging and site selective bio-conjugation of peptides and proteins with luminescent cyclometalated iridium(III) complexes. Chem Commun (Camb) 2014; 50:4375-8. [PMID: 24643302 DOI: 10.1039/c3cc48376b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new bio-conjugation reaction for site selective modification of proteins and peptides with phosphorescent iridium(III) complexes has been developed; the Ir(III)-modified proteins and peptides display long emission lifetimes and large Stoke shifts that can be used for bio-imaging studies.
Collapse
Affiliation(s)
- Hoi-Yan Shiu
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | | | | | | |
Collapse
|