1
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
2
|
Fedunov RG, Grivin VP, Pozdnyakov IP, Melnikov AA, Chekalin SV, Vasilchenko DB, Glebov EM. Photophysics and photochemistry of (n-Bu 4N) 2[Pt(NO 3) 6] in acetonitrile: ultrafast pump-probe spectroscopy and quantum chemical insight. Photochem Photobiol Sci 2024; 23:1957-1970. [PMID: 39405008 DOI: 10.1007/s43630-024-00645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024]
Abstract
The ultrafast processes caused by photoexcitation of (n-Bu4N)2[Pt(NO3)6] complex in acetonitrile were studied by means of transient absorption (TA) pump-probe spectroscopy and verified by quantum chemical calculations. The primary photochemical process was found to be an inner-sphere electron transfer followed by an escape of an •NO3 radical to the bulk solution. The reaction occurs via the dissociative triplet excited LMCT state of the initial complex. Based on the experimental data and quantum chemical calculations, the mechanism of ultrafast photophysical and photochemical processes is proposed.
Collapse
Affiliation(s)
- Roman G Fedunov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation
| | - Vjacheslav P Grivin
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation
| | - Alexei A Melnikov
- Institute of Spectroscopy, Russian Academy of Sciences, 119333, Troitsk, Moscow, Russian Federation
| | - Sergei V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, 119333, Troitsk, Moscow, Russian Federation
| | - Danila B Vasilchenko
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation
| | - Evgeni M Glebov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
- Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation.
| |
Collapse
|
3
|
Han WK, Li J, Zhu RM, Wei M, Xia SK, Fu JX, Zhang J, Pang H, Li MD, Gu ZG. Photosensitizing metal covalent organic framework with fast charge transfer dynamics for efficient CO 2 photoreduction. Chem Sci 2024; 15:8422-8429. [PMID: 38846403 PMCID: PMC11151834 DOI: 10.1039/d4sc01896f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Designing artificial photocatalysts for CO2 reduction is challenging, mainly due to the intrinsic difficulty of making multiple functional units cooperate efficiently. Herein, three-dimensional metal covalent organic frameworks (3D MCOFs) were employed as an innovative platform to integrate a strong Ru(ii) light-harvesting unit, an active Re(i) catalytic center, and an efficient charge separation configuration for photocatalysis. The photosensitive moiety was precisely stabilized into the covalent skeleton by using a rational-designed Ru(ii) complex as one of the building units, while the Re(i) center was linked via a shared bridging ligand with an Ru(ii) center, opening an effective pathway for their electronic interaction. Remarkably, the as-synthesized MCOF exhibited impressive CO2 photoreduction activity with a CO generation rate as high as 1840 μmol g-1 h-1 and 97.7% selectivity. The femtosecond transient absorption spectroscopy combined with theoretical calculations uncovered the fast charge-transfer dynamics occurring between the photoactive and catalytic centers, providing a comprehensive understanding of the photocatalytic mechanism. This work offers in-depth insight into the design of MCOF-based photocatalysts for solar energy utilization.
Collapse
Affiliation(s)
- Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Jiayu Li
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Ruo-Meng Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Min Wei
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Shu-Kun Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Jia-Xing Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Jinfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| |
Collapse
|
4
|
Lee A, Son M, Deegbey M, Woodhouse MD, Hart SM, Beissel HF, Cesana PT, Jakubikova E, McCusker JK, Schlau-Cohen GS. Observation of parallel intersystem crossing and charge transfer-state dynamics in [Fe(bpy) 3] 2+ from ultrafast 2D electronic spectroscopy. Chem Sci 2023; 14:13140-13150. [PMID: 38023502 PMCID: PMC10664481 DOI: 10.1039/d3sc02613b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
Transition metal-based charge-transfer complexes represent a broad class of inorganic compounds with diverse photochemical applications. Charge-transfer complexes based on earth-abundant elements have been of increasing interest, particularly the canonical [Fe(bpy)3]2+. Photoexcitation into the singlet metal-ligand charge transfer (1MLCT) state is followed by relaxation first to the ligand-field manifold and then to the ground state. While these dynamics have been well-studied, processes within the MLCT manifold that facilitate and/or compete with relaxation have been more elusive. We applied ultrafast two-dimensional electronic spectroscopy (2DES) to disentangle the dynamics immediately following MLCT excitation of this compound. First, dynamics ascribed to relaxation out of the initially formed 1MLCT state was found to correlate with the inertial response time of the solvent. Second, the additional dimension of the 2D spectra revealed a peak consistent with a ∼20 fs 1MLCT → 3MLCT intersystem crossing process. These two observations indicate that the complex simultaneously undergoes intersystem crossing and direct conversion to ligand-field state(s). Resolution of these parallel pathways in this prototypical earth-abundant complex highlights the ability of 2DES to deconvolve the otherwise obscured excited-state dynamics of charge-transfer complexes.
Collapse
Affiliation(s)
- Angela Lee
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Minjung Son
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mawuli Deegbey
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - Matthew D Woodhouse
- Department of Chemistry, Michigan State University East Lansing MI 48824 USA
| | - Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Hayden F Beissel
- Department of Chemistry, Michigan State University East Lansing MI 48824 USA
| | - Paul T Cesana
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - James K McCusker
- Department of Chemistry, Michigan State University East Lansing MI 48824 USA
| | | |
Collapse
|
5
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
6
|
Leary D, Zhang Y, Rodriguez JG, Akhmedov NG, Petersen JL, Dolinar BS, Milsmann C. Organometallic Intermediates in the Synthesis of Photoluminescent Zirconium and Hafnium Complexes with Pyridine Dipyrrolide Ligands. Organometallics 2023; 42:1220-1231. [PMID: 37324448 PMCID: PMC10266360 DOI: 10.1021/acs.organomet.3c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 03/12/2023]
Abstract
The two commercially available zirconium complexes tetrakis(dimethylamido)zirconium, Zr(NMe2)4, and tetrabenzylzirconium, ZrBn4, were investigated for their utility as starting materials in the synthesis of bis(pyridine dipyrrolide)zirconium photosensitizers, Zr(PDP)2. Reaction with one equivalent of the ligand precursor 2,6-bis(5-methyl-3-phenyl-1H-pyrrol-2-yl)pyridine, H2MePDPPh, resulted in the isolation and structural characterization of the complexes (MePDPPh)Zr(NMe2)2thf and (MePDPPh)ZrBn2, which could be converted to the desired photosensitizer Zr(MePDPPh)2 upon addition of a second equivalent of H2MePDPPh. Using the more sterically encumbered ligand precursor 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine, H2MesPDPPh, only ZrBn4 yielded the desired bis-ligand complex Zr(MesPDPPh)2. Careful monitoring of the reaction at different temperatures revealed the importance of the organometallic intermediate (cyclo-MesPDPPh)ZrBn, which was characterized by X-ray diffraction analysis and 1H NMR spectroscopy and shown to contain a cyclometalated MesPDPPh unit. Taking inspiration from the results for zirconium, syntheses for two hafnium photosensitizers, Hf(MePDPPh)2 and Hf(MesPDPPh)2, were established and shown to proceed through similar intermediates starting from tetrabenzylhafnium, HfBn4. Initial studies of the photophysical properties of the photoluminescent hafnium complexes indicate similar optical properties compared to their zirconium analogues.
Collapse
Affiliation(s)
- Dylan
C. Leary
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | | | - Jose G. Rodriguez
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Brian S. Dolinar
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
7
|
Glebov EM. Femtochemistry methods for studying the photophysics and photochemistry of halide complexes of platinum metals. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Chong J, Besnard C, Cruz CM, Piguet C, Jiménez JR. Heteroleptic mer-[Cr(N ∩N ∩N)(CN) 3] complexes: synthetic challenge, structural characterization and photophysical properties. Dalton Trans 2022; 51:4297-4309. [PMID: 35195140 PMCID: PMC8922558 DOI: 10.1039/d2dt00126h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The substitution of three water molecules around trivalent chromium in CrBr3·6H2O with the tridentate 2,2′:6′,2′′-terpyridine (tpy), N,N′-dimethyl-N,N′-di(pyridine-2-yl)pyridine-2,6-diamine (ddpd) or 2,6-di(quinolin-8-yl)pyridine (dqp) ligands gives the heteroleptic mer-[Cr(L)Br3] complexes. Stepwise treatments with Ag(CF3SO3) and KCN under microwave irradiations provide mer-[Cr(L)(CN)3] in moderate yields. According to their X-ray crystal structures, the associated six-coordinate meridional [CrN3C3] chromophores increasingly deviate from a pseudo-octahedral arrangement according to L = ddpd ≈ dpq ≪ tpy; a trend in line with the replacement of six-membered with five-membered chelate rings around CrIII. Room-temperature ligand-centered UV-excitation at 18 170 cm−1 (λexc = 350 nm), followed by energy transfer and intersystem crossing eventually yield microsecond metal-centered Cr(2E → 4A2) phosphorescence in the red to near infrared domain 13 150–12 650 cm−1 (760 ≤ λem ≤ 790 nm). Decreasing the temperature to liquid nitrogen (77 K) extends the emission lifetimes to reach the millisecond regime with a record of 4.02 ms for mer-[Cr(dqp)(CN)3] in frozen acetonitrile. The heteroleptic mer-[Cr(L)(CN)3] (L = tpy, ddpd, dqp) complexes with their C2v-symmetrical [CrC3N3] luminescent chromophores represent the missing links between pseudo-octahedral [CrN6] and [CrC6] units found in their well-known homoleptic parents.![]()
Collapse
Affiliation(s)
- Julien Chong
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Carlos M Cruz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Juan-Ramón Jiménez
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland. .,Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia en Química" (UEQ), Avda. Fuentenueva, E-18071 Granada, España.
| |
Collapse
|
9
|
Reichenauer F, Wang C, Förster C, Boden P, Ugur N, Báez-Cruz R, Kalmbach J, Carrella LM, Rentschler E, Ramanan C, Niedner-Schatteburg G, Gerhards M, Seitz M, Resch-Genger U, Heinze K. Strongly Red-Emissive Molecular Ruby [Cr(bpmp) 2] 3+ Surpasses [Ru(bpy) 3] 2. J Am Chem Soc 2021; 143:11843-11855. [PMID: 34296865 DOI: 10.1021/jacs.1c05971] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand's methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues.
Collapse
Affiliation(s)
- Florian Reichenauer
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Cui Wang
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pit Boden
- Department of Chemistry and Research Center Optimas, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Naz Ugur
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ricardo Báez-Cruz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jens Kalmbach
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Luca M Carrella
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Eva Rentschler
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Charusheela Ramanan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry and Research Center Optimas, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Markus Gerhards
- Department of Chemistry and Research Center Optimas, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Michael Seitz
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
10
|
Gaffney KJ. Capturing photochemical and photophysical transformations in iron complexes with ultrafast X-ray spectroscopy and scattering. Chem Sci 2021; 12:8010-8025. [PMID: 34194691 PMCID: PMC8208315 DOI: 10.1039/d1sc01864g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Light-driven chemical transformations provide a compelling approach to understanding chemical reactivity with the potential to use this understanding to advance solar energy and catalysis applications. Capturing the non-equilibrium trajectories of electronic excited states with precision, particularly for transition metal complexes, would provide a foundation for advancing both of these objectives. Of particular importance for 3d metal compounds is characterizing the population dynamics of charge-transfer (CT) and metal-centered (MC) electronic excited states and understanding how the inner coordination sphere structural dynamics mediate the interaction between these states. Recent advances in ultrafast X-ray laser science has enabled the electronic excited state dynamics in 3d metal complexes to be followed with unprecedented detail. This review will focus on simultaneous X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS) studies of iron coordination and organometallic complexes. These simultaneous XES-XSS studies have provided detailed insight into the mechanism of light-induced spin crossover in iron coordination compounds, the interaction of CT and MC excited states in iron carbene photosensitizers, and the mechanism of Fe-S bond dissociation in cytochrome c.
Collapse
Affiliation(s)
- Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| |
Collapse
|
11
|
Hu Y, Hou Y, Wang Z, Li Y, Zhao J. 3,5-Anthryl-Bodipy dyad/triad: Preparation, effect of F-B-F induced conformation restriction on the photophysical properties, and application in triplet-triplet-annihilation upconversion. J Chem Phys 2020; 153:224304. [PMID: 33317285 DOI: 10.1063/5.0025224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We prepared a series of compact Bodipy-anthryl electron donor/acceptor triads and dyads by attaching anthryl moieties at the 3-,5-positions of the Bodipy core, with a novel conformation restriction approach, to study the spin-orbit charge transfer intersystem crossing (SOCT-ISC). The conformation restrictions are imposed by the BF2 unit of Bodipy without invoking the previously reported method with 1,7-dimethyl or 1,3-dimethyl groups. Our new approach shows a few advantages, including the stronger electron accepting ability of the methyl-free Bodipy core (reduction potential anodically shifted by +0.3 V vs the methylated Bodipy), red-shifted absorption (by 21 nm), and longer triplet state lifetime (372 µs vs 126 µs). The effects of the different mutual orientations of the electron donor and acceptor on ultraviolet-visible absorption, fluorescence, triplet state quantum yields, and lifetimes were studied. Triads with orthogonal geometries show higher singlet oxygen quantum yields (ΦΔ = 37%) than those with more coplanar geometries. Since the non-radiative decay for the S1 state is significant in the parent Bodipy chromophore (ΦF = 6.0%), we propose that in dyads/triads, the charge separation and recombination-induced ISC outcompete the non-radiative decay to the ground state, which is new in the study of SOCT-ISC. Density functional theory computation indicated a shallow torsion potential energy curve as compared to the meso-anthryl-Bodipy dyad analog, which may contribute a low triplet state quantum yield of the new dyads/triads. Triplet-triplet annihilation upconversion was performed with the electron donor/acceptor dyads as the triplet photosensitizer, with an upconversion quantum yield of 12.3%.
Collapse
Affiliation(s)
- Yingqi Hu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Rd., Dalian 116024, People's Republic of China
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Rd., Dalian 116024, People's Republic of China
| | - Zhijia Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Rd., Dalian 116024, People's Republic of China
| | - Yanqin Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Rd., Dalian 116024, People's Republic of China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Rd., Dalian 116024, People's Republic of China
| |
Collapse
|
12
|
Kochetov V, Wang H, Bokarev SI. Effect of chemical structure on the ultrafast spin dynamics in core-excited states. J Chem Phys 2020; 153:044304. [DOI: 10.1063/5.0005940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Vladislav Kochetov
- Institut für Physik, Universität Rostock, A.-Einstein-Strasse 23-24, 18059 Rostock, Germany
| | - Huihui Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 030006 Taiyuan, China
| | - Sergey I. Bokarev
- Institut für Physik, Universität Rostock, A.-Einstein-Strasse 23-24, 18059 Rostock, Germany
| |
Collapse
|
13
|
Melnikov AA, Pozdnyakov IP, Chekalin SV, Glebov EM. Direct measurement of ultrafast intersystem crossing time for the PtIVBr62− complex. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Kleinhans G, Chan AKW, Leung MY, Liles DC, Fernandes MA, Yam VWW, Fernández I, Bezuidenhout DI. Synthesis and Photophysical Properties of T-Shaped Coinage-Metal Complexes. Chemistry 2020; 26:6993-6998. [PMID: 32182384 PMCID: PMC7317956 DOI: 10.1002/chem.202000726] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 11/28/2022]
Abstract
The photophysical properties of a series of T‐shaped coinage d10 metal complexes, supported by a bis(mesoionic carbene)carbazolide (CNC) pincer ligand, are explored. The series includes a rare new example of a tridentate T‐shaped AgI complex. Post‐complexation modification of the AuI complex provides access to a linear cationic AuI complex following ligand alkylation, or the first example of a cationic square planar AuIII−F complex from electrophilic attack on the metal centre. Emissions ranging from blue (CuI) to orange (AgI) are obtained, with variable contributions of thermally‐dependent fluorescence and phosphorescence to the observed photoluminescence. Green emissions are observed for all three gold complexes (neutral T‐shaped AuI, cationic linear AuI and square planar cationic AuIII). The higher quantum yield and longer decay lifetime of the linear gold(I) complex are indicative of increased phosphorescence contribution.
Collapse
Affiliation(s)
- George Kleinhans
- Chemistry Department, University of Pretoria, Private X20, Hatfield, 0028, South Africa.,Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Alan K-W Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - David C Liles
- Chemistry Department, University of Pretoria, Private X20, Hatfield, 0028, South Africa
| | - Manuel A Fernandes
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Vivian W-W Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Israel Fernández
- Departamento de Química Orgánica I, Centro de Innovación en Química Avanzado (ORFEO-CINQA) and, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Daniela I Bezuidenhout
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.,Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014, Oulu, Finland
| |
Collapse
|
15
|
Mai S, González L. Unconventional two-step spin relaxation dynamics of [Re(CO) 3(im)(phen)] + in aqueous solution. Chem Sci 2019; 10:10405-10411. [PMID: 32110331 PMCID: PMC6988600 DOI: 10.1039/c9sc03671g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Changes of molecular spin are ubiquitous in chemistry and biology. Among spin flip processes, one of the fastest is intersystem crossing (ISC) in transition metal complexes. Here, we investigate the spin relaxation dynamics and emission spectrum of [Re(CO)3(im)(phen)]+ (im = imidazole, phen = phenanthroline) using extensive full-dimensional excited-state dynamics simulations in explicit aqueous solution. Contrary to what has been observed in other transition metal complexes, the transition from the singlet to triplet states occurs via a two-step process, with clearly separable electronic and nuclear-driven components with two different time scales. The initially excited electronic wave function is a "molecular spin-orbit wave packet" that evolves almost instantaneously, with an 8 fs time constant, into an approximate 25 : 75 singlet-to-triplet equilibrium. Surprisingly, this ISC process is an order of magnitude faster than it was previously documented for this and other rhenium(i) carbonyl diimine complexes from emission spectra. Simulations including explicit laser field interactions evidence that few-cycle UV laser pulses are required to follow the creation and evolution of such molecular spin-orbit wave packets. The analysis of the dynamics also reveals a retarded ISC component, with a time constant of 420 fs, which can be explained invoking intramolecular vibrational energy redistribution. The emission spectrum is shown to be characterized by ISC convoluted with internal conversion and vibrational relaxation. These results provide fundamental understanding of ultrafast intersystem crossing in transition metal complexes.
Collapse
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria .
| | - Leticia González
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria .
| |
Collapse
|
16
|
Matveeva SG, Shushakov AA, Pozdnyakov IP, Grivin VP, Plyusnin VF, Vasilchenko DB, Zadesenets AV, Melnikov AA, Chekalin SV, Glebov EM. A cis,fac-[RuCl 2(DMSO) 3(H 2O)] complex exhibits ultrafast photochemical aquation/rearrangement. Photochem Photobiol Sci 2018; 17:1222-1228. [PMID: 30070288 DOI: 10.1039/c8pp00232k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is known that both cis,fac-[RuCl2(DMSO)3(H2O)] (1a) and trans,cis,cis-[RuCl2(DMSO)2(H2O)2] (2a) complexes, which are formed on the dissolution of trans and cis-isomers of [RuCl2(DMSO)4] in water, demonstrate light-induced anticancer activity. The first stage of 1a photochemistry is its transformation to 2a occurring with a rather high quantum yield, 0.64 ± 0.17. The mechanism of the 1a → 2a phototransformation was studied by means of nanosecond laser flash photolysis and ultrafast pump-probe spectroscopy. The reaction occurs in the picosecond time range via the formation and decay of two successive intermediates interpreted as Ru(ii) complexes with different sets of ligands. A tentative mechanism of phototransformation is proposed.
Collapse
Affiliation(s)
- Svetlana G Matveeva
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mai S, Plasser F, Pabst M, Neese F, Köhn A, González L. Surface hopping dynamics including intersystem crossing using the algebraic diagrammatic construction method. J Chem Phys 2018; 147:184109. [PMID: 29141436 DOI: 10.1063/1.4999687] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report an implementation for employing the algebraic diagrammatic construction to second order [ADC(2)] ab initio electronic structure level of theory in nonadiabatic dynamics simulations in the framework of the SHARC (surface hopping including arbitrary couplings) dynamics method. The implementation is intended to enable computationally efficient, reliable, and easy-to-use nonadiabatic dynamics simulations of intersystem crossing in organic molecules. The methodology is evaluated for the 2-thiouracil molecule. It is shown that ADC(2) yields reliable excited-state energies, wave functions, and spin-orbit coupling terms for this molecule. Dynamics simulations are compared to previously reported results using high-level multi-state complete active space perturbation theory, showing favorable agreement.
Collapse
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Mathias Pabst
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10, D-55099 Mainz, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Andreas Köhn
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10, D-55099 Mainz, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
18
|
Naumova M, Khakhulin D, Rebarz M, Rohrmüller M, Dicke B, Biednov M, Britz A, Espinoza S, Grimm-Lebsanft B, Kloz M, Kretzschmar N, Neuba A, Ortmeyer J, Schoch R, Andreasson J, Bauer M, Bressler C, Gero Schmidt W, Henkel G, Rübhausen M. Structural dynamics upon photoexcitation-induced charge transfer in a dicopper(i)–disulfide complex. Phys Chem Chem Phys 2018; 20:6274-6286. [DOI: 10.1039/c7cp04880g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study of structural evolution upon photoinduced charge transfer in a dicopper complex with biologically relevant sulfur coordination.
Collapse
|
19
|
Rogozina MV, Yudanov VV, Fedunov RG, Pozdnyakov IP, Melnikov AA, Chekalin SV, Glebov EM. Short-lived intermediates in photochemistry of an OsCl62− complex in aqueous solutions. Photochem Photobiol Sci 2018; 17:18-26. [DOI: 10.1039/c7pp00299h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoaquation of an OsIVCl62− complex occurs via a pentacoordinated OsIVCl5− intermediate.
Collapse
Affiliation(s)
- Marina V. Rogozina
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Vologograd State University
- Volgograd
| | - Vladislav V. Yudanov
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Vologograd State University
- Volgograd
| | | | - Ivan P. Pozdnyakov
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Novosibirsk State University
- Novosibirsk
| | - Alexey A. Melnikov
- Institute of Spectroscopy
- Russian Academy of Sciences
- 119333 Troitsk, Moscow
- Russian Federation
| | - Sergey V. Chekalin
- Institute of Spectroscopy
- Russian Academy of Sciences
- 119333 Troitsk, Moscow
- Russian Federation
| | - Evgeni M. Glebov
- Voevodsky Institute of Chemical Kinetics and Combustion
- Novosibirsk
- Russian Federation
- Novosibirsk State University
- Novosibirsk
| |
Collapse
|
20
|
Talotta F, Heully JL, Alary F, Dixon IM, González L, Boggio-Pasqua M. Linkage Photoisomerization Mechanism in a Photochromic Ruthenium Nitrosyl Complex: New Insights from an MS-CASPT2 Study. J Chem Theory Comput 2017; 13:6120-6130. [DOI: 10.1021/acs.jctc.7b00982] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Francesco Talotta
- Laboratoire
de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Toulouse 3, 118 route de Narbonne, 31062 Toulouse, France
- Institut
für Theoretische Chemie, Fakultät für Chemie, Universität Wien, Währinger Strasse 17, 1090 Vienna, Austria
| | - Jean-Louis Heully
- Laboratoire
de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Toulouse 3, 118 route de Narbonne, 31062 Toulouse, France
| | - Fabienne Alary
- Laboratoire
de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Toulouse 3, 118 route de Narbonne, 31062 Toulouse, France
| | - Isabelle M. Dixon
- Laboratoire
de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Toulouse 3, 118 route de Narbonne, 31062 Toulouse, France
| | - Leticia González
- Institut
für Theoretische Chemie, Fakultät für Chemie, Universität Wien, Währinger Strasse 17, 1090 Vienna, Austria
| | - Martial Boggio-Pasqua
- Laboratoire
de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Toulouse 3, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
21
|
Glebov EM, Pozdnyakov IP, Matveeva SG, Melnikov AA, Chekalin SV, Rogozina MV, Yudanov VV, Grivin VP, Plyusnin VF. Primary photophysical and photochemical processes for hexachloroosmate(iv) in aqueous solution. Photochem Photobiol Sci 2017; 16:220-227. [PMID: 28009886 DOI: 10.1039/c6pp00382f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The photoaquation of the OsIVCl62- complex was studied by means of stationary photolysis, nanosecond laser flash photolysis and ultrafast kinetic spectroscopy. The OsIVCl5(OH)2- complex was found to be the only reaction product. The quantum yield of photoaquation is rather low and wavelength-dependent. No impact of redox processes on photoaquation was revealed. The total characteristic lifetime of the process is about 80 ps. Three intermediates were recorded in the femto- and picosecond time domains and assigned to different Os(iv) species. The nature of intermediates and possible mechanisms of photoaquation are discussed.
Collapse
Affiliation(s)
- Evgeni M Glebov
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Ivan P Pozdnyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| | - Svetlana G Matveeva
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
| | - Alexei A Melnikov
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., 119333 Troitsk, Moscow, Russian Federation.
| | - Sergey V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., 119333 Troitsk, Moscow, Russian Federation.
| | - Marina V Rogozina
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Vologograd State University, 100 University Ave., 400062, Volgograd, Russian Federation.
| | - Vladislav V Yudanov
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Vologograd State University, 100 University Ave., 400062, Volgograd, Russian Federation.
| | - Vjacheslav P Grivin
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation.
| | - Victor F Plyusnin
- Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation. and Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russian Federation
| |
Collapse
|
22
|
Whittemore TJ, Sayre HJ, Xue C, White TA, Gallucci JC, Turro C. New Rh2(II,II) Complexes for Solar Energy Applications: Panchromatic Absorption and Excited-State Reactivity. J Am Chem Soc 2017; 139:14724-14732. [DOI: 10.1021/jacs.7b08489] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tyler J. Whittemore
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hannah J. Sayre
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Congcong Xue
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Travis A. White
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Judith C. Gallucci
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Pozdnyakov IP, Melnikov AA, Šípoš R, Chekalin SV, Šima J. Photophysics of Fe(III) complexes with fluorosalicylic acid isomers in aqueous solutions. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Nikoobakht B, Köppel H. Quantum dynamics study of singlet–triplet transitions in s-trans-1,3-butadiene. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Yarnell JE, McCusker CE, Leeds AJ, Breaux JM, Castellano FN. Exposing the Excited-State Equilibrium in an IrIIIBichromophore: A Combined Time Resolved Spectroscopy and Computational Study. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
O'Donnell RM, Sampaio RN, Li G, Johansson PG, Ward CL, Meyer GJ. Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s). J Am Chem Soc 2016; 138:3891-903. [PMID: 26901780 DOI: 10.1021/jacs.6b00454] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excited state proton transfer studies of six Ru polypyridyl compounds with carboxylic acid/carboxylate group(s) revealed that some were photoacids and some were photobases. The compounds [Ru(II)(btfmb)2(LL)](2+), [Ru(II)(dtb)2(LL)](2+), and [Ru(II)(bpy)2(LL)](2+), where bpy is 2,2'-bipyridine, btfmb is 4,4'-(CF3)2-bpy, and dtb is 4,4'-((CH3)3C)2-bpy, and LL is either dcb = 4,4'-(CO2H)2-bpy or mcb = 4-(CO2H),4'-(CO2Et)-2,2'-bpy, were synthesized and characterized. The compounds exhibited intense metal-to-ligand charge-transfer (MLCT) absorption bands in the visible region and room temperature photoluminescence (PL) with long τ > 100 ns excited state lifetimes. The mcb compounds had very similar ground state pKa's of 2.31 ± 0.07, and their characterization enabled accurate determination of the two pKa values for the commonly utilized dcb ligand, pKa1 = 2.1 ± 0.1 and pKa2 = 3.0 ± 0.2. Compounds with the btfmb ligand were photoacidic, and the other compounds were photobasic. Transient absorption spectra indicated that btfmb compounds displayed a [Ru(III)(btfmb(-))L2](2+)* localized excited state and a [Ru(III)(dcb(-))L2](2+)* formulation for all the other excited states. Time dependent PL spectral shifts provided the first kinetic data for excited state proton transfer in a transition metal compound. PL titrations, thermochemical cycles, and kinetic analysis (for the mcb compounds) provided self-consistent pKa* values. The ability to make a single ionizable group photobasic or photoacidic through ligand design was unprecedented and was understood based on the orientation of the lowest-lying MLCT excited state dipole relative to the ligand that contained the carboxylic acid group(s).
Collapse
Affiliation(s)
- Ryan M O'Donnell
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Renato N Sampaio
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Guocan Li
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Patrik G Johansson
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Cassandra L Ward
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
27
|
Spectroscopy and Chemical Bonding in Transition Metal Complexes. STRUCTURE AND BONDING 2016. [DOI: 10.1007/430_2015_195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Mutsamwira S, Ainscough EW, Partridge AC, Derrick PJ, Filichev VV. DNA-Based Assemblies for Photochemical Upconversion. J Phys Chem B 2015; 119:14045-52. [DOI: 10.1021/acs.jpcb.5b07489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saymore Mutsamwira
- Institute
of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Eric W. Ainscough
- Institute
of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Ashton C. Partridge
- Institute
of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
- Department
of Physics and School of Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand
| | - Peter J. Derrick
- Institute
of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
- Department
of Physics and School of Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand
| | - Vyacheslav V. Filichev
- Institute
of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
29
|
Glebov EM, Pozdnyakov IP, Plyusnin VF, Khmelinskii I. Primary reactions in the photochemistry of hexahalide complexes of platinum group metals: A minireview. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Andernach R, Utzat H, Dimitrov SD, McCulloch I, Heeney M, Durrant JR, Bronstein H. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers. J Am Chem Soc 2015. [DOI: 10.1021/jacs.5b06223] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rolf Andernach
- Centre
for Plastic Electronics, Imperial College London, London, United Kingdom SW7 2AZ
| | - Hendrik Utzat
- Centre
for Plastic Electronics, Imperial College London, London, United Kingdom SW7 2AZ
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stoichko D. Dimitrov
- Centre
for Plastic Electronics, Imperial College London, London, United Kingdom SW7 2AZ
| | - Iain McCulloch
- Centre
for Plastic Electronics, Imperial College London, London, United Kingdom SW7 2AZ
- SPERC, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Martin Heeney
- Centre
for Plastic Electronics, Imperial College London, London, United Kingdom SW7 2AZ
| | - James R. Durrant
- Centre
for Plastic Electronics, Imperial College London, London, United Kingdom SW7 2AZ
| | - Hugo Bronstein
- Department
of Chemistry, University College London, London, United Kingdom WC1H 0AJ
| |
Collapse
|
31
|
Eguillor B, Esteruelas MA, Fernández I, Gómez-Gallego M, Lledós A, Martín-Ortiz M, Oliván M, Oñate E, Sierra MA. Azole Assisted C–H Bond Activation Promoted by an Osmium-Polyhydride: Discerning between N and NH. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00174] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Beatriz Eguillor
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Israel Fernández
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - Mar Gómez-Gallego
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - Agustí Lledós
- Departament
de Química, Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Mamen Martín-Ortiz
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| | - Montserrat Oliván
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Sierra
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas,
Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
32
|
Wächtler M, Guthmuller J, Kupfer S, Maiuri M, Brida D, Popp J, Rau S, Cerullo G, Dietzek B. Ultrafast Intramolecular Relaxation and Wave-Packet Motion in a Ruthenium-Based Supramolecular Photocatalyst. Chemistry 2015; 21:7668-74. [DOI: 10.1002/chem.201406350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 11/05/2022]
|
33
|
Maçôas EMS, Mustalahti S, Myllyperkiö P, Kunttu H, Pettersson M. Role of Vibrational Dynamics in Electronic Relaxation of Cr(acac)3. J Phys Chem A 2015; 119:2727-34. [DOI: 10.1021/jp509905q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ermelinda M. S. Maçôas
- Nanoscience
Center, Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Satu Mustalahti
- Nanoscience
Center, Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Pasi Myllyperkiö
- Nanoscience
Center, Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Henrik Kunttu
- Nanoscience
Center, Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Mika Pettersson
- Nanoscience
Center, Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| |
Collapse
|
34
|
Kärkäs MD, Verho O, Johnston EV, Åkermark B. Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chem Rev 2014; 114:11863-2001. [DOI: 10.1021/cr400572f] [Citation(s) in RCA: 1024] [Impact Index Per Article: 93.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Markus D. Kärkäs
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Oscar Verho
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Eric V. Johnston
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Björn Åkermark
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
35
|
Capano G, Chergui M, Rothlisberger U, Tavernelli I, Penfold TJ. A quantum dynamics study of the ultrafast relaxation in a prototypical Cu(I)-phenanthroline. J Phys Chem A 2014; 118:9861-9. [PMID: 25275666 DOI: 10.1021/jp509728m] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ultrafast nonadiabatic dynamics of a prototypical Cu(I)-phenanthroline complex, [Cu(dmp)2](+) (dmp = 2,9-dimethyl-1,10-phenanthroline), initiated after photoexcitation into the optically bright metal-to-ligand charge-transfer (MLCT) state (S3) is investigated using quantum nuclear dynamics. In agreement with recent experimental conclusions, we find that the system undergoes rapid (∼100 fs) internal conversion from S3 into the S2 and S1 states at or near the Franck-Condon (FC) geometry. This is preceded by a dynamic component with a time constant of ∼400 fs, which corresponds to the flattening of the ligands associated with the pseudo Jahn-Teller distortion. Importantly, our simulations demonstrate that this latter aspect is in competition with subpicosecond intersystem crossing (ISC). The mechanism for ISC is shown to be a dynamic effect, in the sense that it arises from the system traversing the pseudo Jahn-Teller coordinate where the singlet and triplet states become degenerate, leading to efficient crossing. These first-principles quantum dynamics simulations, in conjunction with recent experiments, allow us to clearly resolve the mechanistic details of the ultrafast dynamics within [Cu(dmp)2](+), which have been disputed in the literature.
Collapse
Affiliation(s)
- G Capano
- Laboratoire de spectroscopie ultrarapide, ISIC, École Polytechnique Fédérale de Lausanne (EPFL) , FSB Station 6, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Glebov EM, Pozdnyakov IP, Melnikov AA, Chekalin SV. Photophysical and photochemical processes followed by 320nm femtosecond laser excitation of IrCl62− complex in aqueous and methanol solutions. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Maiore L, Aragoni MC, Deiana C, Cinellu MA, Isaia F, Lippolis V, Pintus A, Serratrice M, Arca M. Structure–Activity Relationships in Cytotoxic AuI/AuIII Complexes Derived from 2-(2′-Pyridyl)benzimidazole. Inorg Chem 2014; 53:4068-80. [DOI: 10.1021/ic500022a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Laura Maiore
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - Maria Carla Aragoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - Carlo Deiana
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - Maria Agostina Cinellu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - Anna Pintus
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| | - Maria Serratrice
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Massimiliano Arca
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
| |
Collapse
|
38
|
Crespo O, Eguillor B, Esteruelas MA, Fernández I, García-Raboso J, Gómez-Gallego M, Martín-Ortiz M, Oliván M, Sierra MA. Synthesis and characterisation of [6]-azaosmahelicenes: the first d4-heterometallahelicenes. Chem Commun (Camb) 2012; 48:5328-30. [PMID: 22517029 DOI: 10.1039/c2cc30356f] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
[6]-Azaosmahelicenes, the first d(4)-heterometallahelicenes, have been synthesised and fully characterised. Their optical properties (UV-Vis absorption and luminescence) are reported.
Collapse
Affiliation(s)
- Olga Crespo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Puodziukynaite E, Oberst JL, Dyer AL, Reynolds JR. Establishing Dual Electrogenerated Chemiluminescence and Multicolor Electrochromism in Functional Ionic Transition-Metal Complexes. J Am Chem Soc 2011; 134:968-78. [DOI: 10.1021/ja2065297] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Egle Puodziukynaite
- The George
and Josephine Butler Polymer Laboratories,
Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Box 117200, Gainesville, Florida
32611, United States
| | - Justin L. Oberst
- The George
and Josephine Butler Polymer Laboratories,
Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Box 117200, Gainesville, Florida
32611, United States
| | - Aubrey L. Dyer
- The George
and Josephine Butler Polymer Laboratories,
Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Box 117200, Gainesville, Florida
32611, United States
| | - John R. Reynolds
- The George
and Josephine Butler Polymer Laboratories,
Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Box 117200, Gainesville, Florida
32611, United States
| |
Collapse
|
40
|
Roberts ST, Schlenker CW, Barlier V, McAnally RE, Zhang Y, Mastron JN, Thompson ME, Bradforth SE. Observation of Triplet Exciton Formation in a Platinum-Sensitized Organic Photovoltaic Device. J Phys Chem Lett 2011; 2:48-54. [PMID: 26295520 DOI: 10.1021/jz101554m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Organic photovoltaics (OPVs) constitute a promising new technology due to their low production costs. However, OPV efficiencies remain low because excitons typically diffuse only ∼5-20 nm during their lifetime, limiting the effective thickness of the light-absorbing layer. One strategy to improve OPVs is to increase exciton lifetimes by converting them into triplet states, which typically persist 10(3)-10(5) times longer than singlet excitons. We present femtosecond transient absorption and steady-state photovoltaic measurements of a model OPV system consisting of diphenyltetracene (DPT) films doped with platinum tetraphenylbenzoporphyrin (Pt(TPBP)). Photoexcitation of Pt(TPBP) creates a singlet excitation that rapidly intersystem crosses to a triplet state before transferring to the DPT host matrix. This transfer is rapid and efficient, occurring in 35 ps with an 85% conversion ratio of porphyrin singlets to DPT triplets. These triplet excitons lead to enhanced photocurrent response that increases with device thickness.
Collapse
Affiliation(s)
- Sean T Roberts
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Cody W Schlenker
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Vincent Barlier
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - R Eric McAnally
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yuyuan Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Joseph N Mastron
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Stephen E Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
41
|
Glebov EM, Kolomeets AV, Pozdnyakov IP, Plyusnin VF, Tkachenko NV, Lemmetyinen H. Ultrafast pump–probe spectroscopy of IrCl62− complex in alcohol solutions. Photochem Photobiol Sci 2011; 10:1709-14. [DOI: 10.1039/c1pp05138e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
42
|
Litke AV, Pozdnyakov IP, Glebov EM, Plyusnin VF, Tkachenko NV, Lemmetyinen H. Photophysics of IrCl62- complex in aqueous solutions studied by femtosecond pump–probe spectroscopy. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Ziessel R, Ulrich G, Elliott K, Harriman A. Electronic Energy Transfer in Molecular Dyads Built Around Boron-Ethyne-Substituted Subphthalocyanines. Chemistry 2009; 15:4980-4. [DOI: 10.1002/chem.200900394] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Besora M, Carreón-Macedo JL, Cimas Á, Harvey JN. Spin-state changes and reactivity in transition metal chemistry: Reactivity of iron tetracarbonyl. ADVANCES IN INORGANIC CHEMISTRY 2009. [DOI: 10.1016/s0898-8838(09)00210-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Chang SY, Chen JL, Chi Y, Cheng YM, Lee GH, Jiang CM, Chou PT. Blue-Emitting Platinum(II) Complexes Bearing both Pyridylpyrazolate Chelate and Bridging Pyrazolate Ligands: Synthesis, Structures, and Photophysical Properties. Inorg Chem 2007; 46:11202-12. [DOI: 10.1021/ic701586c] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Friesen DA, Nashiem RE, Waltz WL. Solvent Effects on the Spectroscopic and Photophysical Properties of the trans-(1,4,8,11-Tetraazacyclotetradecane)diisothiocyanatochromium(III) Ion, trans-[Cr(cyclam)(NCS)2]+. Inorg Chem 2007; 46:7982-91. [PMID: 17696340 DOI: 10.1021/ic701096g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spectroscopy and photophysics of trans-[Cr(cyclam)(NCS)2]+ (where cyclam is 1,4,8,11-tetraazacyclotetradecane) were studied in a range of solvents. The cyclam NH stretching vibration [nu(NH)] wavenumber correlates with the Gutmann donor number, whereas the thiocyanate CN stretching vibration [nu(CN)] wavenumber correlates with the Snyder solvent strength (P') scale. These results signify that there is a difference in the solvent interactions with the two types of ligands. The energy of the ligand-to-metal charge transfer absorption maximum between 310 and 320 nm and the energy of the spin-forbidden (doublet-quartet) absorption and emission bands above 700 nm correlate with the nu(CN) wavenumber. This establishes the dominant role of solvent effects at the NCS- ligand in "tuning" the energy of these spectroscopic features. Quantum yields phirx for photosubstitution are <0.02 at 54 degrees C and <0.002 at 22 degrees C, demonstrating that photochemical reaction is a very minor pathway. The effects of solvent and temperature on the nonradiative decay of the doublet excited-state were investigated by observing the time-resolved phosphorescence between 700 and 750 nm. Below 30 degrees C, the lifetimes are relatively temperature-independent, whereas at higher temperatures, a strong Arrhenius-type dependence is observed. Values for the preexponential factor (A) and the activation energy (Ea) are solvent-dependent and follow a Barclay-Butler-type correlation. These observations are consistent with a dominant back-intersystem crossing pathway for nonradiative decay in the higher-temperature region. From trends observed between ln(A) and the nu(CN) frequency, it appears that solvent effects at the thiocyanate ligand play a dominant role in influencing the rate of nonradiative decay in the high-temperature region.
Collapse
Affiliation(s)
- Duane A Friesen
- Chemistry Department, Malaspina University College, Nanaimo, British Columbia, Canada V9R 5S5. friesend@ mala.bc.ca
| | | | | |
Collapse
|
47
|
Chang SY, Kavitha J, Hung JY, Chi Y, Cheng YM, Li EY, Chou PT, Lee GH, Carty AJ. Luminescent Platinum(II) Complexes Containing Isoquinolinyl Indazolate Ligands: Synthetic Reaction Pathway and Photophysical Properties. Inorg Chem 2007; 46:7064-74. [PMID: 17655228 DOI: 10.1021/ic700877n] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New Pt(II) dichloride complexes [Pt(1-iqdzH)Cl2] (2a) and [Pt(3-iqdzH)Cl2] (2b), in which idqzH = 1- or 3-isoquinolinyl indazole, were prepared by treatment of the corresponding indazoles with K2PtCl4 in aqueous HCl solution. Despite their nonemissive nature, these complexes could react with excess indazole, sodium picolinate, and 3-trifluoromethyl-5-(2-pyridyl) pyrazole [(fppz)H] to afford the respective a and b series of luminescent complexes [Pt(1-iqdz)(L/\X)] and [Pt(3-iqdz)(L/\X)], where L/\X = 1-iqdz (1a), 3-iqdz (1b), pic (3a, 3b), and fppz (4a, 4b). Single-crystal X-ray diffraction studies of 1b, 2a, and 3b revealed a planar molecular geometry without notable intermolecular Pt...Pt contact in the solid crystal, a result of the steric repulsion imposed by the bulky indazole fragments. For coordination complexes 1, 3, and 4, photoluminescence in degassed CH2Cl2 revealed high quantum efficiency and short radiative lifetimes in the range of several microseconds. As supported by the spectral feature, the associated radiation lifetimes, and a computational approach based on time-dependent density function theory (TD-DFT), the origin of the emission is attributed to a mixed 3MLCT/3pipi transition. The TD-DFT approach further confirmed that, except for the series 1 complexes, the HOMO of 3-iqdz complexes 3b and 4b is much less located at the central Pt(II) atom than the HOMO orbitals of the respective 1-iqdz complexes 3a and 4a, leading to a smaller degree of MLCT contribution. Consequently, there are a blue-shifted emission signal and an inferior emission quantum yield for the 3-iqdz derivatives. OLED devices with a multilayer configuration of ITO/NPB/CBP:3a/BCP/Alq3/LiF/Al were fabricated using a CBP layer doped with various concentrations of 3a, ranging from 6% to 100%, within the emitting layer. The best device performance was realized using a 6% doping concentration, for which the external quantum yield of 4.93%, luminous efficiency of 12.19 cd/A, and power efficiency of 6.12 lm W-1 were observed at 20 mA/cm2, while a maximum luminescence as high as 20296 cd/m2 was also realized at 16 V, showing good prospect for the fabrication of Pt(II) based OLEDs.
Collapse
Affiliation(s)
- Sheng-Yuan Chang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pozdnyakov IP, Glebov EM, Plyusnin VF, Tkachenko NV, Lemmetyinen H. Primary processes in photophysics and photochemistry of PtBr62- complex studied by femtosecond pump–probe spectroscopy. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.05.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Maçôas EMS, Kananavicius R, Myllyperkiö P, Pettersson M, Kunttu H. Relaxation Dynamics of Cr(acac)3 Probed by Ultrafast Infrared Spectroscopy. J Am Chem Soc 2007; 129:8934-5. [PMID: 17602627 DOI: 10.1021/ja071859k] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ermelinda M S Maçôas
- Nanoscience Center, Department of Chemistry, P.O. Box 35, FI-40014, University of Jyväskylä, Finland.
| | | | | | | | | |
Collapse
|
50
|
Iwamura M, Takeuchi S, Tahara T. Real-time observation of the photoinduced structural change of bis(2,9-dimethyl-1,10-phenanthroline)copper(I) by femtosecond fluorescence spectroscopy: a realistic potential curve of the Jahn-Teller distortion. J Am Chem Soc 2007; 129:5248-56. [PMID: 17397161 DOI: 10.1021/ja069300s] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In copper(I) complex [Cu(dmphen)(2)]+ (dmphen = 2,9-dimethyl-1,10-phenanthroline), a "flattening" structural change is induced with 1MLCT excitation, which is a prototype of the structural change accompanied with Cu(I)/Cu(II) conversion in copper complexes. Femtosecond and picosecond emission dynamics of this complex were investigated in solution at room temperature with optically allowed S(2) <-- S(0) photoexcitation. Time-resolved emission was measured in the whole visible region, and the lifetimes, intrinsic emission spectra, and radiative lifetimes of the transients were obtained by quantitative analysis. It was concluded that the initially populated S(2) state is relaxed with a time constant of 45 fs to generate the S1 state retaining the perpendicular structure, and the D(2d) --> D(2) structural change (the change of the dihedral angle between the two ligand planes) occurs in the S(1) state with a time constant of 660 fs. The intersystem crossing from the S(1) state to the T(1) state takes place after this structural distortion with a time constant of 7.4 ps. Importantly, the temporal spectral evolution relevant to the structural change clearly exhibited an isoemissive point around 675 nm. This manifests that there exists a shallow potential minimum at the perpendicular geometry on the S1 surface, and the S1 state stays undistorted for a finite period as long as 660 fs before the structural distortion. This situation is not expected for the structural change induced by the ordinary (pseudo-)Jahn-Teller effect, because the distortion should be induced by the spontaneous structural instability at the perpendicular structure. This result sheds new light on the present understanding on the structural change occurring in the metal complexes.
Collapse
Affiliation(s)
- Munetaka Iwamura
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|