1
|
Belyakova YY, Radulov PS, Novikov RA, Prolomov IV, Krivoshchapov NV, Medvedev MG, Yaremenko IA, Alabugin IV, Terent'ev AO. FeCl 2-Mediated Rearrangement of Aminoperoxides into Functionalized Tetrahydrofurans: Dynamic Non-innocence of O-Ligands at an Fe Center Coordinates a Radical Cascade. J Am Chem Soc 2025; 147:965-977. [PMID: 39727309 DOI: 10.1021/jacs.4c14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The selective reaction of cyclic aminoperoxides with FeCl2 proceeds through a sequence of O-O and C-C bond cleavages, followed by intramolecular cyclization, yielding functionalized tetrahydrofurans in 44-82% yields. Replacing the peroxyacetal group in the peroxide structure with a peroxyaminal fragment fundamentally alters the reaction pathway. Instead of producing linear functionalized ketones, this modification leads to the formation of hard-to-access substituted tetrahydrofurans. Although the aminoperoxide cores undergo multiple bond scissions, this cascade is atom-economical. Computational analysis shows that the O-ligands at the Fe center have enough radical character to promote C-C bond fragmentation and subsequent cyclization. The stereoelectronic flexibility of oxygen, combined with iron's capacity to stabilize multiple reactive intermediates during the multistep cascade, explains the efficiency of this new atom-economic peroxide rearrangement.
Collapse
Affiliation(s)
- Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Ilya V Prolomov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
- Mendeleev University of Chemical Technology, Miusskaya Sq. 9, Moscow 125047, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Moscow 101000, Russian Federation
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| |
Collapse
|
2
|
He KH, Jin N, Chen JC, Zheng YF, Pan F. Ketone Skeletal Modification via a Metallaphotoredox-Catalyzed Deacylation and Acylation Strategy. Org Lett 2024; 26:9503-9507. [PMID: 39465911 DOI: 10.1021/acs.orglett.4c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Herein, we describe a dual catalytic strategy that employs dihydroquinazolinones, derived from ketone analogs, as versatile intermediates for acylation via α C-C cleavage with 2-pyridyl esters, facilitating the efficient synthesis of a variety of ketones. The reaction accommodates a wide range of ketones and carboxylic acids, showing tolerance to various functional groups. The versatility of this synthetic technique is further highlighted through its application in the late-stage modification of pharmaceuticals and biologically active natural products.
Collapse
Affiliation(s)
- Ke-Han He
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Na Jin
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Jia-Cai Chen
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - You-Fen Zheng
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, People's Republic of China
| |
Collapse
|
3
|
Li QZ, He MH, Zeng R, Lei YY, Yu ZY, Jiang M, Zhang X, Li JL. Molecular Editing of Ketones through N-Heterocyclic Carbene and Photo Dual Catalysis. J Am Chem Soc 2024; 146:22829-22839. [PMID: 39086019 DOI: 10.1021/jacs.4c08163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The molecular editing of ketones represents an appealing strategy due to its ability to maximize the structural diversity of ketone compounds in a straightforward manner. However, developing efficient methods for the arbitrary modification of ketonic molecules, particularly those integrated within complex skeletons, remains a significant challenge. Herein, we present a unique strategy for ketone recasting that involves radical acylation of pre-functionalized ketones facilitated by N-heterocyclic carbene and photo dual catalysis. This protocol features excellent substrate tolerance and can be applied to the convergent synthesis and late-stage functionalization of structurally complex bioactive ketones. Mechanistic investigations, including experimental studies and density functional theory (DFT) calculations, shed light on the reaction mechanism and elucidate the basis of the regioselectivity.
Collapse
Affiliation(s)
- Qing-Zhu Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Mei-Hao He
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Rong Zeng
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yuan-Yuan Lei
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhao-Yuan Yu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Min Jiang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiang Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jun-Long Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Mu Y, Chen B, Zhang H, Fei M, Liu T, Mehta N, Wang DZ, Miller AJM, Diaconescu PL, Wang D. Highly Selective Electrochemical Baeyer-Villiger Oxidation through Oxygen Atom Transfer from Water. J Am Chem Soc 2024; 146:13438-13444. [PMID: 38687695 DOI: 10.1021/jacs.4c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The Baeyer-Villiger oxidation of ketones is a crucial oxygen atom transfer (OAT) process used for ester production. Traditionally, Baeyer-Villiger oxidation is accomplished by thermally oxidizing the OAT from stoichiometric peroxides, which are often difficult to handle. Electrochemical methods hold promise for breaking the limitation of using water as the oxygen atom source. Nevertheless, existing demonstrations of electrochemical Baeyer-Villiger oxidation face the challenges of low selectivity. We report in this study a strategy to overcome this challenge. By employing a well-known water oxidation catalyst, Fe2O3, we achieved nearly perfect selectivity for the electrochemical Baeyer-Villiger oxidation of cyclohexanone. Mechanistic studies suggest that it is essential to produce surface hydroperoxo intermediates (M-OOH, where M represents a metal center) that promote the nucleophilic attack on ketone substrates. By confining the reactions to the catalyst surfaces, competing reactions (e.g., dehydrogenation, carboxylic acid cation rearrangements, and hydroxylation) are greatly limited, thereby offering high selectivity. The surface-initiated nature of the reaction is confirmed by kinetic studies and spectroelectrochemical characterizations. This discovery adds nucleophilic oxidation to the toolbox of electrochemical organic synthesis.
Collapse
Affiliation(s)
- Yu Mu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Boqiang Chen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Hongna Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Muchun Fei
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tianying Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Neal Mehta
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - David Z Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
5
|
Basu D, Ghosh B, Srivastava D, Patra N, Nayek HP. Mononuclear organogermanium(IV) catalysts for a [3 + 2] cycloaddition reaction. Dalton Trans 2024; 53:5648-5657. [PMID: 38441230 DOI: 10.1039/d4dt00239c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Three mononuclear Ge(IV) compounds, [(C6H5)2Ge(C13H8N2O4)] (1), [(C6H5)2Ge(C14H10N2O5)] (2), and [(C6H5)2Ge(C14H11NO3)] (3), have been synthesized by the reaction of pro-ligands H2L1 (C13H10N2O4), H2L2 (C14H12N2O5), and H2L3 (C14H13NO3) with (C6H5)2GeCl2 in the presence of triethylamine. All compounds were characterized by FT-IR spectroscopy and NMR spectroscopy. Single crystal X-ray diffraction analysis shows that the germanium(IV) atom exhibits a five-coordinated geometry in compounds 1 and 2. All compounds were screened as Lewis acid catalysts in the [3 + 2] cycloaddition reaction between sodium azide and various nitriles. The reactions resulted in the formation of 5-substituted 1H-tetrazoles with yields of up to 96%. Based on the experimental findings and DFT calculations, a plausible mechanism is proposed for the [3 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Debayan Basu
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Barshali Ghosh
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Diship Srivastava
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Niladri Patra
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Hari Pada Nayek
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| |
Collapse
|
6
|
Wang Y, Tong C, Liu Q, Han R, Liu C. Intergrowth Zeolites, Synthesis, Characterization, and Catalysis. Chem Rev 2023; 123:11664-11721. [PMID: 37707958 DOI: 10.1021/acs.chemrev.3c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Microporous zeolites that can act as heterogeneous catalysts have continued to attract a great deal of academic and industrial interest, but current progress in their synthesis and application is restricted to single-phase zeolites, severely underestimating the potential of intergrowth frameworks. Compared with single-phase zeolites, intergrowth zeolites possess unique properties, such as different diffusion pathways and molecular confinement, or special crystalline pore environments for binding metal active sites. This review first focuses on the structural features and synthetic details of all the intergrowth zeolites, especially providing some insightful discussion of several potential frameworks. Subsequently, characterization methods for intergrowth zeolites are introduced, and highlighting fundamental features of these crystals. Then, the applications of intergrowth zeolites in several of the most active areas of catalysis are presented, including selective catalytic reduction of NOx by ammonia (NH3-SCR), methanol to olefins (MTO), petrochemicals and refining, fine chemicals production, and biomass conversion on Beta, and the relationship between structure and catalytic activity was profiled from the perspective of intergrowth grain boundary structure. Finally, the synthesis, characterization, and catalysis of intergrowth zeolites are summarized in a comprehensive discussion, and a brief outlook on the current challenges and future directions of intergrowth zeolites is indicated.
Collapse
Affiliation(s)
- Yanhua Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Chengzheng Tong
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Qingling Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Rui Han
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Caixia Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Tang Y, Li MN, Huang ZY, Liu HY, Xiao XY, Zhang SQ. Synthesis of Metal Xanthene‐Bridged Bis‐corroles and their Catalytic Activity in Aerobic Baeyer‐Villiger Oxidation Reaction. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Tang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Meng-Ni Li
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Zhen-Yu Huang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hai-Yang Liu
- South China University of Technology Department of Chemistry 381# Wushan Road 510641 Guangzhou CHINA
| | - Xin-Yan Xiao
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Si-Quan Zhang
- Guangdong Baomo Biochemical Com. Ltd. Technology Department CHINA
| |
Collapse
|
8
|
Brønsted acidic Heteropolyanion-Based ionic Liquid:A highly efficient Reaction-induced Self-separation catalyst for Baeyer-Villiger reaction. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Chen JQ, Tu X, Qin B, Huang S, Zhang J, Wu J. Synthesis of Ester-Substituted Indolo[2,1- a]isoquinolines via Photocatalyzed Alkoxycarbonylation/Cyclization Reactions. Org Lett 2022; 24:642-647. [PMID: 34985296 DOI: 10.1021/acs.orglett.1c04082] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A direct alkoxycarbonylation/cyclization reaction is accomplished under visible light-induced photoredox catalysis. With this approach, a variety of ester-substituted indolo[2,1-a]isoquinolines are prepared in good to excellent yields. It is worth noting that this method not only can afford the synthesis of indolo[2,1-a]isoquinolines but also can provide an alternative route for generating complex target structures bearing carboxylic esters.
Collapse
Affiliation(s)
- Jian-Qiang Chen
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Xiaodong Tu
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Binyan Qin
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Shaoxin Huang
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jun Zhang
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
10
|
Niu C, Yin ZC, Wang WF, Huang X, Zhou DB, Wang GW. Retro Baeyer–Villiger reaction: thermal conversion of the [60]fullerene-fused lactones to ketones. Chem Commun (Camb) 2022; 58:3685-3688. [DOI: 10.1039/d2cc00126h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of the [60]fullerene-fused lactones to ketones with triflic anhydride as an unusual reductant under aerobic conditions has been achieved in excellent yields. The present thermal retro Baeyer–Villiger reaction...
Collapse
|
11
|
Zhang CS, Shao YP, Zhang FM, Han X, Zhang XM, Zhang K, Tu YQ. Cu(II)/SPDO complex-catalyzed asymmetric Baeyer–Villiger oxidation of 2-arylcyclobutanones and its application for the total synthesis of eupomatilones 5 and 6. Chem Sci 2022; 13:8429-8435. [PMID: 35919715 PMCID: PMC9297696 DOI: 10.1039/d2sc02079c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
A novel classical kinetic resolution of 2-aryl-substituted or 2,3-disubstituted cyclobutanones of Baeyer–Villiger oxidation catalyzed by a Cu(ii)/SPDO complex is reported for the first time, producing normal lactones in excellent enantioselectivities (up to 96% ee) and regioselectivities (up to >20/1), along with unreacted ketones in excellent enantioselectivities (up to 99% ee). The current transformation features a wide substrate scope. Moreover, catalytic asymmetric total syntheses of natural eupomatilones 5 and 6 are achieved in nine steps from commercially available 3-methylcyclobutan-1-one. A novel classical kinetic resolution of Baeyer–Villiger oxidation catalyzed by a Cu(ii)/SPDO complex with excellent enantioselectivity, regioselectivity and wide substrate scope is reported for the first time and explore the synthetic application.![]()
Collapse
Affiliation(s)
- Chang-Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Ya-Ping Shao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xue Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 Guangdong P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
12
|
Basu D, Nayek HP. Bis(catecholato)germane: An Effective Catalyst for Friedel-Crafts Alkylation Reaction. Dalton Trans 2022; 51:10587-10594. [DOI: 10.1039/d2dt01721k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis(catecholato)germane, [Ge(C6H4O2)2(H2O)2] (1) was synthesized by the reaction of catechol and germanium oxide in water according to a reported method. Complex 1 was characterized by FT-IR spectroscopy, NMR spectroscopy and...
Collapse
|
13
|
Ye F, Liu Q, Cui R, Xu D, Gao Y, Chen H. Diverse Functionalization of Tetrahydro-β-carbolines or Tetrahydro-γ-carbolines via Oxidative Coupling Rearrangement. J Org Chem 2020; 86:794-812. [PMID: 33232143 DOI: 10.1021/acs.joc.0c02351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report herein diverse functionalization of tetrahydro-β-carbolines (THβCs) or tetrahydro-γ-carbolines (THγCs) via oxidative coupling rearrangement. The treatment of THβCs or THγCs with t-BuOOH (TBHP) afforded 3-peroxyindolenines, followed by HCl catalyzed indolation to form unexpected 2-indolyl-3-peroxyindolenines. Further rearrangement of these peroxides allows for rapid access to a skeletally diverse chemical library in good to excellent yields.
Collapse
Affiliation(s)
- Fu Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qing Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ranran Cui
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Dekang Xu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
14
|
Fanqing Li, Zhou Z, Qin J, Liu Z, Liu C, Huang H, Liu G, Wu W. Influence of DETA on the Tin Promotion of Mesoporous Sn–Ti Catalysts for Cyclohexanone Oxidation by Molecular Oxygen. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420110230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Yu F, Chi Y, Gao C, Chen R, Xie C, Yu S. Baeyer-Villiger Oxidation of Cyclic Ketones Catalyzed by Amino Acid Ionic Liquids. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-019-9186-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Potential application of Micellar nanoreactor for electron transfer reactions mediated by a variety of oxidants: A review. Adv Colloid Interface Sci 2020; 284:102241. [PMID: 32927360 DOI: 10.1016/j.cis.2020.102241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 01/31/2023]
Abstract
Surfactant, either natural or synthetic, forms a different type of aggregates among which 'Micelle' is truly an important dynamic surfactant aggregate, having a different region to interact with several organic, inorganic, and biomolecules; therefore the practical use of micelle is rapidly growing day-to-day. Surfactant-micelle, looks like a reactor of nano-dimension, govern a variety of reactions in aqueous media extensively. Oxidation is one of the vital reaction, take a part in the course of several organic transformations which are not very easy to execute in water media alone due to the solubility problem. Moreover, in order to achieve a quick transformation overcoming several difficulties the utility of micellar media became an excellent innovation, that's why nowadays, the surfactant and its aggregates are a focus of interest to the researcher of synthetic field and thus its practical applicability has been tremendously cultivated over the few decades. It is, therefore, useful to introduce some basic concepts regarding the aggregation of surfactants. Subsequently, we emphasize the importance of micellar media on the kinetics of oxidation reactions mediated by several metal ions with a special emphasis on their catalytic role.
Collapse
|
17
|
Latos P, Siewniak A, Sitko M, Chrobok A. The Baeyer-Villiger rearrangement with metal triflates: new developments toward mechanism. RSC Adv 2020; 10:21382-21386. [PMID: 35518740 PMCID: PMC9054370 DOI: 10.1039/d0ra03335a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 11/24/2022] Open
Abstract
Based on MS analysis, the mechanism of the Baeyer-Villiger oxidation of cyclic ketones with hydrogen peroxide using metal triflates (Ga(OTf)3 and Er(OTf)3) as catalysts was proposed. In the case of cyclohexanone as a substrate, dimeric, trimeric and tetrameric peroxide structures were detected.
Collapse
Affiliation(s)
- Piotr Latos
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology Krzywoustego 4 44-100 Gliwice Poland
| | - Agnieszka Siewniak
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology Krzywoustego 4 44-100 Gliwice Poland
| | - Magdalena Sitko
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology Krzywoustego 4 44-100 Gliwice Poland
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology Krzywoustego 4 44-100 Gliwice Poland
| |
Collapse
|
18
|
Meninno S, Villano R, Lattanzi A. Recent developments in stereoselective organocatalytic oxyfunctionalizations. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
In this chapter, asymmetric at carbon oxidations using organocatalytic systems reported from 2012 up to 2018 have been illustrated. Asymmetric epoxidations and oxidation of heteroatom-containing molecules were not included. The processes selected encopass alpha-hydroxylation of carbonyl compounds, dihydroxylation and dioxygenation of alkenes, Baeyer-Villiger and oxidative desymmetrization reactions.
Collapse
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli” , Università di Salerno , via Giovanni Paolo II 132 , Fisciano 84084 , Italy
| | - Rosaria Villano
- Istituto di Chimica Biomolecolare , Consiglio Nazionale delle Ricerche , via Campi Flegrei 34 , Pozzuoli 80078 , Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli” , Università di Salerno , via Giovanni Paolo II 132 , Fisciano 84084 , Italy
| |
Collapse
|
19
|
Alavijeh MK, Amini MM. Tin and copper species dispersed on a metal-organic framework as a new catalyst in aerobic Baeyer-Villiger oxidation: An insight into the mechanism. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.105985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Flick AC, Leverett CA, Ding HX, McInturff E, Fink SJ, Helal CJ, DeForest JC, Morse PD, Mahapatra S, O’Donnell CJ. Synthetic Approaches to New Drugs Approved during 2018. J Med Chem 2020; 63:10652-10704. [DOI: 10.1021/acs.jmedchem.0c00345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andrew C. Flick
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Carolyn A. Leverett
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Hong X. Ding
- Pharmacodia (Beijing) Co., Ltd., Beijing 100085, China
| | - Emma McInturff
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sarah J. Fink
- Takeda Pharmaceutical Company Limited, 125 Binney Street, Cambridge, Massachusetts 02142, United States
| | | | - Jacob C. DeForest
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Peter D. Morse
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Subham Mahapatra
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J. O’Donnell
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
21
|
Liu C, Wen K, Zeng X, Peng Y. Advances in Chemocatalytic Asymmetric Baeyer–Villiger Oxidations. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chao Liu
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 People's Republic of China
| | - Kai‐Ge Wen
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 People's Republic of China
| | - Xing‐Ping Zeng
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 People's Republic of China
| | - Yi‐Yuan Peng
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 People's Republic of China
| |
Collapse
|
22
|
Zhang Y, Jiang W, Lv K, Sun Y, Gao X, Zhao Q, Ren W, Wang F, Liu J. Optimization of chemoenzymatic Baeyer-Villiger oxidation of cyclohexanone to ε-caprolactone using response surface methodology. Biotechnol Prog 2019; 36:e2901. [PMID: 31465150 DOI: 10.1002/btpr.2901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/26/2019] [Indexed: 11/09/2022]
Abstract
ε-Caprolactone (ε-CL) has attracted a great deal of attention and a high product concentration is of great significance for reducing production cost. The optimization of ε-CL synthesis through chemoenzymatic Baeyer-Villiger oxidation mediated by immobilized Trichosporon laibacchii lipase was studied using response surface methodology (RSM). The yield of ε-CL was 98.06% with about 1.2 M ε-CL concentration that has a substantial increase mainly due to both better stability of the cross-linked immobilized lipase used and the optimum reaction conditions in which the concentration of cyclohexanone was 1.22 M, the molar ratio of cyclohexanone:urea hydrogen peroxide (UHP) was 1:1.3, and the reaction temperature was 56.5°C. Based on our experimental results, it can be safely concluded that there are three reactions in this reaction system, not just two reactions, in which the third reaction is that the acetic acid formed reacts with UHP to form peracetic acid in situ catalyzed by the immobilized lipase. A quadratic polynomial model based on RSM experimental results was developed and the R2 value of the equation is 0.9988, indicating that model can predict the experimental results with high precision. The experimental results also show that the molar ratio of cyclohexanone to UHP has very significant impact on the yield of ε-CL (p < .0006).
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Weiwei Jiang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Kuiying Lv
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yangjian Sun
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xin Gao
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Qiuxiang Zhao
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Wenjie Ren
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Fanye Wang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Junhong Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
23
|
Multifunctionality in Two Families of Dinuclear Lanthanide(III) Complexes with a Tridentate Schiff-Base Ligand. Inorg Chem 2019; 58:9581-9585. [PMID: 31328505 DOI: 10.1021/acs.inorgchem.9b01524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The employment of N-(2-carboxyphenyl)salicylideneimine in 4f metal chemistry has led to two families of dinuclear complexes depending on the lanthanide(III) used. Representative members exhibit interesting magnetic, optical, and catalytic properties.
Collapse
|
24
|
Wei Y, Yang Z, Zhao G, Yang W. Synthesis and catalytic properties of macroporous SiO2-coated CNT-sieve-composite-supported 12-tungstophosphoric acid catalysts with dual pore structure for the Baeyer–Villiger oxidation of cyclic ketones under microwave irradiation. J Catal 2019. [DOI: 10.1016/j.jcat.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Wang L, Wang Y, Du R, Dao R, Yuan H, Liang C, Yao J, Li H. N
‐Hydroxyphthalimide (NHPI) Promoted Aerobic Baeyer‐Villiger Oxidation in the Presence of Aldehydes. ChemCatChem 2018. [DOI: 10.1002/cctc.201801165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lingyao Wang
- Department of Chemistry, ZJU-NHU United R&D CenterZhejiang University Hangzhou 310027 P. R. China
| | - Yongtao Wang
- Department of Chemistry, ZJU-NHU United R&D CenterZhejiang University Hangzhou 310027 P. R. China
| | - Renfeng Du
- Department of Chemistry, ZJU-NHU United R&D CenterZhejiang University Hangzhou 310027 P. R. China
| | - Rina Dao
- Department of Chemistry, ZJU-NHU United R&D CenterZhejiang University Hangzhou 310027 P. R. China
| | - Haoran Yuan
- Department of Chemistry, ZJU-NHU United R&D CenterZhejiang University Hangzhou 310027 P. R. China
| | - Cheng Liang
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Jia Yao
- Department of Chemistry, ZJU-NHU United R&D CenterZhejiang University Hangzhou 310027 P. R. China
| | - Haoran Li
- Department of Chemistry, ZJU-NHU United R&D CenterZhejiang University Hangzhou 310027 P. R. China
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
26
|
Zhang Y, Lu P, Sun Q, Li T, Zhao L, Gao X, Wang F, Liu J. Lipase-mediated direct in situ ring-opening polymerization of ε-caprolactone formed by a chemo-enzymatic method. J Biotechnol 2018; 281:74-80. [PMID: 29908204 DOI: 10.1016/j.jbiotec.2018.06.338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022]
Abstract
A novel method to synthesize poly(ε-caprolactone) (PCL) through a three-step, lipase-mediated chemo-enzymatic reaction from cyclohexanone using an immobilized lipase from Trichosporon laibacchii (T. laibacchii) CBS5791 was developed. The immobilized preparation with 1280 U· g-1 used here was obtained by a method of purification and in situ immobilization where the crude intracellular lipase (cell homogenate) was subjected to partial purification by an aqueous two-phase system (ATPS) consisting of 12% (w/w) polyethylene glycol (PEG) 4000 and 13% (w/w) potassium phosphate (K2HPO4) and then in situ immobilization directly on diatomite from the top PEG-rich phase of ATPS. In this multi-step process, the ε-caprolactone (ε-CL) produced by lipase-mediated one-pot two-step chemo-enzymatic oxidation of cyclohexanone was directly subjected to in situ ring-opening polymerization (ROP) started by adding highly hydrophobic solvents. It is necessary to note that ε-CL synthesis and its subsequent ROP were catalyzed by the same lipase. The impact of various reaction parameters, e.g., solvent, cyclohexanone: hydrogen peroxide molar ratio, hydrogen peroxide forms and reaction temperature were investigated. Toluene was selected as a preferred solvent due to supporting the highest molecular weight (Mn = 2168) and moderate ε-CL conversion (65.42%). Through the optimization of reaction conditions, PCL was produced with a Mn of 2283 at 50 °C for 24 h. These results reveal that this lipase-mediated direct ring-opening polymerization of in situ formed ε-CL is an alternative route to the conventional synthesis of PCL.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Peiyu Lu
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Qinghua Sun
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Tao Li
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Lanjie Zhao
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Xin Gao
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Fanye Wang
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Junhong Liu
- Department of Pharmaceutics, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| |
Collapse
|
27
|
Liu CH, Wang Z, Xiao LY, Mukadas, Zhu DS, Zhao YL. Acid/Base-Co-catalyzed Formal Baeyer–Villiger Oxidation Reaction of Ketones: Using Molecular Oxygen as the Oxidant. Org Lett 2018; 20:4862-4866. [DOI: 10.1021/acs.orglett.8b02006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chun-Hua Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhuo Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Li-Yun Xiao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Mukadas
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dong-Sheng Zhu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
28
|
Hazra S, Martins NM, Mahmudov K, Zubkov FI, Guedes da Silva MFC, Pombeiro AJ. A tetranuclear diphenyltin(IV) complex and its catalytic activity in the aerobic Baeyer-Villiger oxidation of cyclohexanone. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Ul’yanova MI, Pervova MG, Slepukhin PA, Aksenova TV, Pestov AV. Formation of a Cluster H2V10O
28
4–
under the Action of Brønsted Acids and Its Catalytic Activity in Oxidation of Alkylbenzenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018050020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Turcas R, Lakk-Bogáth D, Speier G, Kaizer J. Kinetics and enantioselectivity of the Baeyer-Villiger oxidation of cyclohexanones by chiral tetrapyridyl oxoiron(IV) complex. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Zheng C, Chang S, Yang C, Lian D, Ma C, Zhang C, Fan X, Xu S, Sun X. Enhanced shape selective catalysis of mixed cyclic ketones in aerobic Baeyer-Villiger oxidation with magnetic Cu-Fe3O4 supported mesoporous silica microspheres. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Horn A, Kazmaier U. Purified m
CPBA, a Useful Reagent for the Oxidation of Aldehydes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Horn
- Institute for Organic Chemistry; Saarland University; P.O. Box 151150 66041 Saarbrücken Germany
| | - Uli Kazmaier
- Institute for Organic Chemistry; Saarland University; P.O. Box 151150 66041 Saarbrücken Germany
| |
Collapse
|
33
|
Vil' VA, dos Passos Gomes G, Bityukov OV, Lyssenko KA, Nikishin GI, Alabugin IV, Terent'ev AO. Interrupted Baeyer–Villiger Rearrangement: Building A Stereoelectronic Trap for the Criegee Intermediate. Angew Chem Int Ed Engl 2018; 57:3372-3376. [DOI: 10.1002/anie.201712651] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Vera A. Vil'
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia Moscow Russian Federation
- All-Russian Research Institute for Phytopathology Moscow Region Russian Federation
| | | | - Oleg V. Bityukov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
- All-Russian Research Institute for Phytopathology Moscow Region Russian Federation
| | - Konstantin A. Lyssenko
- A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 119991 Moscow Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL USA
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia Moscow Russian Federation
- All-Russian Research Institute for Phytopathology Moscow Region Russian Federation
| |
Collapse
|
34
|
Vil' VA, dos Passos Gomes G, Bityukov OV, Lyssenko KA, Nikishin GI, Alabugin IV, Terent'ev AO. Interrupted Baeyer-Villiger Rearrangement: Building A Stereoelectronic Trap for the Criegee Intermediate. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712651] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vera A. Vil'
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky prosp. 119991 Moscow Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; Moscow Russian Federation
- All-Russian Research Institute for Phytopathology; Moscow Region Russian Federation
| | | | - Oleg V. Bityukov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky prosp. 119991 Moscow Russian Federation
- All-Russian Research Institute for Phytopathology; Moscow Region Russian Federation
| | - Konstantin A. Lyssenko
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 119991 Moscow Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry; Florida State University; Tallahassee FL USA
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 47 Leninsky prosp. 119991 Moscow Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; Moscow Russian Federation
- All-Russian Research Institute for Phytopathology; Moscow Region Russian Federation
| |
Collapse
|
35
|
Hazra S, Martins NMR, Kuznetsov ML, Guedes da Silva MFC, Pombeiro AJL. Flexibility and lability of a phenyl ligand in hetero-organometallic 3d metal-Sn(iv) compounds and their catalytic activity in Baeyer-Villiger oxidation of cyclohexanone. Dalton Trans 2018; 46:13364-13375. [PMID: 28829081 DOI: 10.1039/c7dt02534c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The single compartmental Schiff base N,N'-ethylenebis(salicylaldimine) (H2L) and [SnPh2Cl2] were utilized to synthesize heterobimetallic 3d metal-Sn complexes, the CoIIISnIV compound [{SnPhCl2}(1κO2N2,2κO2-μ-L)(μ-OMe){CoPh}] (1), the NiIISnIV compound [{SnPh2Cl2}(1κO2N2,2κO2-μ-L)Ni] (2) and the CuIISnIV compound [{SnPh2Cl2}(1κO2N2,2κO2-μ-L)Cu] (3). Attempting to prepare the ethoxido bridged compound analogous to 1 (in ethanol) gives the phenylcobalt(iii) complex [Co(κO2N2)Ph(H2O)] (1A). Single crystal X-ray structure analyses reveal that 1 is derived from an intermetallic (Sn to Co) phenyl shift and that 1A is a transmetallated product; in compounds 2 and 3, the phenyl groups remain coordinated to SnIV but one of the π rings interacts with the 3d-metal. Thus, while systems 1 and 1A show the lability of the phenyl ligand, 2 and 3 reveal its flexible nature. Theoretical DFT calculations demonstrate that the conceivable Ph group shift occurs in the oxidized CoIII intermediate [{SnIVPh2Cl2}(κO2N2-μ-L){CoIII(MeO)}] (5) rather than in the corresponding CoII species [{SnIVPh2Cl2}(κO2N2-μ-L){CoII(MeOH)}] (4). Their catalytic studies in the Baeyer-Villiger oxidation of cyclohexanone into ε-caprolactone with two different oxidants reveal that the sacrificial aldehyde method (with dioxygen/benzaldehyde) is better than that with aqueous H2O2 (30%). The effects of various reaction parameters such as solvent, catalyst amount, temperature, time and heating method were studied allowing the achievement of yields up to 83% with 89% selectivity.
Collapse
Affiliation(s)
- Susanta Hazra
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
36
|
Fe–Co/sulfonated polystyrene as an efficient and selective catalyst in heterogeneous Baeyer–Villiger oxidation reaction of cyclic ketones. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2016.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Bergamini P, Marvelli L, Ferretti V, Gemmo C, Gambari R, Hushcha Y, Lampronti I. Bis(dimethylsulfoxide)carbonateplatinum(ii), a new synthon for a low-impact, versatile synthetic route to anticancer Pt carboxylates. Dalton Trans 2018; 45:10752-60. [PMID: 27291141 DOI: 10.1039/c6dt01689h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The work describes a new low-impact synthetic route to Pt(ii)-carboxylate complexes, a class of compounds provided with established anticancer activity. The process is based on the ligand substitution on [PtCO3(Me2SO-S)2] (), a new synthon that can be easily prepared in water with high yield, is stable as a solid, and is reactive in solution where all its ligands can be easily replaced. It reacts with acidic O-donors releasing CO2 as the only side-product, whose development also supplies a driving force toward the products. The substitution of carbonate led to new Pt-DMSO carboxylate complexes , while the total substitution of the ligands of complex gave new Pt-phosphino carboxylates in high yields. The X-ray crystal structures of complexes [Pt(d(-)-quinate-O,O')(Me2SO-S)2] (), [Pt(salicylate)(Me2SO-S)2] () and [Pt(salicylate)(PPh3)2] () were determined. The tests of the antiproliferative activity of complexes on two human tumoral cell lines, A2780 (cisplatin-sensitive) and SKOV-3 (cisplatin-resistant), showed that the PTA (PTA = 1,3,5-triaza-7-phosphaadamantane) complexes were the most active on both cell lines.
Collapse
Affiliation(s)
- Paola Bergamini
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Lorenza Marvelli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Valeria Ferretti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Chiara Gemmo
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Yekatsiaryna Hushcha
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Ilaria Lampronti
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| |
Collapse
|
38
|
Promoting the aerobic Baeyer-Villiger oxidation of ketones over carboxylic multi-walled carbon nanotubes. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Přech J, Carretero MA, Čejka J. Baeyer-Villiger Oxidation of Cyclic Ketones by Using Tin-Silica Pillared Catalysts. ChemCatChem 2017. [DOI: 10.1002/cctc.201700162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jan Přech
- Department of Synthesis and Catalysis; J. Heyrovský Institute of Physical Chemistry; Academy of Sciences of the Czech Republic, v.v.i.; Dolejškova 2155/3, CZ- 182 23 Prague 8 Czech Republic
| | - Marta Arroyo Carretero
- Department of Synthesis and Catalysis; J. Heyrovský Institute of Physical Chemistry; Academy of Sciences of the Czech Republic, v.v.i.; Dolejškova 2155/3, CZ- 182 23 Prague 8 Czech Republic
| | - Jiří Čejka
- Department of Synthesis and Catalysis; J. Heyrovský Institute of Physical Chemistry; Academy of Sciences of the Czech Republic, v.v.i.; Dolejškova 2155/3, CZ- 182 23 Prague 8 Czech Republic
| |
Collapse
|
40
|
de Souza ROMA, Miranda LSM, Bornscheuer UT. A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry 2017; 23:12040-12063. [DOI: 10.1002/chem.201702235] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Leandro S. M. Miranda
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
41
|
Martins LM, Pombeiro AJ. C-scorpionate rhenium complexes and their application as catalysts in Baeyer-Villiger oxidation of ketones. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Xu D, Shan C, Li Y, Qi X, Luo X, Bai R, Lan Y. Bond dissociation energy controlled σ-bond metathesis in alkaline-earth-metal hydride catalyzed dehydrocoupling of amines and boranes: a theoretical study. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00459a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkaline-earth-metal could catalyse the dehydrocoupling procedure of N–H and B–H bond due to the low Ae–H bond energy. The direct σ-bond metathesis procedure is proved to be unfavourable.
Collapse
Affiliation(s)
- Dongdong Xu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Chunhui Shan
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Yingzi Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Xiaotian Qi
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Xiaoling Luo
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
43
|
First chemo-enzymatic synthesis of the ( R)-Taniguchi lactone and substrate profiles of CAMO and OTEMO, two new Baeyer-Villiger monooxygenases. MONATSHEFTE FUR CHEMIE 2016; 148:157-165. [PMID: 28127101 PMCID: PMC5225235 DOI: 10.1007/s00706-016-1873-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/06/2016] [Indexed: 10/31/2022]
Abstract
ABSTRACT This study investigates the substrate profile of cycloalkanone monooxygenase and 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-coenzyme A monooxygenase, two recently discovered enzymes of the Baeyer-Villiger monooxygenase family, used as whole-cell biocatalysts. Biooxidations of a diverse set of ketones were performed on analytical scale: desymmetrization of substituted prochiral cyclobutanones and cyclohexanones, regiodivergent oxidation of terpenones and bicyclic ketones, as well as kinetic resolution of racemic cycloketones. We demonstrated the applicability of the title enzymes in the enantioselective synthesis of (R)-(-)-Taniguchi lactone, a building block for the preparation of various natural product analogs such as ent-quinine. GRAPHICAL ABSTRACT
Collapse
|
44
|
Synthesis of tetrahydrofuran-based natural products and their carba analogs via stereoselective enzyme mediated Baeyer–Villiger oxidation. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.11.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Abascal NC, Miller SJ. Solution Structures and Molecular Associations of a Peptide-Based Catalyst for the Stereoselective Baeyer-Villiger Oxidation. Org Lett 2016; 18:4646-9. [PMID: 27588823 DOI: 10.1021/acs.orglett.6b02282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The structural analysis of a peptide-based catalyst for the Baeyer-Villiger oxidation (BVO) is reported. This unique structure is then analyzed in the context of its previously documented facility to control selectivity (both enantioselectivity and migratory aptitude) in catalytic reactions. The effects of additives on the solution conformation of the peptide are found to be dramatic, revealing substrate-specific interactions and a possible "induced fit" model. The experimental observation of dynamic behavior supports the notion that flexibility in stereoselective catalysts can be an advantageous feature.
Collapse
Affiliation(s)
- Nadia C Abascal
- Department of Chemistry, Yale University , New Haven, Connecticut 026520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University , New Haven, Connecticut 026520-8107, United States
| |
Collapse
|
46
|
Yaremenko IA, Vil’ VA, Demchuk DV, Terent’ev AO. Rearrangements of organic peroxides and related processes. Beilstein J Org Chem 2016; 12:1647-748. [PMID: 27559418 PMCID: PMC4979652 DOI: 10.3762/bjoc.12.162] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022] Open
Abstract
This review is the first to collate and summarize main data on named and unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide moieties after O-O-bond cleavage. Detailed information about the Baeyer-Villiger, Criegee, Hock, Kornblum-DeLaMare, Dakin, Elbs, Schenck, Smith, Wieland, and Story reactions is given. Unnamed rearrangements of organic peroxides and related processes are also analyzed. The rearrangements and related processes of important natural and synthetic peroxides are discussed separately.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Vera A Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry V Demchuk
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
47
|
Chen SY, Zhou XT, Ji HB. Insight into the cocatalyst effect of 4A molecular sieve on Sn(II) porphyrin-catalyzed B–V oxidation of cyclohexanone. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.07.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Huo H, Wu L, Ma J, Yang H, Zhang L, Yang Y, Li S, Li R. Fabrication of Fe3O4-l-dopa-CuII/SnIV@Micro-Mesoporous-SiO2Catalyst Applied to Baeyer-Villiger Oxidation Reaction. ChemCatChem 2016. [DOI: 10.1002/cctc.201501107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hongfei Huo
- College of Chemistry and Chemical Engineering; Lanzhou University; Tianshui South Road Lanzhou 730000 P.R. China
| | - Li Wu
- College of Chemistry and Chemical Engineering; Lanzhou University; Tianshui South Road Lanzhou 730000 P.R. China
| | - Jianxin Ma
- College of Chemistry and Chemical Engineering; Lanzhou University; Tianshui South Road Lanzhou 730000 P.R. China
| | - Honglei Yang
- College of Chemistry and Chemical Engineering; Lanzhou University; Tianshui South Road Lanzhou 730000 P.R. China
| | - Le Zhang
- College of Chemistry and Chemical Engineering; Lanzhou University; Tianshui South Road Lanzhou 730000 P.R. China
| | - Yuanyuan Yang
- College of Chemistry and Chemical Engineering; Lanzhou University; Tianshui South Road Lanzhou 730000 P.R. China
| | - Shuwen Li
- College of Chemistry and Chemical Engineering; Lanzhou University; Tianshui South Road Lanzhou 730000 P.R. China
| | - Rong Li
- College of Chemistry and Chemical Engineering; Lanzhou University; Tianshui South Road Lanzhou 730000 P.R. China
| |
Collapse
|
49
|
Martins LMDRS, Hazra S, Guedes da Silva MFC, Pombeiro AJL. A sulfonated Schiff base dimethyltin(iv) coordination polymer: synthesis, characterization and application as a catalyst for ultrasound- or microwave-assisted Baeyer–Villiger oxidation under solvent-free conditions. RSC Adv 2016. [DOI: 10.1039/c6ra14689a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sulfonated Schiff base dimethyltin(iv) coordination polymer is an efficient heterogeneous catalyst for the peroxidative Baeyer–Villiger oxidation of ketones, under ultrasound or microwave irradiation and solvent- and additive-free conditions.
Collapse
Affiliation(s)
| | - Susanta Hazra
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisboa
- Portugal
| | | | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisboa
- Portugal
| |
Collapse
|
50
|
Ghosh S, Acharyya SS, Singh R, Gupta P, Bal R. Fabrication of Ag/WO3 nanobars for Baeyer–Villiger oxidation using hydrogen peroxide. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2015.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|