1
|
Malik DD, Ryu W, Kim Y, Singh G, Kim JH, Sankaralingam M, Lee YM, Seo MS, Sundararajan M, Ocampo D, Roemelt M, Park K, Kim SH, Baik MH, Shearer J, Ray K, Fukuzumi S, Nam W. Identification, Characterization, and Electronic Structures of Interconvertible Cobalt-Oxygen TAML Intermediates. J Am Chem Soc 2024; 146:13817-13835. [PMID: 38716885 PMCID: PMC11216523 DOI: 10.1021/jacs.3c14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.
Collapse
Affiliation(s)
- Deesha D Malik
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wooyeol Ryu
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Gurjot Singh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Jun-Hyeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | | | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mahesh Sundararajan
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Daniel Ocampo
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Michael Roemelt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Jeong D, Selverstone Valentine J, Cho J. Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Lee Y, Tripodi GL, Jeong D, Lee S, Roithova J, Cho J. Aliphatic and Aromatic C–H Bond Oxidation by High-Valent Manganese(IV)-Hydroxo Species. J Am Chem Soc 2022; 144:20752-20762. [DOI: 10.1021/jacs.2c08531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yujeong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Guilherme L. Tripodi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJNijmegen, Netherlands
| | - Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Sunggi Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu42988, Korea
| | - Jana Roithova
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJNijmegen, Netherlands
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
4
|
Yu S, Hu H, Zou HH, Liu D, Liang Y, Liang FP, Chen Z. Two Heterometallic Nanoclusters [Dy III4Ni II8] and [Dy III10Mn III4Mn II2]: Structure, Assembly Mechanism, and Magnetic Properties. Inorg Chem 2022; 61:3655-3663. [PMID: 35167747 DOI: 10.1021/acs.inorgchem.1c03768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A full understanding of the assembly mechanisms of coordination complexes is of great importance for a directional synthesis under control. We thus explored here the formation mechanisms of the two new heterometallic nanoclusters [DyIII4NiII8(μ3-OH)8(L)8(OAc)4(H2O)4]·3.25EtOH·4CH3CN (1) and [DyIII10MnIII4MnII2O4(OH)12(OAc)16(L)4(HL)2(EtOH)2]·2EtOH·2CH3CN·2H2O (2) with different cubane-based squarelike ring structures, which were obtained from the reactions of 4-bromo-2-[(2-hydroxypropylimino)methyl]phenol (H2L) with Dy(NO)3·6H2O and the transition metal salt Ni(OAc)2·4H2O or Mn(OAc)2·4H2O. The high-resolution electrospray ionization mass spectrometry (HRESI-MS) tests showed that the skeletons of clusters 1 and 2 have a high stability under the measurement conditions for HRESI-MS. The intermediates formed in the reaction courses of clusters 1 and 2 were tracked using time-dependent HRESI-MS, which helped to determine the proposed hierarchical assembly mechanisms for 1 (H2L → NiL → Ni2L2 → Ni3L4 → Ni4L4 → DyNi4L5 → Dy2Ni6L6 → Dy3Ni6L6 → Dy3Ni7L7 → Dy4Ni8L8) and 2 (H2L → MnL → DyMnL → DyMn2L → Dy2Mn2Lx → Dy8Mn2L2 → Dy10Mn2L2 → Dy10Mn6Lx and H2L → DyL → Dy4L2 → Dy6L2 → Dy8Mn2L2 → Dy10Mn2L2 → Dy10Mn6Lx). This is one of the rare examples of investigating the assembly mechanisms of 3d-4f heterometallic clusters. Magnetic studies indicated that the title complexes both show slow magnetic relaxation behaviors and cluster 1 is a field-induced single-molecule magnet.
Collapse
Affiliation(s)
- Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
5
|
Mohammed TP, Sankaralingam M. Reactivities of high valent manganese-oxo porphyrins in aqueous medium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Schneider JE, Goetz MK, Anderson JS. Statistical analysis of C-H activation by oxo complexes supports diverse thermodynamic control over reactivity. Chem Sci 2021; 12:4173-4183. [PMID: 34163690 PMCID: PMC8179456 DOI: 10.1039/d0sc06058e] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/28/2021] [Indexed: 01/29/2023] Open
Abstract
Transition metal oxo species are key intermediates for the activation of strong C-H bonds. As such, there has been interest in understanding which structural or electronic parameters of metal oxo complexes determine their reactivity. Factors such as ground state thermodynamics, spin state, steric environment, oxygen radical character, and asynchronicity have all been cited as key contributors, yet there is no consensus on when each of these parameters is significant or the relative magnitude of their effects. Herein, we present a thorough statistical analysis of parameters that have been proposed to influence transition metal oxo mediated C-H activation. We used density functional theory (DFT) to compute parameters for transition metal oxo complexes and analyzed their ability to explain and predict an extensive data set of experimentally determined reaction barriers. We found that, in general, only thermodynamic parameters play a statistically significant role. Notably, however, there are independent and significant contributions from the oxidation potential and basicity of the oxo complexes which suggest a more complicated thermodynamic picture than what has been shown previously.
Collapse
Affiliation(s)
| | - McKenna K Goetz
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
| | - John S Anderson
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
| |
Collapse
|
7
|
Nasibipour M, Safaei E, Wojtczak A, Jagličić Z, Galindo A, Masoumpour MS. A biradical oxo-molybdenum complex containing semiquinone and o-aminophenol benzoxazole-based ligands. RSC Adv 2020; 10:40853-40866. [PMID: 35519205 PMCID: PMC9059147 DOI: 10.1039/d0ra06351g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
We report a new mononuclear molybdenum(iv) complex, MoOLBISLSQ, in which LSQ (2,4-di-tert-butyl o-semibenzoquinone ligand) has been prepared from the reaction of the o-iminosemibenzoquinone form of a tridentate non-innocent benzoxazole ligand, LBIS, and MoO2(acac)2. The complex was characterized by X-ray crystallography, elemental analysis, IR and UV-vis spectroscopy and magnetic susceptibility measurements. The crystal structure of MoOLBISLSQ revealed a distorted octahedral geometry around the metal centre, surrounded by one O and two N atoms of LBIS and two O atoms of LSQ. The effective magnetic moment (μ eff) of MoOLBISLSQ decreased from 2.36 to 0.2 μB in the temperature range of 290 to 2 K, indicating a singlet ground state caused by antiferromagnetic coupling between the metal and ligand centred unpaired electrons. Also, the latter led to the EPR silence of the complex. Cyclic voltammetry (CV) studies indicate both ligand and metal-centered redox processes. MoOLBISLSQ was applied as a catalyst for the oxidative cleavage of cyclohexene to adipic acid and selective oxidation of sulfides to sulfones with aqueous hydrogen peroxide.
Collapse
Affiliation(s)
- Mina Nasibipour
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Andrzej Wojtczak
- Nicolaus Copernicus University, Faculty of Chemistry 87-100 Torun Poland
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana Jadranska 19 Ljubljana Slovenia
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla Aptdo. 1203 41071 Sevilla Spain
| | | |
Collapse
|
8
|
Chevallot-Beroux E, Ako AM, Schmitt W, Twamley B, Moran J, Corinne B, Ruhlmann L, Mameri S. Synthesis of new Mn 19 analogues and their structural, electrochemical and catalytic properties. Dalton Trans 2019; 48:4830-4836. [PMID: 30778455 DOI: 10.1039/c8dt04807j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and structural characterisation of new Mn19 and Mn18M analogues, [MnIII12MnII7(μ4-O)8(μ3-OCH3)2(μ3-Br)6(HLMe)12(MeOH)6]Br2 (2) and [MnIII12MnII6Sr(μ4-O8(μ3-Cl)8(HLMe)12(MeCN)6]Cl2 cluster (3), where H3LMe is 2,6-bis(hydroxymethyl)-p-cresol. The electrochemistry of 2 and 3 has been investigated and their activity as catalysts in the oxidation of benzyl alcohol has been evaluated. Selective oxidation of benzyl alcohol to benzaldehyde by O2 was achieved using 1 mol% of catalyst with conversions of 74% (2) and 60% (3) at 140 °C using TEMPO as a co-catalyst. No partial conversion of benzaldehyde to benzoic acid was observed. The results obtained revealed that different operative parameters - such as catalyst loading, temperature, time, solvent and the presence of molecular oxygen - played an important role in the selective oxidation of benzyl alcohol.
Collapse
Affiliation(s)
- Elodie Chevallot-Beroux
- Laboratory of Chemical Catalysis, University of Strasbourg, ISIS UMR 7006, 8 allée Gaspard Monge, Strasbourg 67083, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Noh H, Cho J. Synthesis, characterization and reactivity of non-heme 1st row transition metal-superoxo intermediates. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Brewer SM, Wilson KR, Jones DG, Reinheimer EW, Archibald SJ, Prior TJ, Ayala MA, Foster AL, Hubin TJ, Green KN. Increase of Direct C-C Coupling Reaction Yield by Identifying Structural and Electronic Properties of High-Spin Iron Tetra-azamacrocyclic Complexes. Inorg Chem 2018; 57:8890-8902. [PMID: 30024738 PMCID: PMC7067264 DOI: 10.1021/acs.inorgchem.8b00777] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Macrocyclic ligands have been explored extensively as scaffolds for transition metal catalysts for oxygen and hydrogen atom transfer reactions. C-C reactions facilitated using earth abundant metals bound to macrocyclic ligands have not been well-understood but could be a green alternative to replacing the current expensive and toxic precious metal systems most commonly used for these processes. Therefore, the yields from direct Suzuki-Miyaura C-C coupling of phenylboronic acid and pyrrole to produce 2-phenylpyrrole facilitated by eight high-spin iron complexes ([Fe3+L1(Cl)2]+, [Fe3+L4(Cl)2]+, [Fe2+L5(Cl)]+, [Fe2+L6(Cl)2], [Fe3+L7(Cl)2]+, [Fe3+L8(Cl)2]+, [Fe2+L9(Cl)]+, and [Fe2+L10(Cl)]+) were compared to identify the effect of structural and electronic properties on catalytic efficiency. Specifically, catalyst complexes were compared to evaluate the effect of five properties on catalyst reaction yields: (1) the coordination requirements of the catalyst, (2) redox half-potential of each complex, (3) topological constraint/rigidity, (4) N atom modification(s) increasing oxidative stability of the complex, and (5) geometric parameters. The need for two labile cis-coordination sites was confirmed based on a 42% decrease in catalytic reaction yield observed when complexes containing pentadentate ligands were used in place of complexes with tetradentate ligands. A strong correlation between iron(III/II) redox potential and catalytic reaction yields was also observed, with [Fe2+L6(Cl)2] providing the highest yield (81%, -405 mV). A Lorentzian fitting of redox potential versus yields predicts that these catalysts can undergo more fine-tuning to further increase yields. Interestingly, the remaining properties explored did not show a direct, strong relationship to catalytic reaction yields. Altogether, these results show that modifications to the ligand scaffold using fundamental concepts of inorganic coordination chemistry can be used to control the catalytic activity of macrocyclic iron complexes by controlling redox chemistry of the iron center. Furthermore, the data provide direction for the design of improved catalysts for this reaction and strategies to understand the impact of a ligand scaffold on catalytic activity of other reactions.
Collapse
Affiliation(s)
- Samantha M. Brewer
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, United States
| | - Kevin R. Wilson
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Donald G. Jones
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Eric W. Reinheimer
- Rigaku Oxford Diffraction, 9009 New Trails Drive The Woodlands, TX, United States
| | - Stephen J. Archibald
- Department of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Timothy J. Prior
- Department of Chemistry and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Megan A. Ayala
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Alexandria L. Foster
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Timothy J. Hubin
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, United States
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, TX 76129, United States
| |
Collapse
|
11
|
Jeong D, Yan JJ, Noh H, Hedman B, Hodgson KO, Solomon EI, Cho J. Oxidation of Naphthalene with a Manganese(IV) Bis(hydroxo) Complex in the Presence of Acid. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Donghyun Jeong
- Department of Emerging Materials Science DGIST Daegu 42988 Korea
| | - James J. Yan
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Hyeonju Noh
- Department of Emerging Materials Science DGIST Daegu 42988 Korea
| | - Britt Hedman
- Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Menlo Park CA 94025 USA
| | - Keith O. Hodgson
- Department of Chemistry Stanford University Stanford CA 94305 USA
- Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Menlo Park CA 94025 USA
| | - Edward I. Solomon
- Department of Chemistry Stanford University Stanford CA 94305 USA
- Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Menlo Park CA 94025 USA
| | - Jaeheung Cho
- Department of Emerging Materials Science DGIST Daegu 42988 Korea
| |
Collapse
|
12
|
Jeong D, Yan JJ, Noh H, Hedman B, Hodgson KO, Solomon EI, Cho J. Oxidation of Naphthalene with a Manganese(IV) Bis(hydroxo) Complex in the Presence of Acid. Angew Chem Int Ed Engl 2018; 57:7764-7768. [PMID: 29701293 PMCID: PMC6013404 DOI: 10.1002/anie.201802641] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Indexed: 11/06/2022]
Abstract
Naphthalene oxidation with metal-oxygen intermediates is a difficult reaction in environmental and biological chemistry. Herein, we report that a MnIV bis(hydroxo) complex, which was fully characterized by various physicochemical methods, such as ESI-MS, UV/Vis, and EPR analysis, X-ray diffraction, and XAS, can be employed for the oxidation of naphthalene in the presence of acid to afford 1,4-naphthoquinone. Redox titration of the MnIV bis(hydroxo) complex gave a one-electron reduction potential of 1.09 V, which is the most positive potential for all reported nonheme MnIV bis(hydroxo) species as well as MnIV oxo analogues. Kinetic studies, including kinetic isotope effect analysis, suggest that the naphthalene oxidation occurs through a rate-determining electron transfer process.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea
| | - James J Yan
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Hyeonju Noh
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea
| | - Britt Hedman
- Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, CA, 94025, USA
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, CA, 94025, USA
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, CA, 94025, USA
| | - Jaeheung Cho
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea
| |
Collapse
|
13
|
|
14
|
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green 2 Dublin Ireland
| | - Aidan R. McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green 2 Dublin Ireland
| |
Collapse
|
15
|
Ng VYM, Tse CW, Guan X, Chang X, Yang C, Low KH, Lee HK, Huang JS, Che CM. cis-Dioxorhenium(V/VI) Complexes Supported by Neutral Tetradentate N 4 Ligands. Synthesis, Characterization, and Spectroscopy. Inorg Chem 2017; 56:15066-15080. [PMID: 29190093 DOI: 10.1021/acs.inorgchem.7b02404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of cis-dioxorhenium(V) complexes containing chiral tetradentate N4 ligands, including cis-[ReV(O)2(pyxn)]+ (1; pyxn = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)cyclohexane-1,2-diamine), cis-[ReV(O)2(6-Me2pyxn)]+ (cis-2), cis-[ReV(O)2(R,R-pdp)]+ (3; R,R-pdp = 1,1'-bis((R,R)-2-pyridinylmethyl)-2,2'-bipyrrolidine), cis-[ReV(O)2(R,R-6-Me2pdp)]+ (4), and cis-[ReV(O)2(bqcn)]+ (5; bqcn = N,N'-dimethyl-N,N'-di(quinolin-8-yl)cyclohexane-1,2-diamine), were synthesized. Their structures were established by X-ray crystallography, showing Re-O distances in the range of 1.740(3)-1.769(8) Å and O-Re-O angles of 121.4(2)-124.8(4)°. Their cyclic voltammograms in MeCN (0.1 M [NBu4]PF6) display a reversible ReVI/V couple at E1/2 = 0.39-0.49 V vs SCE. In aqueous media, three proton-coupled electron transfer reactions corresponding to ReVI/V, ReV/III, and ReIII/II couples were observed at pH 1. The Pourbaix diagrams of 1·OTf, 3·OTf, and 5·OTf have been examined. The electronic absorption spectra of the cis-dioxorhenium(V) complexes show three absorption bands at around 800 nm (600-1730 dm3 mol-1 cm-1), 580 nm (1700-5580 dm3 mol-1 cm-1), and 462-523 nm (3170-6000 dm3 mol-1 cm-1). Reaction of 1 with Lewis acids (or protic acids) gave cis-[ReV(O)(OH)(pyxn)]2+ (1·H+), in which the Re-O distances are lengthened to 1.788(5) Å. Complex cis-2 resulted from isomerization of trans-2 at elevated temperature. cis-[ReVI(O)2(pyxn)](PF6)2 (1'·(PF6)2) was obtained by constant-potential electrolysis of 1·PF6 in MeCN (0.1 M [NBu4]PF6) at 0.56 V vs SCE; it displays shorter Re-O distances (1.722(4), 1.726(4) Å) and a smaller O-Re-O angle (114.88(18)°) relative to 1 and shows a d-d transition absorption band at 591 nm (ε = 77 dm3 mol-1 cm-1). With a driving force of ca. 75 kcal mol-1, 1' oxidizes hydrocarbons with weak C-H bonds (75.5-76.3 kcal mol-1) via hydrogen atom abstraction. DFT and TDDFT calculations on the electronic structures and spectroscopic properties of the cis-dioxorhenium(V/VI) complexes were performed.
Collapse
Affiliation(s)
- Vicky Yin-Ming Ng
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, People's Republic of Chinaa
| | - Chun-Wai Tse
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, People's Republic of Chinaa
| | - Xiangguo Guan
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, People's Republic of Chinaa
| | - Xiaoyong Chang
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, People's Republic of Chinaa
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, People's Republic of Chinaa
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, People's Republic of Chinaa
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong , New Territories, Hong Kong, People's Republic of China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, People's Republic of Chinaa
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, People's Republic of Chinaa.,HKU Shenzhen Institute of Research and Innovation , Shenzhen 518053, People's Republic of China
| |
Collapse
|
16
|
Zhang J, Wei WJ, Lu X, Yang H, Chen Z, Liao RZ, Yin G. Nonredox Metal Ions Promoted Olefin Epoxidation by Iron(II) Complexes with H2O2: DFT Calculations Reveal Multiple Channels for Oxygen Transfer. Inorg Chem 2017; 56:15138-15149. [DOI: 10.1021/acs.inorgchem.7b02463] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jisheng Zhang
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wen-Jie Wei
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaoyan Lu
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hang Yang
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
17
|
Ara I, García-Monforte MA, González R, Falvello LR, Tomás M. A route to small clusters: a twisted half-hexagram-shaped M 4(OH) 4 cluster and its capacity for hosting closed-shell metals. Chem Commun (Camb) 2017; 53:13121-13124. [DOI: 10.1039/c7cc07712b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The secret to making a new M4(OH)4 core structure lies in combining different oxidation states, coordination geometries and bridging systems. The spatial distribution of Pt(ii) atoms in Pt4(OH)4 is capable of cradling incoming Ag(i) centers.
Collapse
Affiliation(s)
- I. Ara
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea
- Universidad de Zaragoza-CSIC
- Zaragoza
- Spain
| | - M. A. García-Monforte
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea
- Universidad de Zaragoza-CSIC
- Zaragoza
- Spain
| | - R. González
- Departamento de Química Inorgánica
- Instituto de Ciencia de Materiales de Aragón
- Universidad de Zaragoza-CSIC
- Zaragoza
- Spain
| | - L. R. Falvello
- Departamento de Química Inorgánica
- Instituto de Ciencia de Materiales de Aragón
- Universidad de Zaragoza-CSIC
- Zaragoza
- Spain
| | - M. Tomás
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea
- Universidad de Zaragoza-CSIC
- Zaragoza
- Spain
| |
Collapse
|
18
|
Pirovano P, Farquhar ER, Swart M, McDonald AR. Tuning the Reactivity of Terminal Nickel(III)-Oxygen Adducts for C-H Bond Activation. J Am Chem Soc 2016; 138:14362-14370. [PMID: 27739688 DOI: 10.1021/jacs.6b08406] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two metastable NiIII complexes, [NiIII(OAc)(L)] and [NiIII(ONO2)(L)] (L = N,N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamidate, OAc = acetate), were prepared, adding to the previously prepared [NiIII(OCO2H)(L)], with the purpose of probing the properties of terminal late-transition metal oxidants. These high-valent oxidants were prepared by the one-electron oxidation of their NiII precursors ([NiII(OAc)(L)]- and [NiII(ONO2)(L)]-) with tris(4-bromophenyl)ammoniumyl hexachloroantimonate. Fascinatingly, the reaction between any [NiII(X)(L)]- and NaOCl/acetic acid (AcOH) or cerium ammonium nitrate ((NH4)2[CeIV(NO3)6], CAN), yielded [NiIII(OAc)(L)] and [NiIII(ONO2)(L)], respectively. An array of spectroscopic characterizations (electronic absorption, electron paramagnetic resonance, X-ray absorption spectroscopies), electrochemical methods, and computational predictions (density functional theory) have been used to determine the structural, electronic, and magnetic properties of these highly reactive metastable oxidants. The NiIII-oxidants proved competent in the oxidation of phenols (weak O-H bonds) and a series of hydrocarbon substrates (some with strong C-H bonds). Kinetic investigation of the reactions with di-tert-butylphenols showed a 15-fold enhanced reaction rate for [NiIII(ONO2)(L)] compared to [NiIII(OCO2H)(L)] and [NiIII(OAc)(L)], demonstrating the effect of electron-deficiency of the O-ligand on oxidizing power. The oxidation of a series of hydrocarbons by [NiIII(OAc)(L)] was further examined. A linear correlation between the rate constant and the bond dissociation energy of the C-H bonds in the substrates was indicative of a hydrogen atom transfer mechanism. The reaction rate with dihydroanthracene (k2 = 8.1 M-1 s-1) compared favorably with the most reactive high-valent metal-oxidants, and showcases the exceptional reactivity of late transition metal-oxygen adducts.
Collapse
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin , College Green, Dublin 2, Ireland
| | - Erik R Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Marcel Swart
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.,Institut de Química Computacional i Catàlisi, Facultat de Ciències, Universitat de Girona , Campus Montilivi, 17003 Girona, Spain
| | - Aidan R McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin , College Green, Dublin 2, Ireland
| |
Collapse
|
19
|
Morello GR, Cundari TR. Density Functional Study of Oxygen Insertion into Niobium–Phosphorus Bonds: Novel Mechanism for Liberating P3– Synthons. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Glenn R. Morello
- Centre
for Theoretical and Computational Chemistry (CTCC) and Department
of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Thomas R. Cundari
- Department
of Chemistry, Center for Advanced Scientific Computing and Modeling
(CASCaM), University of North Texas, P.O. Box 305070, Denton, Texas 76203-5070, United States
| |
Collapse
|
20
|
Corcos AR, Pap JS, Yang T, Berry JF. A Synthetic Oxygen Atom Transfer Photocycle from a Diruthenium Oxyanion Complex. J Am Chem Soc 2016; 138:10032-40. [PMID: 27406958 PMCID: PMC5972014 DOI: 10.1021/jacs.6b05942] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three new diruthenium oxyanion complexes have been prepared, crystallographically characterized, and screened for their potential to photochemically unmask a reactive Ru-Ru═O intermediate. The most promising candidate, Ru2(chp)4ONO2 (4, chp = 6-chloro-2-hydroxypyridinate), displays a set of signals centered around m/z = 733 amu in its MALDI-TOF mass spectrum, consistent with the formation of the [Ru2(chp)4O](+) ([6](+)) ion. These signals shift to 735 amu in 4*, which contains an (18)O-labeled nitrate. EPR spectroscopy and headspace GC-MS analysis indicate that NO2(•) is released upon photolysis of 4, also consistent with the formation of 6. Photolysis of 4 in CH2Cl2 at room temperature in the presence of excess PPh3 yields OPPh3 in 173% yield; control experiments implicate 6, NO2(•), and free NO3(-) as the active oxidants. Notably, Ru2(chp)4Cl (3) is recovered after photolysis. Since 3 is the direct precursor to 4, the results described herein constitute the first example of a synthetic cycle for oxygen atom transfer that makes use of light to generate a putative metal oxo intermediate.
Collapse
Affiliation(s)
- Amanda R. Corcos
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| | - József S. Pap
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| | - Tzuhsiung Yang
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| | - John F. Berry
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| |
Collapse
|
21
|
Chen G, Chen L, Ma L, Kwong HK, Lau TC. Photocatalytic oxidation of alkenes and alcohols in water by a manganese(v) nitrido complex. Chem Commun (Camb) 2016; 52:9271-4. [PMID: 27358025 DOI: 10.1039/c6cc04173f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mn(v) nitrido complex [Mn(N)(CN)4](2-) is an efficient catalyst for visible-light induced oxidation of alkenes and alcohols in water using [Ru(bpy)3](2+) as a photosensitizer and [Co(NH3)5Cl](2+) as a sacrificial oxidant. Alkenes are oxidized to epoxides and alcohols to carbonyl compounds.
Collapse
Affiliation(s)
- Gui Chen
- Department of Biology and Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
| | | | | | | | | |
Collapse
|
22
|
Shen K, Ben-David H, Laskavy A, Leitus G, Simon LJW, Neumann R. Electronic Control of RuII Complexes with Proximal Oxophilic Phenylselenium Tethers: Synthesis, Characterization, and Activation of Molecular Oxygen. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kaiji Shen
- Department of Organic Chemistry; Weizmann Institute of Science; 76100 Rehovot Israel
| | - Haviv Ben-David
- Department of Organic Chemistry; Weizmann Institute of Science; 76100 Rehovot Israel
| | - Alexander Laskavy
- Department of Organic Chemistry; Weizmann Institute of Science; 76100 Rehovot Israel
| | - Gregory Leitus
- Department of Chemical Research Support; Weizmann Institute of Science; 76100 Rehovot Israel
| | - Linda J. W. Simon
- Department of Chemical Research Support; Weizmann Institute of Science; 76100 Rehovot Israel
| | - Ronny Neumann
- Department of Organic Chemistry; Weizmann Institute of Science; 76100 Rehovot Israel
| |
Collapse
|
23
|
|
24
|
Zhang J, Wang Y, Luo N, Chen Z, Wu K, Yin G. Redox inactive metal ion triggered N-dealkylation by an iron catalyst with dioxygen activation: a lesson from lipoxygenases. Dalton Trans 2016; 44:9847-59. [PMID: 25939391 DOI: 10.1039/c5dt00804b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilization of dioxygen as the terminal oxidant at ambient temperature is always a challenge in redox chemistry, because it is hard to oxidize a stable redox metal ion like iron(III) to its high oxidation state to initialize the catalytic cycle. Inspired by the dioxygenation and co-oxidase activity of lipoxygenases, herein, we introduce an alternative protocol to activate the sluggish iron(III) species with non-redox metal ions, which can promote its oxidizing power to facilitate substrate oxidation with dioxygen, thus initializing the catalytic cycle. In oxidations of N,N-dimethylaniline and its analogues, adding Zn(OTf)2 to the [Fe(TPA)Cl2]Cl catalyst can trigger the amine oxidation with dioxygen, whereas [Fe(TPA)Cl2]Cl alone is very sluggish. In stoichiometric oxidations, it has also been confirmed that the presence of Zn(OTf)2 can apparently improve the electron transfer capability of the [Fe(TPA)Cl2]Cl complex. Experiments using different types of substrates as trapping reagents disclosed that the iron(IV) species does not occur in the catalytic cycle, suggesting that oxidation of amines is initialized by electron transfer rather than hydrogen abstraction. Combined experiments from UV-Vis, high resolution mass spectrometry, electrochemistry, EPR and oxidation kinetics support that the improved electron transfer ability of iron(III) species originates from its interaction with added Lewis acids like Zn(2+) through a plausible chloride or OTf(-) bridge, which has promoted the redox potential of iron(III) species. The amine oxidation mechanism was also discussed based on the available data, which resembles the co-oxidase activity of lipoxygenases in oxidative dealkylation of xenobiotic metabolisms where an external electron donor is not essential for dioxygen activation.
Collapse
Affiliation(s)
- Jisheng Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Luoyu Road 1037, Wuhan 430074, PR China.
| | | | | | | | | | | |
Collapse
|
25
|
Qin S, Dong L, Chen Z, Zhang S, Yin G. Non-redox metal ions can promote Wacker-type oxidations even better than copper(II): a new opportunity in catalyst design. Dalton Trans 2015; 44:17508-15. [PMID: 26390300 DOI: 10.1039/c5dt02612a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In Wacker oxidation and inspired Pd(ii)/Cu(ii)-catalyzed C-H activations, copper(ii) is believed to serve in re-oxidizing of Pd(0) in the catalytic cycle. Herein we report that non-redox metal ions like Sc(iii) can promote Wacker-type oxidations even better than Cu(ii); both Sc(iii) and Cu(ii) can greatly promote Pd(ii)-catalyzed olefin isomerization in which the redox properties of Cu(ii) are not essential, indicating that the Lewis acid properties of Cu(ii) can play a significant role in Pd(ii)-catalyzed C-H activations in addition to its redox properties. Characterization of catalysts using UV-Vis and NMR indicated that adding Sc(OTf)3 to the acetonitrile solution of Pd(OAc)2 generates a new Pd(ii)/Sc(iii) bimetallic complex having a diacetate bridge which serves as the key active species for Wacker-type oxidation and olefin isomerization. Linkage of trivalent Sc(iii) to the Pd(ii) species makes it more electron-deficient, thus facilitating the coordination of olefin to the Pd(ii) cation. Due to the improved electron transfer from olefin to the Pd(ii) cation, it benefits the nucleophilic attack of water on the olefinic double bond, leading to efficient olefin oxidation. The presence of excess Sc(iii) prevents the palladium(0) black formation, which has been rationalized by the formation of the Sc(iii)H-Pd(ii) intermediate. This intermediate inhibits the reductive elimination of the H-Pd(ii) bond, and facilitates the oxygen insertion to form the HOO-Pd(ii) intermediate, and thus avoids the formation of the inactive palladium(0) black. The Lewis acid promoted Wacker-type oxidation and olefin isomerization demonstrated here may open up a new opportunity in catalyst design for versatile C-H activations.
Collapse
Affiliation(s)
- Shuhao Qin
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Luoyu Road 1037, Wuhan 430074, PR China.
| | | | | | | | | |
Collapse
|
26
|
Zhao P, Lei H, Ni C, Guo JD, Kamali S, Fettinger JC, Grandjean F, Long GJ, Nagase S, Power PP. Quasi-three-coordinate iron and cobalt terphenoxide complexes {Ar(iPr8)OM(μ-O)}2 (Ar(iPr8) = C6H-2,6-(C6H2-2,4,6-(i)Pr3)2-3,5-(i)Pr2; M = Fe or Co) with M(III)2(μ-O)2 core structures and the peroxide dimer of 2-oxepinoxy relevant to benzene oxidation. Inorg Chem 2015; 54:8914-22. [PMID: 26331405 DOI: 10.1021/acs.inorgchem.5b00930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bis(μ-oxo) dimeric complexes {Ar(iPr8)OM(μ-O)}2 (Ar(iPr8) = C6H-2,6-(C6H2-2,4,6-(i)Pr3)2-3,5-(i)Pr2; M = Fe (1), Co (2)) were prepared by oxidation of the M(I) half-sandwich complexes {Ar(iPr8)M(η(6)-arene)} (arene = benzene or toluene). Iron species 1 was prepared by reacting {Ar(iPr8)Fe(η(6)-benzene)} with N2O or O2, and cobalt species 2 was prepared by reacting {Ar(iPr8)Co(η(6)-toluene)} with O2. Both 1 and 2 were characterized by X-ray crystallography, UV-vis spectroscopy, magnetic measurements, and, in the case of 1, Mössbauer spectroscopy. The solid-state structures of both compounds reveal unique M2(μ-O)2 (M = Fe (1), Co(2)) cores with formally three-coordinate metal ions. The Fe···Fe separation in 1 bears a resemblance to that in the Fe2(μ-O)2 diamond core proposed for the methane monooxygenase intermediate Q. The structural differences between 1 and 2 are reflected in rather differing magnetic behavior. Compound 2 is thermally unstable, and its decomposition at room temperature resulted in the oxidation of the Ar(iPr8) ligand via oxygen insertion and addition to the central aryl ring of the terphenyl ligand to produce the 5,5'-peroxy-bis[4,6-(i)Pr2-3,7-bis(2,4,6-(i)Pr3-phenyl)oxepin-2(5H)-one] (3). The structure of the oxidized terphenyl species is closely related to that of a key intermediate proposed for the oxidation of benzene.
Collapse
Affiliation(s)
- Pei Zhao
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Hao Lei
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Chengbao Ni
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Jing-Dong Guo
- Fukui Institute for Fundamental Chemistry, Kyoto University , Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| | - Saeed Kamali
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - James C Fettinger
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Fernande Grandjean
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri , Rolla, Missouri 65409-0010, United States
| | - Gary J Long
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri , Rolla, Missouri 65409-0010, United States
| | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry, Kyoto University , Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| | - Philip P Power
- Department of Chemistry, University of California , Davis, California 95616, United States
| |
Collapse
|
27
|
Pirovano P, Farquhar ER, Swart M, Fitzpatrick AJ, Morgan GG, McDonald AR. Characterization and reactivity of a terminal nickel(III)-oxygen adduct. Chemistry 2015; 21:3785-90. [PMID: 25612563 DOI: 10.1002/chem.201406485] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 11/06/2022]
Abstract
High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni(II)-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = 1/2), square planar Ni(III)-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.
Collapse
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute, The University of Dublin, Trinity College, College Green, Dublin 2 (Ireland)
| | | | | | | | | | | |
Collapse
|
28
|
Saucedo-Vázquez JP, Kroneck PMH, Sosa-Torres ME. The role of molecular oxygen in the iron(iii)-promoted oxidative dehydrogenation of amines. Dalton Trans 2015; 44:5510-9. [DOI: 10.1039/c4dt03606a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mechanistic study is presented of the oxidative dehydrogenation of the iron(iii) complex [FeIIIL3]3+, 1, (L3 = 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen.
Collapse
Affiliation(s)
- Juan Pablo Saucedo-Vázquez
- Departamento de Química Inorgánica y Nuclear
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- México, D.F. 04510
| | | | - Martha Elena Sosa-Torres
- Departamento de Química Inorgánica y Nuclear
- Facultad de Química
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- México, D.F. 04510
| |
Collapse
|
29
|
Farrokhpour H, Hadadzadeh H, Darabi F, Abyar F, Rudbari HA, Ahmadi-Bagheri T. A rare dihydroxo copper(ii) complex with ciprofloxacin; a combined experimental and ONIOM computational study of the interaction of the complex with DNA and BSA. RSC Adv 2014. [DOI: 10.1039/c4ra04634j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
30
|
Sun D, Shen Y, Zhang W, Yu L, Yi Z, Yin W, Wang D, Huang Y, Wang J, Wang D, Goodenough JB. A Solution-Phase Bifunctional Catalyst for Lithium–Oxygen Batteries. J Am Chem Soc 2014; 136:8941-6. [DOI: 10.1021/ja501877e] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dan Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yue Shen
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wang Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ling Yu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ziqi Yi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Yin
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Duo Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jie Wang
- School
of Chemistry and Chemical Engineering, Key Laboratory of Large-Format
Battery Materials and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Deli Wang
- School
of Chemistry and Chemical Engineering, Key Laboratory of Large-Format
Battery Materials and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - John B. Goodenough
- Texas
Materials Institute, The University of Texas at Austin, ETC 9.102, 1 University Station, C2200, Austin, Texas 78712, United States
| |
Collapse
|
31
|
Tahsini L, Specht SE, Lum JS, Nelson JJM, Long AF, Golen JA, Rheingold AL, Doerrer LH. Structural and Electronic Properties of Old and New A2[M(pinF)2] Complexes. Inorg Chem 2013; 52:14050-63. [DOI: 10.1021/ic401837y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Laleh Tahsini
- Chemistry Department, Boston University, 590
Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Sarah E. Specht
- Chemistry Department, Boston University, 590
Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - June S. Lum
- Chemistry Department, Boston University, 590
Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Joshua J. M. Nelson
- Chemistry Department, Boston University, 590
Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Alexandra F. Long
- Chemistry Department, Boston University, 590
Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - James A. Golen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Linda H. Doerrer
- Chemistry Department, Boston University, 590
Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
32
|
Yoon H, Lee YM, Wu X, Cho KB, Sarangi R, Nam W, Fukuzumi S. Enhanced electron-transfer reactivity of nonheme manganese(IV)-oxo complexes by binding scandium ions. J Am Chem Soc 2013; 135:9186-94. [PMID: 23742163 PMCID: PMC3934761 DOI: 10.1021/ja403965h] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One and two scandium ions (Sc(3+)) are bound strongly to nonheme manganese(IV)-oxo complexes, [(N4Py)Mn(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) and [(Bn-TPEN)Mn(IV)(O)](2+) (Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)-1,2-diaminoethane), to form Mn(IV)(O)-(Sc(3+))1 and Mn(IV)(O)-(Sc(3+))2 complexes, respectively. The binding of Sc(3+) ions to the Mn(IV)(O) complexes was examined by spectroscopic methods as well as by DFT calculations. The one-electron reduction potentials of the Mn(IV)(O) complexes were markedly shifted to a positive direction by binding of Sc(3+) ions. Accordingly, rates of the electron transfer reactions of the Mn(IV)(O) complexes were enhanced as much as 10(7)-fold by binding of two Sc(3+) ions. The driving force dependence of electron transfer from various electron donors to the Mn(IV)(O) and Mn(IV)(O)-(Sc(3+))2 complexes was examined and analyzed in light of the Marcus theory of electron transfer to determine the reorganization energies of electron transfer. The smaller reorganization energies and much more positive reduction potentials of the Mn(IV)(O)-(Sc(3+))2 complexes resulted in remarkable enhancement of the electron-transfer reactivity of the Mn(IV)(O) complexes. Such a dramatic enhancement of the electron-transfer reactivity of the Mn(IV)(O) complexes by binding of Sc(3+) ions resulted in the change of mechanism in the sulfoxidation of thioanisoles by Mn(IV)(O) complexes from a direct oxygen atom transfer pathway without metal ion binding to an electron-transfer pathway with binding of Sc(3+) ions.
Collapse
Affiliation(s)
- Heejung Yoon
- Department of Material and Life Science, Graduate School of Engineering, ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Yong-Min Lee
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Xiujuan Wu
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Kyung-Bin Cho
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Wonwoo Nam
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, ALCA, Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
33
|
Dong L, Wang Y, Lv Y, Chen Z, Mei F, Xiong H, Yin G. Lewis-Acid-Promoted Stoichiometric and Catalytic Oxidations by Manganese Complexes Having Cross-Bridged Cyclam Ligand: A Comprehensive Study. Inorg Chem 2013; 52:5418-27. [DOI: 10.1021/ic400361s] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lei Dong
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Yujuan Wang
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Yanzong Lv
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Fuming Mei
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Hui Xiong
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Hubei
Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan
430074, P.R. China
| |
Collapse
|
34
|
Hoffmann I, Jernerén F, Oliw EH. Expression of fusion proteins of Aspergillus terreus reveals a novel allene oxide synthase. J Biol Chem 2013; 288:11459-69. [PMID: 23479731 DOI: 10.1074/jbc.m113.458257] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aspergilli oxidize C18 unsaturated fatty acids by dioxygenase-cytochrome P450 fusion proteins to signal molecules involved in reproduction and host-pathogen interactions. Aspergillus terreus expresses linoleate 9R-dioxygenase (9R-DOX) and allene oxide synthase (AOS) activities in membrane fractions. The genome contains five genes (ATEG), which may code for a 9R-DOX-AOS fusion protein. The genes were cloned and expressed, but none of them oxidized 18:2n-6 to 9R-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HPODE). ATEG_02036 transformed 9R-HPODE to an unstable allene oxide, 9(R),10-epoxy-10,12(Z)-octadecadienoic acid. A substitution in the P450 domain (C1073S) abolished AOS activity. The N964V and N964D mutants both showed markedly reduced AOS activity, suggesting that Asn(964) may facilitate homolytic cleavage of the dioxygen bond of 9R-HPODE with formation of compound II in analogy with plant AOS (CYP74) and prostacyclin synthase (CYP8A1). ATEG_03992 was identified as 5,8-linoleate diol synthase (5,8-LDS). Replacement of Asn(878) in 5,8-LDS with leucine (N878L) mainly shifted ferryl oxygen insertion from C-5 toward C-6, but replacements of Gln(881) markedly affected catalysis. The Q881L mutant virtually abolished the diol synthase activity. Replacement of Gln(881) with Asn, Glu, Asp, or Lys residues augmented the homolytic cleavage of 8R-HPODE with formation of 10-hydroxy-8(9)-epoxy-12(Z)-octadecenoic acid (erythro/threo, 1-4:1) and/or shifted ferryl oxygen insertion from C-5 toward C-11. We conclude that homolysis and heterolysis of the dioxygen bond with formation of compound II in AOS and compound I in 5,8-LDS are influenced by Asn and Gln residues, respectively, of the I-helices. AOS of A. terreus appears to have evolved independently of CYP74 but with an analogous reaction mechanism.
Collapse
Affiliation(s)
- Inga Hoffmann
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | | | | |
Collapse
|
35
|
Yin G. Understanding the oxidative relationships of the metal oxo, hydroxo, and hydroperoxide intermediates with manganese(IV) complexes having bridged cyclams: correlation of the physicochemical properties with reactivity. Acc Chem Res 2013. [PMID: 23194251 DOI: 10.1021/ar300208z] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple transition metal functional groups including metaloxo, hydroxo, and hydroperoxide groups play significant roles in various biological and chemical oxidations such as electron transfer, oxygen transfer, and hydrogen abstraction. Further studies that clarify their oxidative relationships and the relationship between their reactivity and their physicochemical properties will expand our ability to predict the reactivity of the intermediate in different oxidative events. As a result researchers will be able to provide rational explanations of poorly understood oxidative phenomena and design selective oxidation catalysts. This Account summarizes results from recent studies of oxidative relationships among manganese(IV) molecules that include pairs of hydroxo/oxo ligands. Changes in the protonation state may simultaneously affect the net charge, the redox potential, the metal-oxygen bond order (M-O vs M═O), and the reactivity of the metal ion. In the manganese(IV) model system, [Mn(IV)(Me(2)EBC)(OH)(2)](PF(6))(2), the Mn(IV)-OH and Mn(IV)═O moieties have similar hydrogen abstraction capabilities, but Mn(IV)═O abstracts hydrogen at a more than 40-fold faster rate than the corresponding Mn(IV)-OH. However, after the first hydrogen abstraction, the reduction product, Mn(III)-OH(2) from the Mn(IV)-OH moiety, cannot transfer a subsequent OH group to the substrate radical. Instead the Mn(III)-OH from the Mn(IV)═O moiety reforms the OH group, generating the hydroxylated product. In the oxygenation of substrates such as triarylphosphines, the reaction with the Mn(IV)═O moiety proceeds by concerted oxygen atom transfer, but the reaction with the Mn(IV)-OH functional group proceeds by electron transfer. In addition, the manganese(IV) species with a Mn(IV)-OH group has a higher redox potential and demonstrates much more facile electron transfer than the one that has the Mn(IV)═O group. Furthermore, an increase in the net charge of the Mn(IV)-OH further accelerates its electron transfer rate. But its influence on hydrogen abstraction is minor because charge-promoted electron transfer does not enhance hydrogen abstraction remarkably. The Mn(IV)-OOH moiety with an identical coordination environment is a more powerful oxidant than the corresponding Mn(IV)-OH and Mn(IV)═O moieties in both hydrogen abstraction and oxygen atom transfer. With this full understanding of the oxidative reactivity of the Mn(IV)-OH and Mn(IV)═O moieties, we have clarified the correlation between the physicochemical properties of these active intermediates, including net charge, redox potential, and metal-oxygen bond order, and their reactivities. The reactivity differences between the metal oxo and hydroxo moieties on these manganese(IV) functional groups after the first hydrogen abstraction have provided clues for understanding their occurrence and functions in metalloenzymes. The P450 enzymes require an iron(IV) oxo form rather than an iron(IV) hydroxo form to perform substrate hydroxylation. However, the lipoxygenases use an iron(III) hydroxo group to dioxygenate unsaturated fatty acids rather than an iron(III) oxo species, a moiety that could facilitate hydroxylation reactions. These distinctly different physicochemical properties and reactivities of the metal oxo and hydroxo moieties could provide clues to understand these elusive oxidation phenomena and provide the foundation for the rational design of novel oxidation catalysts.
Collapse
Affiliation(s)
- Guochuan Yin
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
36
|
Stylianou M, Nikolakis VA, Chilas GI, Jakusch T, Vaimakis T, Kiss T, Sigalas MP, Keramidas AD, Kabanos TA. Molybdenum(VI) Coordination Chemistry of the N,N-Disubstituted Bis(hydroxylamido)-1,3,5-triazine Ligand, H2bihyat. Water-Assisted Activation of the MoVI═O Bond and Reversible Dimerization of cis-[MoVIO2(bihyat)] to [MoVI2O4(bihyat)2(H2O)2]. Inorg Chem 2012; 51:13138-47. [DOI: 10.1021/ic301282q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marios Stylianou
- Department of Chemistry, University of Cyprus, Nicosia 1678,
Cyprus
| | - Vladimiros A. Nikolakis
- Section of Inorganic
and Analytical
Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - George I. Chilas
- Section of Inorganic
and Analytical
Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Tamas Jakusch
- Department of Inorganic
and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Tiverios Vaimakis
- Section of Inorganic
and Analytical
Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Tamas Kiss
- Department of Inorganic
and Analytical Chemistry, University of Szeged, Szeged, Hungary
| | - Michael P. Sigalas
- Laboratory of Applied Quantum
Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki
54124, Greece
| | | | - Themistoklis A. Kabanos
- Section of Inorganic
and Analytical
Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
37
|
Cimadevilla F, García ME, García-Vivó D, Ruiz MA, Graiff C, Tiripicchio A. Reactions of the Unsaturated Hydroxo Complex [W2Cp2(OH)(μ-PPh2)2(CO)]BF4 with Mono- and Bidentate Ligands Having E–H bonds (E = O, S, N). Inorg Chem 2012; 51:10427-36. [DOI: 10.1021/ic301674k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fernanda Cimadevilla
- Departamento de Química
Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - M. Esther García
- Departamento de Química
Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Daniel García-Vivó
- Departamento de Química
Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Miguel A. Ruiz
- Departamento de Química
Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Claudia Graiff
- Dipartimento di Chimica Generale
e Inorganica, Chimica Analitica, Chimica Fisica, Università di Parma, Parco Area delle Scienze 17/A, I-43100 Parma,
Italy
| | - Antonio Tiripicchio
- Dipartimento di Chimica Generale
e Inorganica, Chimica Analitica, Chimica Fisica, Università di Parma, Parco Area delle Scienze 17/A, I-43100 Parma,
Italy
| |
Collapse
|
38
|
Amarante TR, Neves P, Paz FAA, Pillinger M, Valente AA, Gonçalves IS. A dinuclear oxomolybdenum(VI) complex, [Mo2O6(4,4′-di-tert-butyl-2,2′-bipyridine)2], displaying the {MoO2(μ-O)2MoO2}0 core, and its use as a catalyst in olefin epoxidation. INORG CHEM COMMUN 2012. [DOI: 10.1016/j.inoche.2012.02.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Ye W, Ho DM, Friedle S, Palluccio TD, Rybak-Akimova EV. Role of Fe(IV)-oxo intermediates in stoichiometric and catalytic oxidations mediated by iron pyridine-azamacrocycles. Inorg Chem 2012; 51:5006-21. [PMID: 22534174 DOI: 10.1021/ic202435r] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An iron(II) complex with a pyridine-containing 14-membered macrocyclic (PyMAC) ligand L1 (L1 = 2,7,12-trimethyl-3,7,11,17-tetra-azabicyclo[11.3.1]heptadeca-1(17),13,15-triene), 1, was prepared and characterized. Complex 1 contains low-spin iron(II) in a pseudo-octahedral geometry as determined by X-ray crystallography. Magnetic susceptibility measurements (298 K, Evans method) and Mössbauer spectroscopy (90 K, δ = 0.50(2) mm/s, ΔE(Q) = 0.78(2) mm/s) confirmed that the low-spin configuration of Fe(II) is retained in liquid and frozen acetonitrile solutions. Cyclic voltammetry revealed a reversible one-electron oxidation/reduction of the iron center in 1, with E(1/2)(Fe(III)/Fe(II)) = 0.49 V vs Fc(+)/Fc, a value very similar to the half-wave potentials of related macrocyclic complexes. Complex 1 catalyzed the epoxidation of cyclooctene and other olefins with H(2)O(2). Low-temperature stopped-flow kinetic studies demonstrated the formation of an iron(IV)-oxo intermediate in the reaction of 1 with H(2)O(2) and concomitant partial ligand oxidation. A soluble iodine(V) oxidant, isopropyl 2-iodoxybenzoate, was found to be an excellent oxygen atom donor for generating Fe(IV)-oxo intermediates for additional spectroscopic (UV-vis in CH(3)CN: λ(max) = 705 nm, ε ≈ 240 M(-1) cm(-1); Mössbauer: δ = 0.03(2) mm/s, ΔE(Q) = 2.00(2) mm/s) and kinetic studies. The electrophilic character of the (L1)Fe(IV)═O intermediate was established in rapid (k(2) = 26.5 M(-1) s(-1) for oxidation of PPh(3) at 0 °C), associative (ΔH(‡) = 53 kJ/mol, ΔS(‡) = -25 J/K mol) oxidation of substituted triarylphosphines (electron-donating substituents increased the reaction rate, with a negative value of Hammet's parameter ρ = -1.05). Similar double-mixing kinetic experiments demonstrated somewhat slower (k(2) = 0.17 M(-1) s(-1) at 0 °C), clean, second-order oxidation of cyclooctene into epoxide with preformed (L1)Fe(IV)═O that could be generated from (L1)Fe(II) and H(2)O(2) or isopropyl 2-iodoxybenzoate. Independently determined rates of ferryl(IV) formation and its subsequent reaction with cyclooctene confirmed that the Fe(IV)-oxo species, (L1)Fe(IV)═O, is a kinetically competent intermediate for cyclooctene epoxidation with H(2)O(2) at room temperature. Partial ligand oxidation of (L1)Fe(IV)═O occurs over time in oxidative media, reducing the oxidizing ability of the ferryl species; the macrocyclic nature of the ligand is retained, resulting in ferryl(IV) complexes with Schiff base PyMACs. NH-groups of the PyMAC ligand assist the oxygen atom transfer from ferryl(IV) intermediates to olefin substrates.
Collapse
Affiliation(s)
- Wanhua Ye
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | |
Collapse
|
40
|
Wang Y, Shi S, Wang H, Zhu D, Yin G. Kinetics of hydrogen abstraction by active metal hydroxo and oxo intermediates: revealing their unexpected similarities in the transition state. Chem Commun (Camb) 2012; 48:7832-4. [DOI: 10.1039/c2cc33615d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Wang Y, Shi S, Zhu D, Yin G. The oxidative properties of a manganese(iv) hydroperoxide moiety and its relationships with the corresponding manganese(iv) oxo and hydroxo moieties. Dalton Trans 2012; 41:2612-9. [DOI: 10.1039/c2dt11814a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Fukuzumi S, Ohkubo K, Morimoto Y. Mechanisms of metal ion-coupled electron transfer. Phys Chem Chem Phys 2012; 14:8472-84. [DOI: 10.1039/c2cp40459a] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
43
|
Shi S, Wang Y, Xu A, Wang H, Zhu D, Roy SB, Jackson TA, Busch DH, Yin G. Distinct Reactivity Differences of Metal Oxo and Its Corresponding Hydroxo Moieties in Oxidations: Implications from a Manganese(IV) Complex Having Dihydroxide Ligand. Angew Chem Int Ed Engl 2011; 50:7321-4. [DOI: 10.1002/anie.201100588] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/17/2011] [Indexed: 11/12/2022]
|
44
|
Shi S, Wang Y, Xu A, Wang H, Zhu D, Roy SB, Jackson TA, Busch DH, Yin G. Distinct Reactivity Differences of Metal Oxo and Its Corresponding Hydroxo Moieties in Oxidations: Implications from a Manganese(IV) Complex Having Dihydroxide Ligand. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Radicals in transition metal catalyzed reactions? transition metal catalyzed radical reactions? - a fruitful interplay anyway: part 2. Radical catalysis by group 8 and 9 elements. Top Curr Chem (Cham) 2011; 320:191-322. [PMID: 22143610 DOI: 10.1007/128_2011_285] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the current status of transition metal catalyzed reactions involving radical intermediates in organic chemistry. This part focuses on radical-based methods catalyzed by group 8 and group 9 metal complexes. Reductive and redox-neutral coupling methods catalyzed by low-valent metal complexes as well as catalytic oxidative C-C bond formations are reviewed.
Collapse
|
46
|
Morimoto Y, Kotani H, Park J, Lee YM, Nam W, Fukuzumi S. Metal Ion-Coupled Electron Transfer of a Nonheme Oxoiron(IV) Complex: Remarkable Enhancement of Electron-Transfer Rates by Sc3+. J Am Chem Soc 2010; 133:403-5. [DOI: 10.1021/ja109056x] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuma Morimoto
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan, and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Hiroaki Kotani
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan, and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Jiyun Park
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan, and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Yong-Min Lee
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan, and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Wonwoo Nam
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan, and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan, and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|