1
|
Di Y, Zhang X, Wen X, Qin J, Ye L, Wang Y, Song M, Wang Z, He W. MAPK Signaling-Mediated RFNG Phosphorylation and Nuclear Translocation Restrain Oxaliplatin-Induced Apoptosis and Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402795. [PMID: 39120977 PMCID: PMC11481204 DOI: 10.1002/advs.202402795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/12/2024] [Indexed: 08/11/2024]
Abstract
Chemotherapy resistance remains a major challenge in the treatment of colorectal cancer (CRC). Therefore, it is crucial to develop novel strategies to sensitize cancer cells to chemotherapy. Here, the fringe family is screened to determine their contribution to chemotherapy resistance in CRC. It is found that RFNG depletion significantly sensitizes cancer cells to oxaliplatin treatment. Mechanistically, chemotherapy-activated MAPK signaling induces ERK to phosphorylate RFNG Ser255 residue. Phosphorylated RFNG S255 (pS255) interacts with the nuclear importin proteins KPNA1/importin-α1 and KPNB1/importin-β1, leading to its translocation into the nucleus where it targets p53 and inhibits its phosphorylation by competitively inhibiting the binding of CHK2 to p53. Consequently, the expression of CDKN1A is decreased and that of SLC7A11 is increased, leading to the inhibition of apoptosis and ferroptosis. In contrast, phosphor-deficient RFNG S225A mutant showed increased apoptosis and ferroptosis, and exhibited a notable response to oxaliplatin chemotherapy both in vitro and in vivo. It is further revealed that patients with low RFNG pS255 exhibited significant sensitivity to oxaliplatin in a patient-derived xenograft (PDX) model. These findings highlight the crosstalk between the MAPK and p53 signaling pathways through RFNG, which mediates oxaliplatin resistance in CRC. Additionally, this study provides guidance for oxaliplatin treatment of CRC patients.
Collapse
Affiliation(s)
- Yuqin Di
- Molecular Diagnosis and Gene Testing CenterThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiang Zhang
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiangqiong Wen
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Jiale Qin
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Lvlan Ye
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Youpeng Wang
- Center of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Mei Song
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510080China
| | - Ziyang Wang
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361000China
| |
Collapse
|
2
|
Hirose Y, Oba A, Takamatsu M, Hamada T, Takeda T, Suzuki T, Maekawa A, Kitano Y, Sato S, Kobayashi K, Omiya K, Ono Y, Sato T, Ito H, Sasaki T, Ozaka M, Takeuchi K, Sasahira N, Inoue Y, Wakai T, Takahashi Y. Caveolin-1 expression is a predictor of survival and recurrence patterns in resected pancreatic ductal adenocarcinoma. Pancreatology 2024:S1424-3903(24)00751-8. [PMID: 39395872 DOI: 10.1016/j.pan.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND/OBJECTIVE Caveolin-1 (Cav1) expressed in cancer cells (cCav1) or cancer-associated fibroblasts (fCav1) exerts either pro- or anti-tumorigenic effects depending on the cancer type or stage of cancer. We aimed to clarify the impact of cCav1 or fCav1 on survival, recurrence patterns, and efficacy of neoadjuvant chemotherapy (NAC) in resected pancreatic ductal adenocarcinoma (PDAC). METHODS Tissue microarrays were constructed including 615 patients who underwent curative resection for PDAC. Cav1 expression was evaluated by immunohistochemistry. Patients were divided into two groups based on Cav1 expression in cancer cells (cCav1high vs. cCav1low) or cancer-associated fibroblasts (fCav1high vs. fCav1low). RESULTS Among all 615 patients, 40.7% were cCav1high and 72.7% were fCav1high. cCav1high was associated with worse overall survival (OS) (p = 0.001) and recurrence-free survival (RFS) (p = 0.001) than cCav1low, and was an independent prognostic factor in multivariate analysis of OS and RFS (OS: p = 0.001, hazard ratio [HR] 1.361; RFS: p = 0.001, HR 1.348). Among 596 patients with resectable/borderline resectable PDAC, cCav1high patients with NAC showed better OS than those without, while there was no significant difference between cCav1low patients with NAC and those without. cCav1high was associated with early recurrence (< 6 months) and liver metastasis after resection. Multivariate analysis revealed cCav1high as an independent predictor of liver metastasis. CONCLUSIONS cCav1high correlated with worse survival, early recurrence, and liver metastasis after resection for PDAC, while NAC improved survival in cCav1high patients. The Evaluation of cCav1 status could provide additional information contributing to the personalized management of PDAC.
Collapse
Affiliation(s)
- Yuki Hirose
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Oba
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Manabu Takamatsu
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Takeda
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Maekawa
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuki Kitano
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shoki Sato
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kosuke Kobayashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kojiro Omiya
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshihiro Ono
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takafumi Sato
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiromichi Ito
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Sasaki
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masato Ozaka
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naoki Sasahira
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yosuke Inoue
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
3
|
Ma J, Gong Y, Sun X, Liu C, Li X, Sun Y, Yang D, He J, Wang M, Du J, Zhang J, Xu W, Wang T, Chi X, Tang Y, Song J, Wang Y, Ma F, Chen C, Zhang H, Zhan J. Tumor suppressor FRMD3 controls mammary epithelial cell fate determination via notch signaling pathway. SCIENCE ADVANCES 2024; 10:eadk8958. [PMID: 38959315 PMCID: PMC11221522 DOI: 10.1126/sciadv.adk8958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/17/2024] [Indexed: 07/05/2024]
Abstract
The luminal-to-basal transition in mammary epithelial cells (MECs) is accompanied by changes in epithelial cell lineage plasticity; however, the underlying mechanism remains elusive. Here, we report that deficiency of Frmd3 inhibits mammary gland lineage development and induces stemness of MECs, subsequently leading to the occurrence of triple-negative breast cancer. Loss of Frmd3 in PyMT mice results in a luminal-to-basal transition phenotype. Single-cell RNA sequencing of MECs indicated that knockout of Frmd3 inhibits the Notch signaling pathway. Mechanistically, FERM domain-containing protein 3 (FRMD3) promotes the degradation of Disheveled-2 by disrupting its interaction with deubiquitinase USP9x. FRMD3 also interrupts the interaction of Disheveled-2 with CK1, FOXK1/2, and NICD and decreases Disheveled-2 phosphorylation and nuclear localization, thereby impairing Notch-dependent luminal epithelial lineage plasticity in MECs. A low level of FRMD3 predicts poor outcomes for breast cancer patients. Together, we demonstrated that FRMD3 is a tumor suppressor that functions as an endogenous activator of the Notch signaling pathway, facilitating the basal-to-luminal transformation in MECs.
Collapse
Affiliation(s)
- Ji Ma
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yuqing Gong
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoran Sun
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | - Cheng Liu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xueying Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yi Sun
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Decao Yang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Junming He
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Mengyuan Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Juan Du
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhi Xu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Tianzhuo Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaochun Chi
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yan Tang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yunling Wang
- Institute of Cardiovascular Research, Peking University Health Science Center, Beijing 100191, China
| | - Fei Ma
- National Cancer Center, State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
4
|
Regner MJ, Garcia-Recio S, Thennavan A, Wisniewska K, Mendez-Giraldez R, Felsheim B, Spanheimer PM, Parker JS, Perou CM, Franco HL. Defining the Regulatory Logic of Breast Cancer Using Single-Cell Epigenetic and Transcriptome Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598858. [PMID: 38948758 PMCID: PMC11212881 DOI: 10.1101/2024.06.13.598858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Annotation of the cis-regulatory elements that drive transcriptional dysregulation in cancer cells is critical to improving our understanding of tumor biology. Herein, we present a compendium of matched chromatin accessibility (scATAC-seq) and transcriptome (scRNA-seq) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell-of-origin for luminal breast tumors and basal breast tumors and then introduce a novel methodology that implements linear mixed-effects models to systematically quantify associations between regions of chromatin accessibility (i.e. regulatory elements) and gene expression in malignant cells versus normal mammary epithelial cells. These data unveil regulatory elements with that switch from silencers of gene expression in normal cells to enhancers of gene expression in cancer cells, leading to the upregulation of clinically relevant oncogenes. To translate the utility of this dataset into tractable models, we generated matched scATAC-seq and scRNA-seq profiles for breast cancer cell lines, revealing, for each subtype, a conserved oncogenic gene expression program between in vitro and in vivo cells. Together, this work highlights the importance of non-coding regulatory mechanisms that underlie oncogenic processes and the ability of single-cell multi-omics to define the regulatory logic of BC cells at single-cell resolution.
Collapse
Affiliation(s)
- Matthew J. Regner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Kamila Wisniewska
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Raul Mendez-Giraldez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brooke Felsheim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Philip M. Spanheimer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hector L. Franco
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935
| |
Collapse
|
5
|
Timmins LR, Ortiz-Silva M, Joshi B, Li YL, Dickson FH, Wong TH, Vandevoorde KR, Nabi IR. Caveolin-1 promotes mitochondrial health and limits mitochondrial ROS through ROCK/AMPK regulation of basal mitophagic flux. FASEB J 2024; 38:e23343. [PMID: 38071602 DOI: 10.1096/fj.202201872rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023]
Abstract
Caveolin-1 (CAV1), the main structural component of caveolae, is phosphorylated at tyrosine-14 (pCAV1), regulates signal transduction, mechanotransduction, and mitochondrial function, and plays contrasting roles in cancer progression. We report that CRISPR/Cas9 knockout (KO) of CAV1 increases mitochondrial oxidative phosphorylation, increases mitochondrial potential, and reduces ROS in MDA-MB-231 triple-negative breast cancer cells. Supporting a role for pCAV1, these effects are reversed upon expression of CAV1 phosphomimetic CAV1 Y14D but not non-phosphorylatable CAV1 Y14F. pCAV1 is a known effector of Rho-associated kinase (ROCK) signaling and ROCK1/2 signaling mediates CAV1 promotion of increased mitochondrial potential and decreased ROS production in MDA-MB-231 cells. CAV1/ROCK control of mitochondrial potential and ROS is caveolae-independent as similar results were observed in PC3 prostate cancer cells lacking caveolae. Increased mitochondrial health and reduced ROS in CAV1 KO MDA-MB-231 cells were reversed by knockdown of the autophagy protein ATG5, mitophagy regulator PINK1 or the mitochondrial fission protein Drp1 and therefore due to mitophagy. Use of the mitoKeima mitophagy probe confirmed that CAV1 signaling through ROCK inhibited basal mitophagic flux. Activation of AMPK, a major mitochondrial homeostasis protein inhibited by ROCK, is inhibited by CAV1-ROCK signaling and mediates the increased mitochondrial potential, decreased ROS, and decreased basal mitophagy flux observed in wild-type MDA-MB-231 cells. CAV1 regulation of mitochondrial health and ROS in cancer cells therefore occurs via ROCK-dependent inhibition of AMPK. This study therefore links pCAV1 signaling activity at the plasma membrane with its regulation of mitochondrial activity and cancer cell metabolism through control of mitophagy.
Collapse
Affiliation(s)
- Logan R Timmins
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Milene Ortiz-Silva
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bharat Joshi
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Y Lydia Li
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fiona H Dickson
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy H Wong
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kurt R Vandevoorde
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ivan R Nabi
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Gong X, Zheng C, Jia H, Liu Y, Yang R, Chen Z, Pan Y, Li X, Liu Y. A pan-cancer analysis revealing the role of LFNG, MFNG and RFNG in tumor prognosis and microenvironment. BMC Cancer 2023; 23:1065. [PMID: 37932706 PMCID: PMC10626706 DOI: 10.1186/s12885-023-11545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Fringe is a glycosyltransferase involved in tumor occurrence and metastasis. However, a comprehensive analysis of the Fringe family members lunatic fringe (LFNG), manic fringe (MFNG), radical fringe (RFNG) in human cancers is lacking. METHODS In this study, we performed a pan-cancer analysis of Fringe family members in 33 cancer types with transcriptomic, genomic, methylation data from The Cancer Genome Atlas (TCGA) project. The correlation between Fringe family member expression and patient overall survival, copy number variation, methylation, Gene Ontology enrichment, and tumor-infiltrating lymphocytes (TILs) was investigated by using multiple databases, such as cBioPortal, Human Protein Atlas, GeneCards, STRING, MSigDB, TISIDB, and TIMER2. In vitro experiments and immunohistochemical assays were performed to validate our findings. RESULTS High expression levels of LFNG, MFNG, RFNG were closely associated with poor overall survival in multiple cancers, particularly in pancreatic adenocarcinoma (PAAD), uveal melanoma (UVM), and brain lower-grade glioma (LGG). Copy number variation analysis revealed that diploid and gain mutations of LFNG was significantly increased in PAAD and stomach adenocarcinoma (STAD), and significantly associated with the methylation levels in promoter regions. Significant differential genes between high and low expression groups of these Fringe family members were found to be consistently enriched in immune response and T cell activation pathway, extracellular matrix adhesion pathway, RNA splicing and ion transport pathways. Correlation between the abundance of tumor-infiltrating lymphocytes (TILs) and LFNG, MFNG, and RFNG expression showed that high LFNG expression was associated with lower TIL levels, particularly in PAAD. In vitro experiment by using pancreatic cancer PANC1 cells showed that LFNG overexpression promoted cell proliferation and invasion. Immunohistochemical assay in 90 PAAD patients verified the expression level of LFNG and its relationship with the prognosis. CONCLUSIONS Our study provides a relatively comprehensive understanding of the expression, mutation, copy number, promoter methylation level changes along with prognosis values of LFNG, MFNG, and RFNG in different tumors. High LFNG expression may serve as a poor prognosis molecular marker for PAAD.
Collapse
Affiliation(s)
- Xun Gong
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, Guangdong, P.R. China
| | - Chenglong Zheng
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, Guangdong, P.R. China
| | - Haiying Jia
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, Guangdong, P.R. China
| | - Yangruiyu Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Rui Yang
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, Guangdong, P.R. China
| | - Zizhou Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, 1098 Xueyuan Avenue, Nanshan District, Shenzhen, 518000, Guangdong, P.R. China.
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
7
|
Hossain F, Ucar DA, Monticone G, Ran Y, Majumder S, Larter K, Luu H, Wyczechowska D, Heidari S, Xu K, Shanthalingam S, Matossian M, Xi Y, Burow M, Collins-Burow B, Del Valle L, Hicks C, Zabaleta J, Golde T, Osborne B, Miele L. Sulindac sulfide as a non-immune suppressive γ-secretase modulator to target triple-negative breast cancer. Front Immunol 2023; 14:1244159. [PMID: 37901240 PMCID: PMC10612326 DOI: 10.3389/fimmu.2023.1244159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Deniz A. Ucar
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Giulia Monticone
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Yong Ran
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Kristina Larter
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Hanh Luu
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Dorota Wyczechowska
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Soroor Heidari
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Keli Xu
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | | | - Yaguang Xi
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Matthew Burow
- School of Medicine, Tulane University, New Orleans, LA, United States
| | | | - Luis Del Valle
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
- Department of Pathology, Louisiana State University Health Sciences Center - New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Todd Golde
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Barbara Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| |
Collapse
|
8
|
El Hejjioui B, Lamrabet S, Amrani Joutei S, Senhaji N, Bouhafa T, Malhouf MA, Bennis S, Bouguenouch L. New Biomarkers and Treatment Advances in Triple-Negative Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13111949. [PMID: 37296801 DOI: 10.3390/diagnostics13111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer lacking hormone receptor expression and HER2 gene amplification. TNBC represents a heterogeneous subtype of breast cancer, characterized by poor prognosis, high invasiveness, high metastatic potential, and a tendency to relapse. In this review, the specific molecular subtypes and pathological aspects of triple-negative breast cancer are illustrated, with particular attention to the biomarker characteristics of TNBC, namely: regulators of cell proliferation and migration and angiogenesis, apoptosis-regulating proteins, regulators of DNA damage response, immune checkpoints, and epigenetic modifications. This paper also focuses on omics approaches to exploring TNBC, such as genomics to identify cancer-specific mutations, epigenomics to identify altered epigenetic landscapes in cancer cells, and transcriptomics to explore differential mRNA and protein expression. Moreover, updated neoadjuvant treatments for TNBC are also mentioned, underlining the role of immunotherapy and novel and targeted agents in the treatment of TNBC.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Salma Lamrabet
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Sarah Amrani Joutei
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | - Nadia Senhaji
- Faculty of Sciences, Moulay Ismail University, Meknès 50000, Morocco
| | - Touria Bouhafa
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| |
Collapse
|
9
|
Chung WC, Xu K. Notch signaling pathway in pancreatic tumorigenesis. Adv Cancer Res 2023. [DOI: 10.1016/bs.acr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
10
|
Qin G, Park ES, Chen X, Han S, Xiang D, Ren F, Liu G, Chen H, Yuan GC, Li Z. Distinct niche structures and intrinsic programs of fallopian tube and ovarian surface epithelial cells. iScience 2022; 26:105861. [PMID: 36624845 PMCID: PMC9823228 DOI: 10.1016/j.isci.2022.105861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) can originate from either fallopian tube epithelial (FTE) or ovarian surface epithelial (OSE) cells, but with different latencies and disease outcomes. To address the basis of these differences, we performed single cell RNA-sequencing of mouse cells isolated from the distal half of fallopian tube (FT) and surface layer of ovary. We find at the molecular level, FTE secretory stem/progenitor cells and OSE cells resemble mammary luminal progenitors and basal cells, respectively. An FT stromal subpopulation, enriched with Pdgfra + and Esr1 + cells, expresses multiple secreted factor (e.g., IGF1) and Hedgehog pathway genes and may serve as a niche for FTE cells. In contrast, Lgr5 + OSE cells express similar genes largely by themselves, raising a possibility that they serve as their own niche. The differences in intrinsic expression programs and niche organizations of FTE and OSE cells may contribute to their different courses toward the development of EOCs.
Collapse
Affiliation(s)
- Guyu Qin
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Eun-Sil Park
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Xueqing Chen
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sen Han
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Fang Ren
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gang Liu
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Huidong Chen
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA,Corresponding author
| |
Collapse
|
11
|
Yousefi H, Bahramy A, Zafari N, Delavar MR, Nguyen K, Haghi A, Kandelouei T, Vittori C, Jazireian P, Maleki S, Imani D, Moshksar A, Bitaraf A, Babashah S. Notch signaling pathway: a comprehensive prognostic and gene expression profile analysis in breast cancer. BMC Cancer 2022; 22:1282. [PMID: 36476410 PMCID: PMC9730604 DOI: 10.1186/s12885-022-10383-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a complex disease exhibiting a great degree of heterogeneity due to different molecular subtypes. Notch signaling regulates the differentiation of breast epithelial cells during normal development and plays a crucial role in breast cancer progression through the abnormal expression of the Notch up-and down-stream effectors. To date, there are only a few patient-centered clinical studies using datasets characterizing the role of Notch signaling pathway regulators in breast cancer; thus, we investigate the role and functionality of these factors in different subtypes using publicly available databases containing records from large studies. High-throughput genomic data and clinical information extracted from TCGA were analyzed. We performed Kaplan-Meier survival and differential gene expression analyses using the HALLMARK_NOTCH_SIGNALING gene set. To determine if epigenetic regulation of the Notch regulators contributes to their expression, we analyzed methylation levels of these factors using the TCGA HumanMethylation450 Array data. Notch receptors and ligands expression is generally associated with the tumor subtype, grade, and stage. Furthermore, we showed gene expression levels of most Notch factors were associated with DNA methylation rate. Modulating the expression levels of Notch receptors and effectors can be a potential therapeutic approach for breast cancer. As we outline herein, elucidating the novel prognostic and regulatory roles of Notch implicate this pathway as an essential mediator controlling breast cancer progression.
Collapse
Affiliation(s)
- Hassan Yousefi
- Biochemistry & Molecular Biology, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, USA
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Zafari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khoa Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Atousa Haghi
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Kandelouei
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Cecilia Vittori
- Louisiana State University Health Sciences Center (LSUHSC), and Stanley S. Scott Cancer Center, New Orleans, LA, USA
| | - Parham Jazireian
- Department of Biology, University Campus 2, University of Guilan, Rasht, Iran
| | - Sajad Maleki
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amin Moshksar
- Interventional Radiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box, Tehran, 14115-154, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box, Tehran, 14115-154, Iran.
| |
Collapse
|
12
|
Pennarubia F, Ito A, Takeuchi M, Haltiwanger RS. Cancer-associated Notch receptor variants lead to O-fucosylation defects that deregulate Notch signaling. J Biol Chem 2022; 298:102616. [PMID: 36265581 PMCID: PMC9672452 DOI: 10.1016/j.jbc.2022.102616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
NOTCH1 is a transmembrane receptor that initiates a signaling pathway involved in embryonic development of adult tissue homeostasis. The extracellular domain of NOTCH1 is composed largely of epidermal growth factor-like repeats (EGFs), many of which can be O-fucosylated at a specific consensus sequence by protein O-fucosyltransferase 1 (POFUT1). O-fucosylation of NOTCH1 is necessary for its function. The Notch pathway is deregulated in many cancers, and alteration of POFUT1 has been reported in several cancers, but further investigation is needed to assess whether there is deregulation of the Notch pathway associated with mutations that affect O-fucosylation in cancers. Using Biomuta and COSMIC databases, we selected nine NOTCH1 variants that could cause a change in O-fucosylation of key EGFs. Mass spectral glycoproteomic site mapping was used to identify alterations in O-fucosylation of EGFs containing the mutations. Cell-based NOTCH-1 signaling assays, ligand-binding assays, and cellsurface analysis were used to determine the effect of each mutation on Notch activation. Two variants led to a gain of function (GOF), six to a loss of function (LOF), and one had minimal effects. Most GOF and LOF were associated with a change in O-fucosylation. Finally, by comparing our results with known NOTCH1 alterations in cancers from which our mutations originated, we were able to establish a correlation between our results and the known GOF or LOF of NOTCH1 in these cancers. This study shows that point mutations in N1 can lead to alterations in O-fucosylation that deregulate the Notch pathway and be associated with cancer processes.
Collapse
|
13
|
Chung WC, Egan SE, Xu K. A tumor-suppressive function for Notch3 in the parous mammary gland. Development 2022; 149:277236. [DOI: 10.1242/dev.200913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Notch3 promotes mammary luminal cell specification and forced Notch3 activation can induce mammary tumor formation. However, recent studies suggest a tumor-suppressive role for Notch3. Here, we report on Notch3 expression and functional analysis in the mouse mammary gland. Notch3 is expressed in the luminal compartment throughout mammary gland development, but switches to basal cells with initiation of post-lactational involution. Deletion of Notch3 caused a decrease of Notch activation in luminal cells and diminished luminal progenitors at puberty, as well as reduced alveolar progenitors during pregnancy. Parous Notch3−/− mammary glands developed hyperplasia with accumulation of CD24hiCD49flo cells, some of which progressed to invasive tumors with luminal features. Notch3 deletion abolished Notch activation in basal cells during involution, accompanied by altered apoptosis and reduced brown adipocytes, leading to expansion of parity-identified mammary epithelial cells (PI-MECs). Interestingly, the postpartum microenvironment is required for the stem cell activity of Notch3−/− PI-MECs. Finally, high expression of NOTCH3 is associated with prolonged survival in patients with luminal breast cancer. These results highlight an unexpected tumor-suppressive function for Notch3 in the parous mammary gland through restriction of PI-MEC expansion.
Collapse
Affiliation(s)
- Wen-Cheng Chung
- Cancer Center and Research Institute, University of Mississippi Medical Center 1 , Jackson, MS 39216, USA
| | - Sean E. Egan
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children 2 , Toronto, ON M5G 0A4 , Canada
| | - Keli Xu
- Cancer Center and Research Institute, University of Mississippi Medical Center 1 , Jackson, MS 39216, USA
- University of Mississippi Medical Center 3 Department of Cell and Molecular Biology , , Jackson, MS 39216, USA
| |
Collapse
|
14
|
Mugisha S, Di X, Disoma C, Jiang H, Zhang S. Fringe family genes and their modulation of Notch signaling in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188746. [PMID: 35660646 DOI: 10.1016/j.bbcan.2022.188746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
Fringes are glycosyltransferases that transfer N-acetylglucosamine to the O-linked fucose of Notch receptors. They regulate the Notch signaling activity that drives tumor formation and progression, resulting in poor prognosis. However, the specific tumor-promoting role of Fringes differs depending on the type of cancer. Although a particular Fringe member could act as a tumor suppressor in one cancer type, it may act as an oncogene in another. This review discusses the tumorigenic role of the Fringe family (lunatic fringe, manic fringe, and radical fringe) in modulating Notch signaling in various cancers. Although the crucial functions of Fringes continue to emerge as more mechanistic studies are being pursued, further translational research is needed to explore their roles and therapeutic benefits in various malignancies.
Collapse
Affiliation(s)
- Samson Mugisha
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Cyrollah Disoma
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
15
|
Wang W, Okajima T, Takeuchi H. Significant Roles of Notch O-Glycosylation in Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061783. [PMID: 35335147 PMCID: PMC8950332 DOI: 10.3390/molecules27061783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Notch signaling, which was initially identified in Drosophila wing morphogenesis, plays pivotal roles in cell development and differentiation. Optimal Notch pathway activity is essential for normal development and dysregulation of Notch signaling leads to various human diseases, including many types of cancers. In hematopoietic cancers, such as T-cell acute lymphoblastic leukemia, Notch plays an oncogenic role, while in acute myeloid leukemia, it has a tumor-suppressive role. In solid tumors, such as hepatocellular carcinoma and medulloblastoma, Notch may have either an oncogenic or tumor-suppressive role, depending on the context. Aberrant expression of Notch receptors or ligands can alter the ligand-dependent Notch signaling and changes in trafficking can lead to ligand-independent signaling. Defects in any of the two signaling pathways can lead to tumorigenesis and tumor progression. Strikingly, O-glycosylation is one such process that modulates ligand–receptor binding and trafficking. Three types of O-linked modifications on the extracellular epidermal growth factor-like (EGF) repeats of Notch receptors are observed, namely O-glucosylation, O-fucosylation, and O-N-acetylglucosamine (GlcNAc) modifications. In addition, O-GalNAc mucin-type O-glycosylation outside the EGF repeats also appears to occur in Notch receptors. In this review, we first briefly summarize the basics of Notch signaling, describe the latest information on O-glycosylation of Notch receptors classified on a structural basis, and finally describe the regulation of Notch signaling by O-glycosylation in cancer.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Correspondence:
| |
Collapse
|
16
|
Cazares O, Chatterjee S, Lee P, Strietzel C, Bubolz JW, Harburg G, Howard J, Katzman S, Sanford J, Hinck L. Alveolar progenitor differentiation and lactation depends on paracrine inhibition of notch via ROBO1/CTNNB1/JAG1. Development 2021; 148:dev199940. [PMID: 34758082 PMCID: PMC8627605 DOI: 10.1242/dev.199940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022]
Abstract
In the mammary gland, how alveolar progenitor cells are recruited to fuel tissue growth with each estrus cycle and pregnancy remains poorly understood. Here, we identify a regulatory pathway that controls alveolar progenitor differentiation and lactation by governing Notch activation in mouse. Loss of Robo1 in the mammary gland epithelium activates Notch signaling, which expands the alveolar progenitor cell population at the expense of alveolar differentiation, resulting in compromised lactation. ROBO1 is expressed in both luminal and basal cells, but loss of Robo1 in basal cells results in the luminal differentiation defect. In the basal compartment, ROBO1 inhibits the expression of Notch ligand Jag1 by regulating β-catenin (CTNNB1), which binds the Jag1 promoter. Together, our studies reveal how ROBO1/CTTNB1/JAG1 signaling in the basal compartment exerts paracrine control of Notch signaling in the luminal compartment to regulate alveolar differentiation during pregnancy.
Collapse
Affiliation(s)
- Oscar Cazares
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Sharmila Chatterjee
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Pinky Lee
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | | | - J. W. Bubolz
- Zoetis Inc. 333 Portage Street, Building 300, Kalamazoo, MI 49007, USA
| | - Gwyndolen Harburg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Jon Howard
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
| | - Sol Katzman
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
| | - Jeremy Sanford
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Lindsay Hinck
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
17
|
Abstract
O-Linked glycosylation such as O-fucose, O-glucose, and O-N-acetylglucosamine are considered to be unusual. As suggested by the high levels of evolutional conservation, these O-glycans are fundamentally important for life. In the last two decades, our understanding of the importance of these glycans has greatly advanced. In particular, identification of the glycosyltransferases responsible for the biosynthesis of these glycans has accelerated basic research on the functional significance and molecular mechanisms by which these O-glycans regulate protein functions as well as clinical research on human diseases due to changes in these types of O-glycosylation. Notably, Notch receptor signaling is modified with and regulated by these types of O-glycans. Here, we summarize the current view of the structures and the significance of these O-glycans mainly in the context of Notch signaling regulation and human diseases.
Collapse
|
18
|
Schachter NF, Adams JR, Skowron P, Kozma KJ, Lee CA, Raghuram N, Yang J, Loch AJ, Wang W, Kucharczuk A, Wright KL, Quintana RM, An Y, Dotzko D, Gorman JL, Wojtal D, Shah JS, Leon-Gomez P, Pellecchia G, Dupuy AJ, Perou CM, Ben-Porath I, Karni R, Zacksenhaus E, Woodgett JR, Done SJ, Garzia L, Sorana Morrissy A, Reimand J, Taylor MD, Egan SE. Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer. Nat Commun 2021; 12:5238. [PMID: 34475389 PMCID: PMC8413298 DOI: 10.1038/s41467-021-25467-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
The most common events in breast cancer (BC) involve chromosome arm losses and gains. Here we describe identification of 1089 gene-centric common insertion sites (gCIS) from transposon-based screens in 8 mouse models of BC. Some gCIS are driver-specific, others driver non-specific, and still others associated with tumor histology. Processes affected by driver-specific and histology-specific mutations include well-known cancer pathways. Driver non-specific gCIS target the Mediator complex, Ca++ signaling, Cyclin D turnover, RNA-metabolism among other processes. Most gCIS show single allele disruption and many map to genomic regions showing high-frequency hemizygous loss in human BC. Two gCIS, Nf1 and Trps1, show synthetic haploinsufficient tumor suppressor activity. Many gCIS act on the same pathway responsible for tumor initiation, thereby selecting and sculpting just enough and just right signaling. These data highlight ~1000 genes with predicted conditional haploinsufficient tumor suppressor function and the potential to promote chromosome arm loss in BC.
Collapse
Affiliation(s)
- Nathan F Schachter
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jessica R Adams
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Patryk Skowron
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Katelyn J Kozma
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christian A Lee
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Nandini Raghuram
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Joanna Yang
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amanda J Loch
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wei Wang
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Aaron Kucharczuk
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Katherine L Wright
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rita M Quintana
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Natera, San Francisco, CA, USA
| | - Yeji An
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Dotzko
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer L Gorman
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Daria Wojtal
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Juhi S Shah
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul Leon-Gomez
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Giovanna Pellecchia
- The Center for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam J Dupuy
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jim R Woodgett
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Susan J Done
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- The Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Livia Garzia
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Cancer Research Program, McGill University, Montreal, QC, Canada
| | - A Sorana Morrissy
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary and Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Jüri Reimand
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sean E Egan
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Chen W, Wei W, Yu L, Ye Z, Huang F, Zhang L, Hu S, Cai C. Mammary Development and Breast Cancer: a Notch Perspective. J Mammary Gland Biol Neoplasia 2021; 26:309-320. [PMID: 34374886 PMCID: PMC8566423 DOI: 10.1007/s10911-021-09496-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mammary gland development primarily occurs postnatally, and this unique process is complex and regulated by systemic hormones and local growth factors. The mammary gland is also a highly dynamic organ that undergoes profound changes at puberty and during the reproductive cycle. These changes are driven by mammary stem cells (MaSCs). Breast cancer is one of the most common causes of cancer-related death in women. Cancer stem cells (CSCs) play prominent roles in tumor initiation, drug resistance, tumor recurrence, and metastasis. The highly conserved Notch signaling pathway functions as a key regulator of the niche mediating mammary organogenesis and breast neoplasia. In this review, we discuss mechanisms by which Notch contributes to breast carcinoma pathology and suggest potentials for therapeutic targeting of Notch in breast cancer. In summary, we provide a comprehensive overview of Notch functions in regulating MaSCs, mammary development, and breast cancer.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liya Yu
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Liyan Zhang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Shiqi Hu
- DU-ANU Joint Science College, Shandong University, Weihai, 264200, China
| | - Cheguo Cai
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
20
|
Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK, Wong PK. Decoding leader cells in collective cancer invasion. Nat Rev Cancer 2021; 21:592-604. [PMID: 34239104 DOI: 10.1038/s41568-021-00376-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Collective cancer invasion with leader-follower organization is increasingly recognized as a predominant mechanism in the metastatic cascade. Leader cells support cancer invasion by creating invasion tracks, sensing environmental cues and coordinating with follower cells biochemically and biomechanically. With the latest developments in experimental and computational models and analysis techniques, the range of specific traits and features of leader cells reported in the literature is rapidly expanding. Yet, despite their importance, there is no consensus on how leader cells arise or their essential characteristics. In this Perspective, we propose a framework for defining the essential aspects of leader cells and provide a unifying perspective on the varying cellular and molecular programmes that are adopted by each leader cell subtype to accomplish their functions. This Perspective can lead to more effective strategies to interdict a major contributor to metastatic capability.
Collapse
Affiliation(s)
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Physics, and Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Department of Physics and Astronomy, Department of Chemistry and Department of Biosciences, Rice University, Houston, TX, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
21
|
Edwards A, Brennan K. Notch Signalling in Breast Development and Cancer. Front Cell Dev Biol 2021; 9:692173. [PMID: 34295896 PMCID: PMC8290365 DOI: 10.3389/fcell.2021.692173] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The Notch signalling pathway is a highly conserved developmental signalling pathway, with vital roles in determining cell fate during embryonic development and tissue homeostasis. Aberrant Notch signalling has been implicated in many disease pathologies, including cancer. In this review, we will outline the mechanism and regulation of the Notch signalling pathway. We will also outline the role Notch signalling plays in normal mammary gland development and how Notch signalling is implicated in breast cancer tumorigenesis and progression. We will cover how Notch signalling controls several different hallmarks of cancer within epithelial cells with sections focussed on its roles in proliferation, apoptosis, invasion, and metastasis. We will provide evidence for Notch signalling in the breast cancer stem cell phenotype, which also has implications for therapy resistance and disease relapse in breast cancer patients. Finally, we will summarise the developments in therapeutic targeting of Notch signalling, and the pros and cons of this approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Abigail Edwards
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Keith Brennan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
Weidle UH, AuslÄnder S, Brinkmann U. Micro RNAs Promoting Growth and Metastasis in Preclinical In Vivo Models of Subcutaneous Melanoma. Cancer Genomics Proteomics 2021; 17:651-667. [PMID: 33099468 DOI: 10.21873/cgp.20221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years a considerable therapeutic progress in melanoma patients with the RAF V600E mutation via RAF/MEK pathway inhibition and immuno-therapeutic modalities has been witnessed. However, the majority of patients relapse after therapy. Therefore, a deeper understanding of the pathways driving oncogenicity and metastasis of melanoma is of paramount importance. In this review, we summarize microRNAs modulating tumor growth, metastasis, or both, in preclinical melanoma-related in vivo models and possible clinical impact in melanoma patients as modalities and targets for treatment of melanoma. We have identified miR-199a (ApoE, DNAJ4), miR-7-5p (RelA), miR-98a (IL6), miR-219-5p (BCL2) and miR-365 (NRP1) as possible targets to be scrutinized in further target validation studies.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Simon AuslÄnder
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
23
|
Abstract
Caveolin-1 (CAV1) has long been implicated in cancer progression, and while widely accepted as an oncogenic protein, CAV1 also has tumor suppressor activity. CAV1 was first identified in an early study as the primary substrate of Src kinase, a potent oncoprotein, where its phosphorylation correlated with cellular transformation. Indeed, CAV1 phosphorylation on tyrosine-14 (Y14; pCAV1) has been associated with several cancer-associated processes such as focal adhesion dynamics, tumor cell migration and invasion, growth suppression, cancer cell metabolism, and mechanical and oxidative stress. Despite this, a clear understanding of the role of Y14-phosphorylated pCAV1 in cancer progression has not been thoroughly established. Here, we provide an overview of the role of Src-dependent phosphorylation of tumor cell CAV1 in cancer progression, focusing on pCAV1 in tumor cell migration, focal adhesion signaling and metabolism, and in the cancer cell response to stress pathways characteristic of the tumor microenvironment. We also discuss a model for Y14 phosphorylation regulation of CAV1 effector protein interactions via the caveolin scaffolding domain.
Collapse
|
24
|
Orzechowska M, Anusewicz D, Bednarek AK. Functional Gene Expression Differentiation of the Notch Signaling Pathway in Female Reproductive Tract Tissues-A Comprehensive Review With Analysis. Front Cell Dev Biol 2021; 8:592616. [PMID: 33384996 PMCID: PMC7770115 DOI: 10.3389/fcell.2020.592616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The Notch pathway involves evolutionarily conserved signaling regulating the development of the female tract organs such as breast, ovary, cervix, and uterine endometrium. A great number of studies revealed Notch aberrancies in association with their carcinogenesis and disease progression, the management of which is still challenging. The present study is a comprehensive review of the available literature on Notch signaling during the normal development and carcinogenesis of the female tract organs. The review has been enriched with our analyses of the TCGA data including breast, cervical, ovarian, and endometrial carcinomas concerning the effects of Notch signaling at two levels: the core components and downstream effectors, hence filling the lack of global overview of Notch-driven carcinogenesis and disease progression. Phenotype heterogeneity regarding Notch signaling was projected in two uniform manifold approximation and projection algorithm dimensions, preceded by the principal component analysis step reducing the data burden. Additionally, overall and disease-free survival analyses were performed with the optimal cutpoint determination by Evaluate Cutpoints software to establish the character of particular Notch components in tumorigenesis. In addition to the review, we demonstrated separate models of the examined cancers of the Notch pathway and its targets, although expression profiles of all normal tissues were much more similar to each other than to its cancerous compartments. Such Notch-driven cancerous differentiation resulted in a case of opposite association with DFS and OS. As a consequence, target genes also show very distinct profiles including genes associated with cell proliferation and differentiation, energy metabolism, or the EMT. In conclusion, the observed Notch associations with the female tract malignancies resulted from differential expression of target genes. This may influence a future analysis to search for new therapeutic targets based on specific Notch pathway profiles.
Collapse
Affiliation(s)
| | - Dorota Anusewicz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
25
|
Nassir R, Esheba G, Elmoneim HMA, Altowairqi AS, Nouman G. Expression and Clinical Significance of <i>PIK3CA</i>, <i>c-MET</i> and <i>c-KIT</i> Mutations in Saudi Breast Cancer Patients. ADVANCES IN BREAST CANCER RESEARCH 2021; 10:60-74. [DOI: 10.4236/abcr.2021.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
26
|
Matsumoto K, Luther KB, Haltiwanger RS. Diseases related to Notch glycosylation. Mol Aspects Med 2020; 79:100938. [PMID: 33341260 DOI: 10.1016/j.mam.2020.100938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
The Notch receptors are a family of transmembrane proteins that mediate direct cell-cell interactions and control numerous cell-fate specifications in humans. The extracellular domains of mammalian Notch proteins contain 29-36 tandem epidermal growth factor-like (EGF) repeats, most of which have O-linked glycan modifications: O-glucose added by POGLUT1, O-fucose added by POFUT1 and elongated by Fringe enzymes, and O-GlcNAc added by EOGT. The extracellular domain is also N-glycosylated. Mutations in the glycosyltransferases modifying Notch have been identified in several diseases, including Dowling-Degos Disease (haploinsufficiency of POFUT1 or POGLUT1), a form of limb-girdle muscular dystrophy (autosomal recessive mutations in POGLUT1), Spondylocostal Dysostosis 3 (autosomal recessive mutations in LFNG), Adams-Oliver syndrome (autosomal recessive mutations in EOGT), and some cancers (amplification, gain or loss-of-function of POFUT1, Fringe enzymes, POGLUT1, MGAT3). Here we review the characteristics of these diseases and potential molecular mechanisms.
Collapse
Affiliation(s)
- Kenjiroo Matsumoto
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Kelvin B Luther
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
27
|
Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov 2020; 20:125-144. [PMID: 33293690 DOI: 10.1038/s41573-020-00091-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Notch signalling is involved in many aspects of cancer biology, including angiogenesis, tumour immunity and the maintenance of cancer stem-like cells. In addition, Notch can function as an oncogene and a tumour suppressor in different cancers and in different cell populations within the same tumour. Despite promising preclinical results and early-phase clinical trials, the goal of developing safe, effective, tumour-selective Notch-targeting agents for clinical use remains elusive. However, our continually improving understanding of Notch signalling in specific cancers, individual cancer cases and different cell populations, as well as crosstalk between pathways, is aiding the discovery and development of novel investigational Notch-targeted therapeutics.
Collapse
Affiliation(s)
- Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA. .,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
28
|
Abstract
Head and neck cancer is a group of neoplastic diseases affecting the facial, oral, and neck region. It is one of the most common cancers worldwide with an aggressive, invasive evolution. Due to the heterogeneity of the tissues affected, it is particularly challenging to study the molecular mechanisms at the basis of these tumors, and to date we are still lacking accurate targets for prevention and therapy. The Notch signaling is involved in a variety of tumorigenic mechanisms, such as regulation of the tumor microenvironment, aberrant intercellular communication, and altered metabolism. Here, we provide an up-to-date review of the role of Notch in head and neck cancer and draw parallels with other types of solid tumors where the Notch pathway plays a crucial role in emergence, maintenance, and progression of the disease. We therefore give a perspective view on the importance of the pathway in neoplastic development in order to define future lines of research and novel therapeutic approaches.
Collapse
|
29
|
Wang S, Qiu J, Liu L, Su C, Qi L, Huang C, Chen X, Zhang Y, Ye Y, Ding Y, Liang L, Liao W. CREB5 promotes invasiveness and metastasis in colorectal cancer by directly activating MET. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:168. [PMID: 32843066 PMCID: PMC7446182 DOI: 10.1186/s13046-020-01673-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND cAMP responsive element binding protein 5 (CREB5) is a transcriptional activator in eukaryotic cells that can regulate gene expression. Previously, we found that CREB5 was involved in the occurrence and development of colorectal cancer (CRC) using bioinformatics analysis. However, the biological roles and underlying regulatory mechanism of CREB5 in CRC remain unclear. METHODS Real-time PCR, western blotting, and immunohistochemistry were used to examine CREB5 expression. In vitro experiments including migration assay, wound-healing assay, chicken chorioallantoic membrane assay, and human umbilical vein endothelial cells tube formation assay were used to investigate the effects of CREB5 on CRC cell migration and tumor angiogenesis ability. Additionally, an orthotopic implantation assay was performed in nude mice to confirm the effects of CREB5 in vivo. Furthermore, gene set enrichment analysis was performed to explore the potential mechanism of CREB5 in CRC. RESULTS We found that CREB5 expression was highly upregulated in CRC. CREB5 overexpression was positively correlated with advanced WHO stages and TNM stages and shorter survival in CRC patients. Moreover, CREB5 overexpression promoted while CREB5 silencing reduced the invasiveness and metastatic capacity of CRC cells both in vitro and in vivo. Furthermore, CREB5 directly interacted with the MET promoter and activated the hepatocyte growth factor-MET signalling pathway. Importantly, inhibition of MET reduced the invasion and metastasis of CREB5-overexpressing CRC cells, suggesting that CREB5 promotes metastasis mainly through activation of MET signalling. CONCLUSION Our study demonstrates a crucial role for CREB5 in CRC metastasis by directly upregulating MET expression. CREB5 may be both a potential prognostic marker and a therapeutic target to effectively overcome metastasis in CRC.
Collapse
Affiliation(s)
- Shuyang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Lei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Cailin Su
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Lu Qi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Chengmei Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xiaoning Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yaxin Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China. .,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China.
| |
Collapse
|
30
|
Kakuda S, LoPilato RK, Ito A, Haltiwanger RS. Canonical Notch ligands and Fringes have distinct effects on NOTCH1 and NOTCH2. J Biol Chem 2020; 295:14710-14722. [PMID: 32820046 DOI: 10.1074/jbc.ra120.014407] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Notch signaling is a cellular pathway regulating cell-fate determination and adult tissue homeostasis. Little is known about how canonical Notch ligands or Fringe enzymes differentially affect NOTCH1 and NOTCH2. Using cell-based Notch signaling and ligand-binding assays, we evaluated differences in NOTCH1 and NOTCH2 responses to Delta-like (DLL) and Jagged (JAG) family members and the extent to which Fringe enzymes modulate their activity. In the absence of Fringes, DLL4-NOTCH1 activation was more than twice that of DLL4-NOTCH2, whereas all other ligands activated NOTCH2 similarly or slightly more than NOTCH1. However, NOTCH2 showed less sensitivity to the Fringes. Lunatic fringe (LFNG) enhanced NOTCH2 activation by DLL1 and -4, and Manic fringe (MFNG) inhibited NOTCH2 activation by JAG1 and -2. Mass spectral analysis showed that O-fucose occurred at high stoichiometry at most consensus sequences of NOTCH2 and that the Fringe enzymes modified more O-fucose sites of NOTCH2 compared with NOTCH1. Mutagenesis studies showed that LFNG modification of O-fucose on EGF8 and -12 of NOTCH2 was responsible for enhancement of DLL1-NOTCH2 activation, similar to previous reports for NOTCH1. In contrast to NOTCH1, a single O-fucose site mutant that substantially blocked the ability of MFNG to inhibit NOTCH2 activation by JAG1 could not be identified. Interestingly, elimination of the O-fucose site on EGF12 allowed LFNG to inhibit JAG1-NOTCH2 activation, and O-fucosylation on EGF9 was important for trafficking of both NOTCH1 and NOTCH2. Together, these studies provide new insights into the differential regulation of NOTCH1 and NOTCH2 by Notch ligands and Fringe enzymes.
Collapse
Affiliation(s)
- Shinako Kakuda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Rachel K LoPilato
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA; Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
31
|
Meisel CT, Porcheri C, Mitsiadis TA. Cancer Stem Cells, Quo Vadis? The Notch Signaling Pathway in Tumor Initiation and Progression. Cells 2020; 9:cells9081879. [PMID: 32796631 PMCID: PMC7463613 DOI: 10.3390/cells9081879] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers.
Collapse
|
32
|
Bocci F, Onuchic JN, Jolly MK. Understanding the Principles of Pattern Formation Driven by Notch Signaling by Integrating Experiments and Theoretical Models. Front Physiol 2020; 11:929. [PMID: 32848867 PMCID: PMC7411240 DOI: 10.3389/fphys.2020.00929] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Notch signaling is an evolutionary conserved cell-cell communication pathway. Besides regulating cell-fate decisions at an individual cell level, Notch signaling coordinates the emergent spatiotemporal patterning in a tissue through ligand-receptor interactions among transmembrane molecules of neighboring cells, as seen in embryonic development, angiogenesis, or wound healing. Due to its ubiquitous nature, Notch signaling is also implicated in several aspects of cancer progression, including tumor angiogenesis, stemness of cancer cells and cellular invasion. Here, we review experimental and computational models that help understand the operating principles of cell patterning driven by Notch signaling. First, we discuss the basic mechanisms of spatial patterning via canonical lateral inhibition and lateral induction mechanisms, including examples from angiogenesis, inner ear development and cancer metastasis. Next, we analyze additional layers of complexity in the Notch pathway, including the effect of varying cell sizes and shapes, ligand-receptor binding within the same cell, variable binding affinity of different ligand/receptor subtypes, and filopodia. Finally, we discuss some recent evidence of mechanosensitivity in the Notch pathway in driving collective epithelial cell migration and cardiovascular morphogenesis.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
33
|
The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother 2020; 129:110416. [PMID: 32593969 DOI: 10.1016/j.biopha.2020.110416] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrant activation of Notch signaling plays an oncogenic role in cancer development. Jagged1 (JAG1) is an important Notch ligand that triggers Notch signaling through cell-cell interactions. JAG1 overexpression has been reported in many different types of cancer and correlates with a poor clinical prognosis. JAG1/Notch signaling controls oncogenic processes in different cell types and cellular contexts. Furthermore, JAG1/Notch signaling cascades activate a number of oncogenic factors that regulate cellular functions such as proliferation, metastasis, drug-resistance, and angiogenesis. To suppress the severe toxicity of pan-Notch inhibitors, JAG1 is attracting increasing attention as a source of therapeutic targets for cancers. In this review, the oncogenic role of JAG1/Notch signaling in cancer is discussed, as well as implications of strategies to inhibit JAG1/Notch signaling activity.
Collapse
|
34
|
Oliphant MUJ, Kong D, Zhou H, Lewis MT, Ford HL. Two Sides of the Same Coin: The Role of Developmental pathways and pluripotency factors in normal mammary stem cells and breast cancer metastasis. J Mammary Gland Biol Neoplasia 2020; 25:85-102. [PMID: 32323111 PMCID: PMC7395869 DOI: 10.1007/s10911-020-09449-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer initiation and progression are often observed as the result of dysregulation of normal developmental processes and pathways. Studies focused on normal mammary stem/progenitor cell activity have led to an understanding of how breast cancer cells acquire stemness-associated properties including tumor initiation, survival and multi-lineage differentiation into heterogeneous tumors that become difficult to target therapeutically. Importantly, more recent investigations have provided valuable insight into how key developmental regulators can impact multiple phases of metastasis, where they are repurposed to not only promote metastatic phenotypes such as migration, invasion and EMT at the primary site, but also to regulate the survival, initiation and maintenance of metastatic lesions at secondary organs. Herein, we discuss findings that have led to a better understanding of how embryonic and pluripotency factors contribute not only to normal mammary development, but also to metastatic progression. We further examine the therapeutic potential of targeting these developmental pathways, and discuss how a better understanding of compensatory mechanisms, crosstalk between pathways, and novel experimental models could provide critical insight into how we might exploit embryonic and pluripotency regulators to inhibit tumor progression and metastasis.
Collapse
Affiliation(s)
- M U J Oliphant
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, 240 Longwood Avenue, Building C1, Room 513B, Boston, MA, 02115, USA
| | - Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
| | - Hengbo Zhou
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA
| | - M T Lewis
- Departments of Molecular and Cellular Biology and Radiology. Lester and Sue Smith Breast Center, Baylor College of Medicine. One Baylor Plaza BCM600, Room N1210, Houston, TX, 77030, USA
| | - H L Ford
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA.
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, RC1-North, P18-6115, 12800 East 19th Ave, Aurora, CO, 80045, USA.
| |
Collapse
|
35
|
Urata Y, Takeuchi H. Effects of Notch glycosylation on health and diseases. Dev Growth Differ 2019; 62:35-48. [PMID: 31886522 DOI: 10.1111/dgd.12643] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Notch signaling is an evolutionarily conserved signaling pathway and is essential for cell-fate specification in metazoans. Dysregulation of Notch signaling results in various human diseases, including cardiovascular defects and cancer. In 2000, Fringe, a known regulator of Notch signaling, was discovered as a Notch-modifying glycosyltransferase. Since then, glycosylation-a post-translational modification involving literal sugars-on the Notch extracellular domain has been noted as a critical mechanism for the regulation of Notch signaling. Additionally, the presence of diverse O-glycans decorating Notch receptors has been revealed in the extracellular domain epidermal growth factor-like (EGF) repeats. Here, we concisely summarize the recent studies in the human diseases associated with aberrant Notch glycosylation.
Collapse
Affiliation(s)
- Yusuke Urata
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
36
|
Kim K, Sun H. Incorporating genetic networks into case-control association studies with high-dimensional DNA methylation data. BMC Bioinformatics 2019; 20:510. [PMID: 31640538 PMCID: PMC6805595 DOI: 10.1186/s12859-019-3040-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background In human genetic association studies with high-dimensional gene expression data, it has been well known that statistical selection methods utilizing prior biological network knowledge such as genetic pathways and signaling pathways can outperform other methods that ignore genetic network structures in terms of true positive selection. In recent epigenetic research on case-control association studies, relatively many statistical methods have been proposed to identify cancer-related CpG sites and their corresponding genes from high-dimensional DNA methylation array data. However, most of existing methods are not designed to utilize genetic network information although methylation levels between linked genes in the genetic networks tend to be highly correlated with each other. Results We propose new approach that combines data dimension reduction techniques with network-based regularization to identify outcome-related genes for analysis of high-dimensional DNA methylation data. In simulation studies, we demonstrated that the proposed approach overwhelms other statistical methods that do not utilize genetic network information in terms of true positive selection. We also applied it to the 450K DNA methylation array data of the four breast invasive carcinoma cancer subtypes from The Cancer Genome Atlas (TCGA) project. Conclusions The proposed variable selection approach can utilize prior biological network information for analysis of high-dimensional DNA methylation array data. It first captures gene level signals from multiple CpG sites using data a dimension reduction technique and then performs network-based regularization based on biological network graph information. It can select potentially cancer-related genes and genetic pathways that were missed by the existing methods. Electronic supplementary material The online version of this article (10.1186/s12859-019-3040-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kipoong Kim
- Department of Statistic, Pusan National University, Busan, 46241, Korea
| | - Hokeun Sun
- Department of Statistic, Pusan National University, Busan, 46241, Korea.
| |
Collapse
|
37
|
Antfolk D, Antila C, Kemppainen K, Landor SKJ, Sahlgren C. Decoding the PTM-switchboard of Notch. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118507. [PMID: 31301363 PMCID: PMC7116576 DOI: 10.1016/j.bbamcr.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.
Collapse
Affiliation(s)
- Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Christian Antila
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kati Kemppainen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Sebastian K-J Landor
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
38
|
Downregulation of Notch Signaling in Kras-Induced Gastric Metaplasia. Neoplasia 2019; 21:810-821. [PMID: 31276933 PMCID: PMC6611983 DOI: 10.1016/j.neo.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 11/21/2022] Open
Abstract
Activating mutations and amplification of Kras and, more frequently, signatures for Kras activation are noted in stomach cancer. Expression of mutant KrasG12D in the mouse gastric mucosa has been shown to induce hyperplasia and metaplasia. However, the mechanisms by which Kras activation leads to gastric metaplasia are not fully understood. Here we report that KrasLSL-G12D/+;Pdx1-cre, a mouse model known for pancreatic cancer, also mediates KrasG12D expression in the stomach, causing gastric hyperplasia and metaplasia prior to the pathologic changes in the pancreas. These mice exhibit ectopic cell proliferation at the base of gastric glands, whereas wild-type mice contain proliferating cells primarily at the isthmus/neck of the gastric glands. Notch signaling is decreased in the KrasLSL-G12D/+;Pdx1-cre gastric mucosa, as shown by lower levels of cleaved Notch intracellular domains and downregulation of Notch downstream target genes. Expression of a Notch ligand Jagged1 is downregulated at the base of the mutant gland, accompanied by loss of chief cell marker Mist1. We demonstrate that exogenous Jagged1 or overexpression of Notch intracellular domain stimulates Mist1 expression in gastric cancer cell lines, suggesting positive regulation of Mist1 by Notch signaling. Finally, deletion of Jagged1 or Notch3 in KrasLSL-G12D/+;Pdx1-cre mice promoted development of squamous cell carcinoma in the forestomach, albeit short of invasive adenocarcinoma in the glandular stomach. Taken together, these results reveal downregulation of Notch signaling and Mist1 expression during the initiation of Kras-driven gastric tumorigenesis and suggest a tumor-suppressive role for Notch in this context.
Collapse
|
39
|
Porcheri C, Meisel CT, Mitsiadis T. Multifactorial Contribution of Notch Signaling in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:E1520. [PMID: 30917608 PMCID: PMC6471940 DOI: 10.3390/ijms20061520] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) defines a group of solid tumors originating from the mucosa of the upper aerodigestive tract, pharynx, larynx, mouth, and nasal cavity. It has a metastatic evolution and poor prognosis and is the sixth most common cancer in the world, with 600,000 new cases reported every year. HNSCC heterogeneity and complexity is reflected in a multistep progression, involving crosstalk between several molecular pathways. The Notch pathway is associated with major events supporting cancerogenic evolution: cell proliferation, self-renewal, angiogenesis, and preservation of a pro-oncogenic microenvironment. Additionally, Notch is pivotal in tumor development and plays a dual role acting as both oncogene and tumor suppressor. In this review, we summarize the role of the Notch pathway in HNSCC, with a special focus on its compelling role in major events of tumor initiation and growth.
Collapse
Affiliation(s)
- Cristina Porcheri
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Christian Thomas Meisel
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Thimios Mitsiadis
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| |
Collapse
|
40
|
Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci U S A 2019; 116:148-157. [PMID: 30587589 PMCID: PMC6320545 DOI: 10.1073/pnas.1815345116] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation are two paramount processes driving tumor progression, therapy resistance, and cancer metastasis. Recent experiments show that cells with varying EMT and CSC phenotypes are spatially segregated in the primary tumor. The underlying mechanisms generating such spatiotemporal dynamics in the tumor microenvironment, however, remain largely unexplored. Here, we show through a mechanism-based dynamical model that the diffusion of EMT-inducing signals such as TGF-β, together with noncell autonomous control of EMT and CSC decision making via the Notch signaling pathway, can explain experimentally observed disparate localization of subsets of CSCs with varying EMT phenotypes in the tumor. Our simulations show that the more mesenchymal CSCs lie at the invasive edge, while the hybrid epithelial/mesenchymal (E/M) CSCs reside in the tumor interior. Further, motivated by the role of Notch-Jagged signaling in mediating EMT and stemness, we investigated the microenvironmental factors that promote Notch-Jagged signaling. We show that many inflammatory cytokines such as IL-6 that can promote Notch-Jagged signaling can (i) stabilize a hybrid E/M phenotype, (ii) increase the likelihood of spatial proximity of hybrid E/M cells, and (iii) expand the fraction of CSCs. To validate the predicted connection between Notch-Jagged signaling and stemness, we knocked down JAG1 in hybrid E/M SUM149 human breast cancer cells in vitro. JAG1 knockdown significantly restricted tumor organoid formation, confirming the key role that Notch-Jagged signaling can play in tumor progression. Together, our integrated computational-experimental framework reveals the underlying principles of spatiotemporal dynamics of EMT and CSCs.
Collapse
|
41
|
Hossain F, Sorrentino C, Ucar DA, Peng Y, Matossian M, Wyczechowska D, Crabtree J, Zabaleta J, Morello S, Del Valle L, Burow M, Collins-Burow B, Pannuti A, Minter LM, Golde TE, Osborne BA, Miele L. Notch Signaling Regulates Mitochondrial Metabolism and NF-κB Activity in Triple-Negative Breast Cancer Cells via IKKα-Dependent Non-canonical Pathways. Front Oncol 2018; 8:575. [PMID: 30564555 PMCID: PMC6289043 DOI: 10.3389/fonc.2018.00575] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
Triple negative breast cancer (TNBC) patients have high risk of recurrence and metastasis, and current treatment options remain limited. Cancer stem-like cells (CSCs) have been linked to cancer initiation, progression and chemotherapy resistance. Notch signaling is a key pathway regulating TNBC CSC survival. Treatment of TNBC with PI3K or mTORC1/2 inhibitors results in drug-resistant, Notch-dependent CSC. However, downstream mechanisms and potentially druggable Notch effectors in TNBC CSCs are largely unknown. We studied the role of the AKT pathway and mitochondrial metabolism downstream of Notch signaling in TNBC CSC from cell lines representative of different TNBC molecular subtypes as well as a novel patient-derived model. We demonstrate that exposure of TNBC cells to recombinant Notch ligand Jagged1 leads to rapid AKT phosphorylation in a Notch1-dependent but RBP-Jκ independent fashion. This requires mTOR and IKKα. Jagged1 also stimulates mitochondrial respiration and fermentation in an AKT- and IKK-dependent fashion. Notch1 co-localizes with mitochondria in TNBC cells. Pharmacological inhibition of Notch cleavage by gamma secretase inhibitor PF-03084014 in combination with AKT inhibitor MK-2206 or IKK-targeted NF-κB inhibitor Bay11-7082 blocks secondary mammosphere formation from sorted CD90hi or CD44+CD24low (CSCs) cells. A TNBC patient-derived model gave comparable results. Besides mitochondrial oxidative metabolism, Jagged1 also triggers nuclear, NF-κB-dependent transcription of anti-apoptotic gene cIAP-2. This requires recruitment of Notch1, IKKα and NF-κB to the cIAP-2 promoter. Our observations support a model where Jagged1 triggers IKKα-dependent, mitochondrial and nuclear Notch1 signals that stimulate AKT phosphorylation, oxidative metabolism and transcription of survival genes in PTEN wild-type TNBC cells. These data suggest that combination treatments targeting the intersection of the Notch, AKT and NF-κB pathways have potential therapeutic applications against CSCs in TNBC cases with Notch1 and wild-type PTEN expression.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Claudia Sorrentino
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.,Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Deniz A Ucar
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, China
| | - Margarite Matossian
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Dorota Wyczechowska
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Judy Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jovanny Zabaleta
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Luis Del Valle
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Matthew Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Bridgette Collins-Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Antonio Pannuti
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, MA, United States
| | - Todd E Golde
- Department of Neuroscience, McKnight Brain Institute, University of Florida at Gainesville, Gainesville, FL, United States
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, MA, United States
| | - Lucio Miele
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
42
|
Varshney S, Stanley P. Multiple roles for O-glycans in Notch signalling. FEBS Lett 2018; 592:3819-3834. [PMID: 30207383 DOI: 10.1002/1873-3468.13251] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Notch signalling regulates a plethora of developmental processes and is also essential for the maintenance of tissue homeostasis in adults. Therefore, fine-tuning of Notch signalling strength needs to be tightly regulated. Of key importance for the regulation of Notch signalling are O-fucose, O-GlcNAc and O-glucose glycans attached to the extracellular domain of Notch receptors. The EGF repeats of the Notch receptor extracellular domain harbour consensus sites for addition of the different types of O-glycan to Ser or Thr, which takes place in the endoplasmic reticulum. Studies from Drosophila to mammals have demonstrated the multifaceted roles of O-glycosylation in regulating Notch signalling. O-glycosylation modulates different aspects of Notch signalling including recognition by Notch ligands, the strength of ligand binding, Notch receptor trafficking, stability and activation at the cell surface. Defects in O-glycosylation of Notch receptors give rise to pathologies in humans. This Review summarizes the nature of the O-glycans on Notch receptors and their differential effects on Notch signalling.
Collapse
Affiliation(s)
- Shweta Varshney
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
43
|
Mollen EWJ, Ient J, Tjan-Heijnen VCG, Boersma LJ, Miele L, Smidt ML, Vooijs MAGG. Moving Breast Cancer Therapy up a Notch. Front Oncol 2018; 8:518. [PMID: 30515368 PMCID: PMC6256059 DOI: 10.3389/fonc.2018.00518] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the second most common malignancy, worldwide. Treatment decisions are based on tumor stage, histological subtype, and receptor expression and include combinations of surgery, radiotherapy, and systemic treatment. These, together with earlier diagnosis, have resulted in increased survival. However, initial treatment efficacy cannot be guaranteed upfront, and these treatments may come with (long-term) serious adverse effects, negatively affecting a patient's quality of life. Gene expression-based tests can accurately estimate the risk of recurrence in early stage breast cancers. Disease recurrence correlates with treatment resistance, creating a major need to resensitize tumors to treatment. Notch signaling is frequently deregulated in cancer and is involved in treatment resistance. Preclinical research has already identified many combinatory therapeutic options where Notch involvement enhances the effectiveness of radiotherapy, chemotherapy or targeted therapies for breast cancer. However, the benefit of targeting Notch has remained clinically inconclusive. In this review, we summarize the current knowledge on targeting the Notch pathway to enhance current treatments for breast cancer and to combat treatment resistance. Furthermore, we propose mechanisms to further exploit Notch-based therapeutics in the treatment of breast cancer.
Collapse
Affiliation(s)
- Erik W J Mollen
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre+, Maastricht, Netherlands.,Division of Medical Oncology, Department of Surgery, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Jonathan Ient
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Vivianne C G Tjan-Heijnen
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Liesbeth J Boersma
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Marjolein L Smidt
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Division of Medical Oncology, Department of Surgery, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Marc A G G Vooijs
- Department of Radiotherapy, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Radiation Oncology (MAASTRO), Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
44
|
An Y, Adams JR, Hollern DP, Zhao A, Chang SG, Gams MS, Chung PED, He X, Jangra R, Shah JS, Yang J, Beck LA, Raghuram N, Kozma KJ, Loch AJ, Wang W, Fan C, Done SJ, Zacksenhaus E, Guidos CJ, Perou CM, Egan SE. Cdh1 and Pik3ca Mutations Cooperate to Induce Immune-Related Invasive Lobular Carcinoma of the Breast. Cell Rep 2018; 25:702-714.e6. [PMID: 30332649 PMCID: PMC6276789 DOI: 10.1016/j.celrep.2018.09.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/15/2018] [Accepted: 09/17/2018] [Indexed: 11/20/2022] Open
Abstract
CDH1 and PIK3CA are the two most frequently mutated genes in invasive lobular carcinoma (ILC) of the breast. Transcription profiling has identified molecular subtypes for ILC, one of which, immune-related (IR), is associated with gene expression linked to lymphocyte and macrophage infiltration. Here, we report that deletion of Cdh1, together with activation of Pik3ca in mammary epithelium of genetically modified mice, leads to formation of IR-ILC-like tumors with immune cell infiltration, as well as gene expression linked to T-regulatory (Treg) cell signaling and activation of targetable immune checkpoint pathways. Interestingly, these tumors show enhanced Rac1- and Yap-dependent transcription and signaling, as well as sensitivity to PI3K, Rac1, and Yap inhibitors in culture. Finally, high-dimensional immunophenotyping in control mouse mammary gland and IR-ILC tumors by mass cytometry shows dramatic alterations in myeloid and lymphoid populations associated with immune suppression and exhaustion, highlighting the potential for therapeutic intervention via immune checkpoint regulators.
Collapse
Affiliation(s)
- Yeji An
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jessica R Adams
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anthony Zhao
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Stephen G Chang
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Miki S Gams
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Philip E D Chung
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, and Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xiaping He
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rhea Jangra
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Juhi S Shah
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Joanna Yang
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Lauren A Beck
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Nandini Raghuram
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Katelyn J Kozma
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Amanda J Loch
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Wei Wang
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Susan J Done
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; The Campbell Family Institute for Breast Cancer Research at the Princess Margaret Cancer Centre and The Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, and Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Sean E Egan
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G-0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
45
|
Breunig C, Erdem N, Bott A, Greiwe JF, Reinz E, Bernhardt S, Giacomelli C, Wachter A, Kanthelhardt EJ, Beißbarth T, Vetter M, Wiemann S. TGFβ1 regulates HGF-induced cell migration and hepatocyte growth factor receptor MET expression via C-ets-1 and miR-128-3p in basal-like breast cancer. Mol Oncol 2018; 12:1447-1463. [PMID: 30004628 PMCID: PMC6120235 DOI: 10.1002/1878-0261.12355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 06/24/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. The tumor microenvironment contributes to tumor progression by inducing cell dissemination from the primary tumor and metastasis. TGFβ signaling is involved in breast cancer progression and is specifically elevated during metastatic transformation in aggressive breast cancer. In this study, we performed genomewide correlation analysis of TGFBR2 expression in a panel of 51 breast cancer cell lines and identified that MET is coregulated with TGFBR2. This correlation was confirmed at the protein level in breast cancer cell lines and human tumor tissues. Flow cytometric analysis of luminal and basal‐like breast cancer cell lines and examination of 801 tumor specimens from a prospective cohort of breast cancer patients using reverse phase protein arrays revealed that expression of TGFBR2 and MET is increased in basal‐like breast cancer cell lines, as well as in triple‐negative breast cancer tumor tissues, compared to other subtypes. Using real‐time cell analysis technology, we demonstrated that TGFβ1 triggered hepatocyte growth factor (HGF)‐induced and MET‐dependent migration in vitro. Bioinformatic analysis predicted that TGFβ1 induces expression of C‐ets‐1 as a candidate transcription factor regulating MET expression. Indeed, TGFβ1‐induced expression of ETS1 and breast cancer cell migration was blocked by knockdown of ETS1. Further, we identified that MET is a direct target of miR‐128‐3p and that this miRNA is negatively regulated by TGFβ1. Overexpression of miR‐128‐3p reduced MET expression and abrogated HGF‐induced cell migration of invasive breast cancer cells. In conclusion, we have identified that TGFβ1 regulates HGF‐induced and MET‐mediated cell migration, through positive regulation of C‐ets‐1 and negative regulation of miR‐128‐3p expression in basal‐like breast cancer cell lines and in triple‐negative breast cancer tissue.
Collapse
Affiliation(s)
- Christian Breunig
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nese Erdem
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Bott
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia F Greiwe
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eileen Reinz
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Bernhardt
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Giacomelli
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Astrid Wachter
- Department of Medical Statistics, University Medical Center, Göttingen, Germany
| | - Eva J Kanthelhardt
- Department of Gynecology, Martin-Luther-University Halle Wittenberg, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center, Göttingen, Germany
| | - Martina Vetter
- Department of Gynecology, Martin-Luther-University Halle Wittenberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
46
|
Yuen HF, Chan KK, Platt-Higgins A, Dakir EH, Matchett KB, Haggag YA, Jithesh PV, Habib T, Faheem A, Dean FA, Morgan R, Rudland PS, El-Tanani M. Ran GTPase promotes cancer progression via Met recepto-rmediated downstream signaling. Oncotarget 2018; 7:75854-75864. [PMID: 27716616 PMCID: PMC5342783 DOI: 10.18632/oncotarget.12420] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/21/2016] [Indexed: 01/12/2023] Open
Abstract
It has been shown previously that cancer cells with an activated oncogenic pathway, including Met activation, require Ran for growth and survival. Here, we show that knockdown of Ran leads to a reduction of Met receptor expression in several breast and lung cancer cell lines. This, in turn suppressed HGF expression and the Met-mediated activation of the Akt pathway, as well as cell adhesion, migration, and invasion. In a cell line model where Met amplification has previously been shown to contribute to gefitinib resistance, Ran knockdown sensitized cells to gefitinib-mediated inhibition of Akt and ERK1/2 phosphorylation and consequently reduced cell proliferation. We further demonstrate that Met reduction-mediated by knockdown of Ran, occurs at the post-transcriptional level, probably via a matrix metalloproteinase. Moreover, the level of immunoreactive Ran and Met are positively associated in human breast cancer specimens, suggesting that a high level of Ran may be a pre-requisite for Met overexpression. Interestingly, a high level of immunoreactive Ran dictates the prognostic significance of Met, indicating that the co-overexpression of Met and Ran may be associated with cancer progression and could be used in combination as a prognostic indicator.
Collapse
Affiliation(s)
- Hiu-Fung Yuen
- Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Ka-Kui Chan
- Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Angela Platt-Higgins
- Cancer and Polio Research Fund Laboratories, School of Biological Sciences, University of Liverpool, Liverpool, UK
| | - el-Habib Dakir
- Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.,Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, UK
| | - Kyle B Matchett
- Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Yusuf Ahmed Haggag
- Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.,Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Puthen V Jithesh
- Biomedical Informatics Research, Sidra Medical and Research Center, Doha, Qatar
| | - Tanwir Habib
- Biomedical Informatics Research, Sidra Medical and Research Center, Doha, Qatar
| | - Ahmed Faheem
- University of Sunderland, Department of Pharmacy, Health and Well-Being, Sunderland Pharmacy School, Sunderland, UK
| | - Fennell A Dean
- Translational Clinical Research, University of Leicester, Leicester, UK
| | - Richard Morgan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, UK
| | - Philip S Rudland
- Cancer and Polio Research Fund Laboratories, School of Biological Sciences, University of Liverpool, Liverpool, UK
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, UK
| |
Collapse
|
47
|
Del Castillo Velasco‐Herrera M, van der Weyden L, Nsengimana J, Speak AO, Sjöberg MK, Bishop DT, Jönsson G, Newton‐Bishop J, Adams DJ. Comparative genomics reveals that loss of lunatic fringe (LFNG) promotes melanoma metastasis. Mol Oncol 2018; 12:239-255. [PMID: 29193607 PMCID: PMC5792739 DOI: 10.1002/1878-0261.12161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
Metastasis is the leading cause of death in patients with advanced melanoma, yet the somatic alterations that aid tumour cell dissemination and colonisation are poorly understood. Here, we deploy comparative genomics to identify and validate clinically relevant drivers of melanoma metastasis. To do this, we identified a set of 976 genes whose expression level was associated with a poor outcome in patients from two large melanoma cohorts. Next, we characterised the genomes and transcriptomes of mouse melanoma cell lines defined as weakly metastatic, and their highly metastatic derivatives. By comparing expression data between species, we identified lunatic fringe (LFNG), among 28 genes whose expression level is predictive of poor prognosis and whose altered expression is associated with a prometastatic phenotype in mouse melanoma cells. CRISPR/Cas9-mediated knockout of Lfng dramatically enhanced the capability of weakly metastatic melanoma cells to metastasise in vivo, a phenotype that could be rescued with the Lfng cDNA. Notably, genomic alterations disrupting LFNG are found exclusively in human metastatic melanomas sequenced as part of The Cancer Genome Atlas. Using comparative genomics, we show that LFNG expression plays a functional role in regulating melanoma metastasis.
Collapse
Affiliation(s)
| | | | - Jeremie Nsengimana
- Leeds Institute of Cancer and PathologySt James's University HospitalUniversity of LeedsUK
| | - Anneliese O. Speak
- Experimental Cancer GeneticsWellcome Trust Sanger InstituteHinxtonCambridgeUK
| | - Marcela K. Sjöberg
- Experimental Cancer GeneticsWellcome Trust Sanger InstituteHinxtonCambridgeUK
- Departamento de Biología Celular y MolecularFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - David Timothy Bishop
- Leeds Institute of Cancer and PathologySt James's University HospitalUniversity of LeedsUK
| | - Göran Jönsson
- Division of Oncology and PathologyDepartment of Clinical SciencesSkåne University HospitalLund UniversitySweden
| | - Julia Newton‐Bishop
- Leeds Institute of Cancer and PathologySt James's University HospitalUniversity of LeedsUK
| | - David J. Adams
- Experimental Cancer GeneticsWellcome Trust Sanger InstituteHinxtonCambridgeUK
| |
Collapse
|
48
|
Liu X, Wang T, Wang Y, Chen Z, Hua D, Yao X, Ma X, Zhang P. Orai1 is critical for Notch-driven aggressiveness under hypoxic conditions in triple-negative breast cancers. Biochim Biophys Acta Mol Basis Dis 2018; 1864:975-986. [PMID: 29307746 DOI: 10.1016/j.bbadis.2018.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 12/29/2022]
Abstract
It is believed that hypoxia stimulates triple-negative breast cancers (TNBCs) metastasis, which is associated with a poor prognosis. However, the underlying mechanism remains unclear. Here, we demonstrated that hypoxia up-regulates both the levels of Orai1 and Notch1, and the increase in Orai1 is mediated by Notch1 signaling in TNBCs. Functionally, Orai1 caused a sustained elevation of intracellular Ca2+ via Store-operated Ca2+ entry (SOCE), then activated the calcineurin-nuclear factor of activated T-cell 4 (NFAT4, also named NFATc3) in hypoxic TNBCs. Furthermore, pharmacologic inhibition or gene-silencing studies showed that the aggressiveness mediated by Orai1 during hypoxia is dependent on the Notch1/Orai1/SOCE/NFAT4 signaling. Moreover, Orai1 signaling also mediated hypoxia-induced angiogenesis in TNBCs. Thus, our results revealed a novel role of Orai1 as an inducer of aggression and angiogenesis under hypoxic conditions, and this suggests a novel mechanism of hypoxia-induced invasion. It may be worthwhile to further explore the potential of using Orai1 signaling as new target for anti-tumor therapy in TNBCs.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Medicine, Jiangnan University, Wuxi, China; School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Wang
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province, Taiyuan, China
| | - Zhen Chen
- School of Medicine, Jiangnan University, Wuxi, China
| | - Dong Hua
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Xin Ma
- School of Medicine, Jiangnan University, Wuxi, China.
| | - Peng Zhang
- School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
49
|
Harvey BM, Haltiwanger RS. Regulation of Notch Function by O-Glycosylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:59-78. [PMID: 30030822 DOI: 10.1007/978-3-319-89512-3_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Notch receptor initiates a unique intercellular signaling pathway that is evolutionarily conserved across all metazoans and contributes to the development and maintenance of numerous tissues. Consequently, many diseases result from aberrant Notch signaling. Emerging roles for Notch in disease are being uncovered as studies reveal new information regarding various components of this signaling pathway. Notch activity is regulated at several levels, but O-linked glycosylation of Epidermal Growth Factor (EGF) repeats in the Notch extracellular domain has emerged as a major regulator that, depending on context, can increase or decrease Notch activity. Three types of O-linked glycosylation occur at consensus sequences found within the EGF repeats of Notch: O-fucosylation, O-glucosylation, and O-GlcNAcylation. Recent studies have investigated the site occupancy of these types of glycosylation and also defined specific roles for these glycans on Notch structure and function. Nevertheless, there are many functional aspects to each type of O-glycosylation that remain unclear. Here, we will discuss molecular mechanisms of how O-glycosylation regulates Notch signaling and describe disorders associated with defects in Notch O-glycosylation.
Collapse
Affiliation(s)
- Beth M Harvey
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.,Present Address: Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA. .,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
50
|
Bocci F, Jolly MK, Tripathi SC, Aguilar M, Hanash SM, Levine H, Onuchic JN. Numb prevents a complete epithelial-mesenchymal transition by modulating Notch signalling. J R Soc Interface 2017; 14:20170512. [PMID: 29187638 PMCID: PMC5721160 DOI: 10.1098/rsif.2017.0512] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays key roles during embryonic development, wound healing and cancer metastasis. Cells in a partial EMT or hybrid epithelial/mesenchymal (E/M) phenotype exhibit collective cell migration, forming clusters of circulating tumour cells-the primary drivers of metastasis. Activation of cell-cell signalling pathways such as Notch fosters a partial or complete EMT, yet the mechanisms enabling cluster formation remain poorly understood. Using an integrated computational-experimental approach, we examine the role of Numb-an inhibitor of Notch intercellular signalling-in mediating EMT and clusters formation. We show via an mathematical model that Numb inhibits a full EMT by stabilizing a hybrid E/M phenotype. Consistent with this observation, knockdown of Numb in stable hybrid E/M cells H1975 results in a full EMT, thereby showing that Numb acts as a brake for a full EMT and thus behaves as a 'phenotypic stability factor' by modulating Notch-driven EMT. By generalizing the mathematical model to a multi-cell level, Numb is predicted to alter the balance of hybrid E/M versus mesenchymal cells in clusters, potentially resulting in a higher tumour-initiation ability. Finally, Numb correlates with a worse survival in multiple independent lung and ovarian cancer datasets, hence confirming its relationship with increased cancer aggressiveness.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Mohit K Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Mitzi Aguilar
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|