1
|
McGarry J, Mintmier B, Metzger MC, Giri NC, Britt N, Basu P, Wilcoxen J. Insights into periplasmic nitrate reductase function under single turnover. J Biol Inorg Chem 2024; 29:811-819. [PMID: 39633165 DOI: 10.1007/s00775-024-02087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Nitrate reductases play pivotal roles in nitrogen metabolism by leveraging the molybdopterin cofactor to facilitate the reduction of nitrate to nitrite. Periplasmic nitrate reductases (NapA) utilize nitrate as a terminal electron acceptor when oxygen is limiting, helping to drive anaerobic metabolism in bacteria. Despite extensive research into NapA homologs, open questions about the mechanism remain especially at the molecular level. More broadly, little is understood of how the molybdopterin cofactor is tuned for catalysis in these enzymes enabling broad substrate scope and reactivity observed in molybdenum-containing enzymes. Here, we have prepared NapA from Campylobacter jejuni under single turnover conditions to generate a singly reduced enzyme that can be further examined by electron paramagnetic resonance (EPR) spectroscopy. Our results provide new context into the known spectra and related structures of NapA and related enzymes. These insights open new avenues for understanding nitrate reductase mechanisms, molybdenum coordination dynamics, and the role of pyranopterin ligands in catalysis.
Collapse
Affiliation(s)
- Jennifer McGarry
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA
| | - Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Mikayla C Metzger
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nitai C Giri
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nicholas Britt
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA.
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
2
|
Ghosh P, Stauffer M, Ahmed ME, Bertke JA, Staples RJ, Warren TH. Thiol and H 2S-Mediated NO Generation from Nitrate at Copper(II). J Am Chem Soc 2023; 145:12007-12012. [PMID: 37224264 PMCID: PMC10367543 DOI: 10.1021/jacs.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Reduction of nitrate is an essential, yet challenging chemical task required to manage this relatively inert oxoanion in the environment and biology. We show that thiols, ubiquitous reductants in biology, convert nitrate to nitric oxide at a Cu(II) center under mild conditions. The β-diketiminato complex [Cl2NNF6]Cu(κ2-O2NO) engages in O-atom transfer with various thiols (RSH) to form the corresponding copper(II) nitrite [CuII](κ2-O2N) and sulfenic acid (RSOH). The copper(II) nitrite further reacts with RSH to give S-nitrosothiols RSNO and [CuII]2(μ-OH)2 en route to NO formation via [CuII]-SR intermediates. The gasotransmitter H2S also reduces nitrate at copper(II) to generate NO, providing a lens into NO3-/H2S crosstalk. The interaction of thiols with nitrate at copper(II) releases a cascade of N- and S-based signaling molecules in biology.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D. C. 20057, United States
| | - Molly Stauffer
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D. C. 20057, United States
| | - Md Estak Ahmed
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D. C. 20057, United States
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D. C. 20057, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Timothy H Warren
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D. C. 20057, United States
| |
Collapse
|
3
|
González PJ, Rivas MG, Ferroni FM, Rizzi AC, Brondino CD. Electron transfer pathways and spin–spin interactions in Mo- and Cu-containing oxidoreductases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Qian J, Bai L, Zhang M, Chen L, Yan X, Sun R, Zhang M, Chen GH, Wu D. Achieving rapid thiosulfate-driven denitrification (TDD) in a granular sludge system. WATER RESEARCH 2021; 190:116716. [PMID: 33290906 DOI: 10.1016/j.watres.2020.116716] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Sulfur-oxidizing bacteria (SOB) can drive a high level of autotrophic denitrification (AD) activity with thiosulfate (S2O32-) as the electron donor. However, the slow growth of SOB results in a low biomass concentration in the AD reactor and unsatisfactory biological nitrogen removal (BNR). In this study, our goal was to establish a high-rate thiosulfate-driven denitrification (TDD) system via sludge granulation. Granular sludge was successfully cultivated by increasing the nitrogen loading rate stepwise in thiosulfate-oxidizing/nitrate-reducing conditions in an upflow anaerobic blanket reactor. In the mature-granular-sludge reactor, a nitrate removal rate of 280 mg N/L/h was achieved with a nitrate removal efficiency of 97.7%±1.0% at a hydraulic retention time of only 15 minutes, with no nitrite detected in the effluent. Extracellular polymeric substance (EPS) analysis indicated that the proteins in loosely bound and tightly bound EPS were responsible for maintaining the compact structure of the TDD granular sludge. The dynamics of the microbial-community shift were identified by 16S rRNA high-throughput pyrosequencing analysis. The Sulfurimonas genus was found to be enriched at 74.1% of total community and may play the most critical role in the high-rate BNR. The batch assay results reveal that no nitrite accumulation occurred during nitrate reduction because the nitrate reduction rate (75.90±0.67 mg N/g MLVSS/h) was almost equal to the nitrite reduction rate (66.06±1.28 mg N/g MLVSS/h) in the thiosulfate-driven granular sludge reactor. The results of this study provide support for the establishment of a high-rate BNR system that maintains its stability with a low sludge yield.
Collapse
Affiliation(s)
- Jin Qian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Linqin Bai
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Mingkuan Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Lin Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xueqian Yan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Meiting Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
5
|
Zhong Q, Kobe B, Kappler U. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Front Microbiol 2020; 11:615860. [PMID: 33362753 PMCID: PMC7759655 DOI: 10.3389/fmicb.2020.615860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mononuclear molybdoenzymes are highly versatile catalysts that occur in organisms in all domains of life, where they mediate essential cellular functions such as energy generation and detoxification reactions. Molybdoenzymes are particularly abundant in bacteria, where over 50 distinct types of enzymes have been identified to date. In bacterial pathogens, all aspects of molybdoenzyme biology such as molybdate uptake, cofactor biosynthesis, and function of the enzymes themselves, have been shown to affect fitness in the host as well as virulence. Although current studies are mostly focused on a few key pathogens such as Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Mycobacterium tuberculosis, some common themes for the function and adaptation of the molybdoenzymes to pathogen environmental niches are emerging. Firstly, for many of these enzymes, their role is in supporting bacterial energy generation; and the corresponding pathogen fitness and virulence defects appear to arise from a suboptimally poised metabolic network. Secondly, all substrates converted by virulence-relevant bacterial Mo enzymes belong to classes known to be generated in the host either during inflammation or as part of the host signaling network, with some enzyme groups showing adaptation to the increased conversion of such substrates. Lastly, a specific adaptation to bacterial in-host survival is an emerging link between the regulation of molybdoenzyme expression in bacterial pathogens and the presence of immune system-generated reactive oxygen species. The prevalence of molybdoenzymes in key bacterial pathogens including ESKAPE pathogens, paired with the mounting evidence of their central roles in bacterial fitness during infection, suggest that they could be important future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
6
|
Sousa EH, Carepo MS, Moura JJ. Nitrate-nitrite fate and oxygen sensing in dormant Mycobacterium tuberculosis: A bioinorganic approach highlighting the importance of transition metals. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
7
|
Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation. J Biol Inorg Chem 2020; 25:547-569. [PMID: 32279136 DOI: 10.1007/s00775-020-01787-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they carry out. Therefore, obtaining abundant quantities of active enzyme is necessary for exploring this family's biochemical capability. This mini-review summarizes the methods for overexpressing mononuclear molybdenum enzymes in the context of the challenges encountered in the process. Effective methods for molybdenum cofactor synthesis and incorporation, optimization of expression conditions, improving isolation of active vs. inactive enzyme, incorporation of additional prosthetic groups, and inclusion of redox enzyme maturation protein chaperones are discussed in relation to the current molybdenum enzyme literature. This article summarizes the heterologous and homologous expression studies providing underlying patterns and potential future directions.
Collapse
|
8
|
|
9
|
Fernandes HS, Teixeira CSS, Sousa SF, Cerqueira NMFSA. Formation of Unstable and very Reactive Chemical Species Catalyzed by Metalloenzymes: A Mechanistic Overview. Molecules 2019; 24:E2462. [PMID: 31277490 PMCID: PMC6651669 DOI: 10.3390/molecules24132462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
Nature has tailored a wide range of metalloenzymes that play a vast array of functions in all living organisms and from which their survival and evolution depends on. These enzymes catalyze some of the most important biological processes in nature, such as photosynthesis, respiration, water oxidation, molecular oxygen reduction, and nitrogen fixation. They are also among the most proficient catalysts in terms of their activity, selectivity, and ability to operate at mild conditions of temperature, pH, and pressure. In the absence of these enzymes, these reactions would proceed very slowly, if at all, suggesting that these enzymes made the way for the emergence of life as we know today. In this review, the structure and catalytic mechanism of a selection of diverse metalloenzymes that are involved in the production of highly reactive and unstable species, such as hydroxide anions, hydrides, radical species, and superoxide molecules are analyzed. The formation of such reaction intermediates is very difficult to occur under biological conditions and only a rationalized selection of a particular metal ion, coordinated to a very specific group of ligands, and immersed in specific proteins allows these reactions to proceed. Interestingly, different metal coordination spheres can be used to produce the same reactive and unstable species, although through a different chemistry. A selection of hand-picked examples of different metalloenzymes illustrating this diversity is provided and the participation of different metal ions in similar reactions (but involving different mechanism) is discussed.
Collapse
Affiliation(s)
- Henrique S Fernandes
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carla S Silva Teixeira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Sérgio F Sousa
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
10
|
Cui YX, Biswal BK, Guo G, Deng YF, Huang H, Chen GH, Wu D. Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Appl Microbiol Biotechnol 2019; 103:6023-6039. [DOI: 10.1007/s00253-019-09935-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023]
|
11
|
Ferreira P, Cerqueira NM, Brás NF, Fernandes PA, Ramos MJ. Parametrization of Molybdenum Cofactors for the AMBER Force Field. J Chem Theory Comput 2018; 14:2538-2548. [DOI: 10.1021/acs.jctc.8b00137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pedro Ferreira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, 4169-007 Porto, Portugal
| | - Nuno M.F.S.A. Cerqueira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, 4169-007 Porto, Portugal
| | - Natércia F. Brás
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
12
|
Cerqueira NMFSA, Fernandes PA, Ramos MJ. Protocol for Computational Enzymatic Reactivity Based on Geometry Optimisation. Chemphyschem 2018; 19:669-689. [DOI: 10.1002/cphc.201700339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/22/2017] [Indexed: 01/12/2023]
Affiliation(s)
- N. M. F. S. A. Cerqueira
- REQUIMTE-UCIBIO; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - P. A. Fernandes
- REQUIMTE-UCIBIO; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - M. J. Ramos
- REQUIMTE-UCIBIO; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
| |
Collapse
|
13
|
Tokunaga T, Yatabe T, Matsumoto T, Ando T, Yoon KS, Ogo S. Mechanistic investigation of the formation of H 2 from HCOOH with a dinuclear Ru model complex for formate hydrogen lyase. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:870-876. [PMID: 29152019 PMCID: PMC5678451 DOI: 10.1080/14686996.2017.1379857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 05/08/2023]
Abstract
We report the mechanistic investigation of catalytic H2 evolution from formic acid in water using a formate-bridged dinuclear Ru complex as a formate hydrogen lyase model. The mechanistic study is based on isotope-labeling experiments involving hydrogen isotope exchange reaction.
Collapse
Affiliation(s)
- Taisuke Tokunaga
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Takeshi Yatabe
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Takahiro Matsumoto
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Tatsuya Ando
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Ki-Seok Yoon
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Study of the Cys-His bridge electron transfer pathway in a copper-containing nitrite reductase by site-directed mutagenesis, spectroscopic, and computational methods. Biochim Biophys Acta Gen Subj 2017; 1862:752-760. [PMID: 29051066 DOI: 10.1016/j.bbagen.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/06/2017] [Accepted: 10/12/2017] [Indexed: 11/22/2022]
Abstract
The Cys-His bridge as electron transfer conduit in the enzymatic catalysis of nitrite to nitric oxide by nitrite reductase from Sinorhizobium meliloti 2011 (SmNir) was evaluated by site-directed mutagenesis, steady state kinetic studies, UV-vis and EPR spectroscopic measurements as well as computational calculations. The kinetic, structural and spectroscopic properties of the His171Asp (H171D) and Cys172Asp (C172D) SmNir variants were compared with the wild type enzyme. Molecular properties of H171D and C172D indicate that these point mutations have not visible effects on the quaternary structure of SmNir. Both variants are catalytically incompetent using the physiological electron donor pseudoazurin, though C172D presents catalytic activity with the artificial electron donor methyl viologen (kcat=3.9(4) s-1) lower than that of wt SmNir (kcat=240(50) s-1). QM/MM calculations indicate that the lack of activity of H171D may be ascribed to the Nδ1H…OC hydrogen bond that partially shortcuts the T1-T2 bridging Cys-His covalent pathway. The role of the Nδ1H…OC hydrogen bond in the pH-dependent catalytic activity of wt SmNir is also analyzed by monitoring the T1 and T2 oxidation states at the end of the catalytic reaction of wt SmNir at pH6 and 10 by UV-vis and EPR spectroscopies. These data provide insight into how changes in Cys-His bridge interrupts the electron transfer between T1 and T2 and how the pH-dependent catalytic activity of the enzyme are related to pH-dependent structural modifications of the T1-T2 bridging chemical pathway.
Collapse
|
15
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Maia LB, Moura I, Moura JJ. EPR Spectroscopy on Mononuclear Molybdenum-Containing Enzymes. FUTURE DIRECTIONS IN METALLOPROTEIN AND METALLOENZYME RESEARCH 2017. [DOI: 10.1007/978-3-319-59100-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Ye JS, Liu J, Ou HS, Wang LL. Degradation of ciprofloxacin by 280 nm ultraviolet-activated persulfate: Degradation pathway and intermediate impact on proteome of Escherichia coli. CHEMOSPHERE 2016; 165:311-319. [PMID: 27664520 DOI: 10.1016/j.chemosphere.2016.09.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
In this study, the degradation of ciprofloxacin (CIP) was explored using ultraviolet activated persulfate (UV/PS) with 280 nm ultraviolet light-emitting diodes (UV-LEDs), and the toxicological assessment of degrading intermediates was performed using iTRAQ labeling quantitative proteomic technology. The quantitative mass spectrum results showed that 280 nm UV/PS treatment had a high transformation efficiency of CIP ([CIP] = 3 μM, [S2O82-] = 210 μM, apparent rate constants 0.2413 min-1). The high resolution mass spectrum analyses demonstrated that the primary intermediates included C15H16FN3O3 (m/z 306.1248) and C17H18FN3O4 (m/z 348.1354). The former one was formed by the cleavage of piperazine ring, while the later one was generated by the addition of a hydroxyl on the quinolone backbone. The toxicological assessment demonstrated that 56 and 110 proteins had significant up regulations and down regulations, respectively, in the Escherichia coli exposed to degraded CIP compared to untreated CIP. The majority of up-regulated proteins, such as GapA, SodC, were associated with primary metabolic process rather than responses to stress and toxic substance, inferring that the moderate UV/PS treatment can reduce the antibacterial activity of CIP by incomplete mineralization. Consequently, these results provided a novel insight into the application of UV-LED/PS treatment as a promising removal methodology for quinolones.
Collapse
Affiliation(s)
- Jin-Shao Ye
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek 94598, CA, USA
| | - Juan Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hua-Se Ou
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Lin-Lin Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek 94598, CA, USA
| |
Collapse
|
18
|
Cerqueira NMFSA, Gonzalez PJ, Fernandes PA, Moura JJG, Ramos MJ. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities. Acc Chem Res 2015; 48:2875-84. [PMID: 26509703 DOI: 10.1021/acs.accounts.5b00333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is remarkable how nature has been able to construct enzymes that, despite sharing many similarities, have simple but key differences that tune them for completely different functions in living cells. Periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) from the DMSOr family are representative examples of this. Both enzymes share almost identical three-dimensional protein foldings and active sites, in terms of coordination number, geometry and nature of the ligands. The substrates of both enzymes (nitrate and formate) are polyatomic anions that also share similar charge and stereochemistry. In terms of the catalytic mechanism, both enzymes have a common activation mechanism (the sulfur-shift mechanism) that ensures a constant coordination number around the metal ion during the catalytic cycle. In spite of these similarities, they catalyze very different reactions: Nap abstracts an oxygen atom from nitrate releasing nitrite, whereas FdH catalyzes a hydrogen atom transfer from formate and releases carbon dioxide. In this Account, a critical analysis of structure, function, and catalytic mechanism of the molybdenum enzymes periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) is presented. We conclude that the main structural driving force that dictates the type of reaction, catalyzed by each enzyme, is a key difference on one active site residue that is located in the top region of the active sites of both enzymes. In both enzymes, the active site is centered on the metal ion of the cofactor (Mo in Nap and Mo or W in Fdh) that is coordinated by four sulfur atoms from two pyranopterin guanosine dinucleotide (PGD) molecules and by a sulfido. However, while in Nap there is a Cys directly coordinated to the Mo ion, in FdH there is a SeCys instead. In Fdh there is also an important His that interacts very closely with the SeCys, whereas in Nap the same position is occupied by a Met. The role of Cys in Nap and SeCys in FdH is similar in both enzymes; however, Met and His have different roles. His participates directly on catalysis, and it is therefore detrimental for the catalytic cycle of FdH. Met only participates in substrate binding. We concluded that this small but key difference dictates the type of reaction that is catalyzed by each enzyme. In addition, it allows explaining why formate can bind in the Nap active site in the same way as the natural substrate (nitrate), but the reaction becomes stalled afterward.
Collapse
Affiliation(s)
- Nuno M. F. S. A. Cerqueira
- REQUIMTE/UCIBIO,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pablo J. Gonzalez
- REQUIMTE/UCIBIO,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Pedro A. Fernandes
- REQUIMTE/UCIBIO,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - José J. G. Moura
- REQUIMTE/UCIBIO,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Maria João Ramos
- REQUIMTE/UCIBIO,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
19
|
Coelho C, Romão MJ. Structural and mechanistic insights on nitrate reductases. Protein Sci 2015; 24:1901-11. [PMID: 26362109 DOI: 10.1002/pro.2801] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/04/2015] [Indexed: 01/31/2023]
Abstract
Nitrate reductases (NR) belong to the DMSO reductase family of Mo-containing enzymes and perform key roles in the metabolism of the nitrogen cycle, reducing nitrate to nitrite. Due to variable cell location, structure and function, they have been divided into periplasmic (Nap), cytoplasmic, and membrane-bound (Nar) nitrate reductases. The first crystal structure obtained for a NR was that of the monomeric NapA from Desulfovibrio desulfuricans in 1999. Since then several new crystal structures were solved providing novel insights that led to the revision of the commonly accepted reaction mechanism for periplasmic nitrate reductases. The two crystal structures available for the NarGHI protein are from the same organism (Escherichia coli) and the combination with electrochemical and spectroscopic studies also lead to the proposal of a reaction mechanism for this group of enzymes. Here we present an overview on the current advances in structural and functional aspects of bacterial nitrate reductases, focusing on the mechanistic implications drawn from the crystallographic data.
Collapse
Affiliation(s)
- Catarina Coelho
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO@REQUIMTE, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Maria João Romão
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO@REQUIMTE, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| |
Collapse
|
20
|
Wu SY, Rothery RA, Weiner JH. Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase. J Biol Chem 2015; 290:25164-73. [PMID: 26297003 DOI: 10.1074/jbc.m115.665422] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 11/06/2022] Open
Abstract
We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser(719), NarG-His(1163), and NarG-His(1184)); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His(1092) and NarG-His(1098)). A S719A variant has essentially no effect on the overall Mo(VI/IV) reduction potential, whereas the H1163A and H1184A variants elicit large effects (ΔEm values of -88 and -36 mV, respectively). Ala variants of His(1092) and His(1098) also elicit large ΔEm values of -143 and -101 mV, respectively. An Arg variant of His(1092) elicits a small ΔEm of +18 mV on the Mo(VI/IV) reduction potential. There is a linear correlation between the molybdenum Em value and both enzyme activity and the ability to support anaerobic respiratory growth on nitrate. These data support a non-innocent role for the PPT moieties in controlling active site metal redox chemistry and catalysis.
Collapse
Affiliation(s)
- Sheng-Yi Wu
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Richard A Rothery
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joel H Weiner
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
21
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
22
|
Majumdar A. Structural and functional models in molybdenum and tungsten bioinorganic chemistry: description of selected model complexes, present scenario and possible future scopes. Dalton Trans 2015; 43:8990-9003. [PMID: 24798698 DOI: 10.1039/c4dt00631c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A brief description about some selected model complexes in molybdenum and tungsten bioinorganic chemistry is provided. The synthetic strategies involved and their limitations are discussed. Current status of molybdenum and tungsten bioinorganic modeling chemistry is presented briefly and synthetic problems associated therein are analyzed. Possible future directions which may expand the scope of modeling chemistry are suggested.
Collapse
Affiliation(s)
- Amit Majumdar
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
23
|
Cerqueira NMFSA, Pakhira B, Sarkar S. Theoretical studies on mechanisms of some Mo enzymes. J Biol Inorg Chem 2015; 20:323-35. [DOI: 10.1007/s00775-015-1237-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022]
|
24
|
Changes in metabolic pathways of Desulfovibrio alaskensis G20 cells induced by molybdate excess. J Biol Inorg Chem 2014; 20:311-22. [PMID: 25488518 DOI: 10.1007/s00775-014-1224-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/25/2014] [Indexed: 01/06/2023]
Abstract
The activity of sulfate-reducing bacteria (SRB) intensifies the problems associated to corrosion of metals and the solution entails significant economic costs. Although molybdate can be used to control the negative effects of these organisms, the mechanisms triggered in the cells exposed to Mo-excess are poorly understood. In this work, the effects of molybdate ions on the growth and morphology of the SRB Desulfovibrio alaskensis G20 (DaG20) were investigated. In addition, the cellular localization, ion uptake and regulation of protein expression were studied. We found that molybdate concentrations ranging between 50 and 150 µM produce a twofold increase in the doubling time with this effect being more significant at 200 µM molybdate (five times increase in the doubling time). It was also observed that 500 µM molybdate completely inhibits the cellular growth. On the context of protein regulation, we found that several enzymes involved in energy metabolism, cellular division and metal uptake processes were particularly influenced under the conditions tested. An overall description of some of the mechanisms involved in the DaG20 adaptation to molybdate-stress conditions is discussed.
Collapse
|
25
|
Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction. J Biol Inorg Chem 2014; 20:219-29. [PMID: 25261288 DOI: 10.1007/s00775-014-1196-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
Abstract
Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using (13)C-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe425 and Tyr535 are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.
Collapse
|
26
|
Nguyen NT, Mori Y, Matsumoto T, Yatabe T, Kabe R, Nakai H, Yoon KS, Ogo S. A [NiFe]hydrogenase model that catalyses the release of hydrogen from formic acid. Chem Commun (Camb) 2014; 50:13385-7. [DOI: 10.1039/c4cc05911e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Sparacino-Watkins C, Stolz JF, Basu P. Nitrate and periplasmic nitrate reductases. Chem Soc Rev 2014; 43:676-706. [PMID: 24141308 DOI: 10.1039/c3cs60249d] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types--periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed.
Collapse
|
28
|
TupA: a tungstate binding protein in the periplasm of Desulfovibrio alaskensis G20. Int J Mol Sci 2014; 15:11783-98. [PMID: 24992597 PMCID: PMC4139814 DOI: 10.3390/ijms150711783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 11/17/2022] Open
Abstract
The TupABC system is involved in the cellular uptake of tungsten and belongs to the ABC (ATP binding cassette)-type transporter systems. The TupA component is a periplasmic protein that binds tungstate anions, which are then transported through the membrane by the TupB component using ATP hydrolysis as the energy source (the reaction catalyzed by the ModC component). We report the heterologous expression, purification, determination of affinity binding constants and crystallization of the Desulfovibrio alaskensis G20 TupA. The tupA gene (locus tag Dde_0234) was cloned in the pET46 Enterokinase/Ligation-Independent Cloning (LIC) expression vector, and the construct was used to transform BL21 (DE3) cells. TupA expression and purification were optimized to a final yield of 10 mg of soluble pure protein per liter of culture medium. Native polyacrylamide gel electrophoresis was carried out showing that TupA binds both tungstate and molybdate ions and has no significant interaction with sulfate, phosphate or perchlorate. Quantitative analysis of metal binding by isothermal titration calorimetry was in agreement with these results, but in addition, shows that TupA has higher affinity to tungstate than molybdate. The protein crystallizes in the presence of 30% (w/v) polyethylene glycol 3350 using the hanging-drop vapor diffusion method. The crystals diffract X-rays beyond 1.4 Å resolution and belong to the P21 space group, with cell parameters a = 52.25 Å, b = 42.50 Å, c = 54.71 Å, β = 95.43°. A molecular replacement solution was found, and the structure is currently under refinement.
Collapse
|
29
|
Nguyen NT, Yatabe T, Yoon KS, Ogo S. Molybdenum-containing membrane-bound formate dehydrogenase isolated from Citrobacter sp. S-77 having high stability against oxygen, pH, and temperature. J Biosci Bioeng 2014; 118:386-91. [PMID: 24751436 DOI: 10.1016/j.jbiosc.2014.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/15/2014] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Abstract
Membrane-bound formate dehydrogenase (FDH) was purified to homogeneity from a facultative anaerobic bacterium Citrobacter sp. S-77. The FDH from Citrobacter sp. S-77 (FDHS77) was a monomer with molecular mass of approximately 150 kDa. On SDS-PAGE, the purified FDHS77 showed as three different protein bands with molecular mass of approximately 95, 87, and 32 kDa, respectively. Based on the N-terminal amino acid sequence analysis, the sequence alignments observed for the 87 kDa protein band were identical to that of the large subunit of 95 kDa, indicating that the purified FDHS77 consisted of two subunits; a 95 kDa large subunit and a 32 kDa small subunit. The purified FDHS77 in this purification did not contain a heme b subunit, but the FDHS77 showed significant activity for formate oxidation, determined by the Vmax of 30.4 U/mg using benzyl viologen as an electron acceptor. The EPR and ICP-MS spectra indicate that the FDHS77 is a molybdenum-containing enzyme, displaying a remarkable O2-stability along with thermostability and pH resistance. This is the first report of the purification and characterization of a FDH from Citrobacter species.
Collapse
Affiliation(s)
- Nga T Nguyen
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Yatabe
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ki-Seok Yoon
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.
| |
Collapse
|
30
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
31
|
de Visser SP, Quesne MG, Martin B, Comba P, Ryde U. Computational modelling of oxygenation processes in enzymes and biomimetic model complexes. Chem Commun (Camb) 2014; 50:262-82. [DOI: 10.1039/c3cc47148a] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Waller SE, Ray M, Yoder BL, Jarrold CC. Simple Relationship between Oxidation State and Electron Affinity in Gas-Phase Metal–Oxo Complexes. J Phys Chem A 2013; 117:13919-25. [DOI: 10.1021/jp4097666] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah E. Waller
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Manisha Ray
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Bruce L. Yoder
- Laboratory
for Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Caroline Chick Jarrold
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
33
|
Cerqueira NMFSA, Fernandes PA, Gonzalez PJ, Moura JJG, Ramos MJ. The sulfur shift: an activation mechanism for periplasmic nitrate reductase and formate dehydrogenase. Inorg Chem 2013; 52:10766-72. [PMID: 24066983 DOI: 10.1021/ic3028034] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A structural rearrangement known as sulfur shift occurs in some Mo-containing enzymes of the DMSO reductase family. This mechanism is characterized by the displacement of a coordinating cysteine thiol (or SeCys in Fdh) from the first to the second shell of the Mo-coordination sphere metal. The hexa-coordinated Mo ion found in the as-isolated state cannot bind directly any exogenous ligand (substrate or inhibitors), while the penta-coordinated ion, attained upon sulfur shift, has a free binding site for direct coordination of the substrate. This rearrangement provides an efficient mechanism to keep a constant coordination number throughout an entire catalytic pathway. This mechanism is very similar to the carboxylate shift observed in Zn-dependent enzymes, and it has been recently detected by experimental means. In the present paper, we calculated the geometries and energies involved in the sulfur-shift mechanism using QM-methods (M06/(6-311++G(3df,2pd),SDD)//B3LYP/(6-31G(d),SDD)). The results indicated that the sulfur-shift mechanism provides an efficient way to enable the metal ion for substrate coordination.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | | | | | | |
Collapse
|
34
|
da Silva SM, Voordouw J, Leitão C, Martins M, Voordouw G, Pereira IAC. Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism. Microbiology (Reading) 2013; 159:1760-1769. [DOI: 10.1099/mic.0.067868-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sofia M. da Silva
- Instituto de Tecnologia Quimica e Biologica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Johanna Voordouw
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Cristina Leitão
- Instituto de Tecnologia Quimica e Biologica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mónica Martins
- Instituto de Tecnologia Quimica e Biologica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Gerrit Voordouw
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Inês A. C. Pereira
- Instituto de Tecnologia Quimica e Biologica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|