1
|
Zhang Y, Wang W. Advances in tumor subclone formation and mechanisms of growth and invasion. J Transl Med 2025; 23:461. [PMID: 40259385 PMCID: PMC12012948 DOI: 10.1186/s12967-025-06486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025] Open
Abstract
Tumor subclones refer to distinct cell populations within the same tumor that possess different genetic characteristics. They play a crucial role in understanding tumor heterogeneity, evolution, and therapeutic resistance. The formation of tumor subclones is driven by several key mechanisms, including the inherent genetic instability of tumor cells, which facilitates the accumulation of novel mutations; selective pressures from the tumor microenvironment and therapeutic interventions, which promote the expansion of certain subclones; and epigenetic modifications, such as DNA methylation and histone modifications, which alter gene expression patterns. Major methodologies for studying tumor subclones include single-cell sequencing, liquid biopsy, and spatial transcriptomics, which provide insights into clonal architecture and dynamic evolution. Beyond their direct involvement in tumor growth and invasion, subclones significantly contribute to tumor heterogeneity, immune evasion, and treatment resistance. Thus, an in-depth investigation of tumor subclones not only aids in guiding personalized precision therapy, overcoming drug resistance, and identifying novel therapeutic targets, but also enhances our ability to predict recurrence and metastasis risks while elucidating the mechanisms underlying tumor heterogeneity. The integration of artificial intelligence, big data analytics, and multi-omics technologies is expected to further advance research in tumor subclones, paving the way for novel strategies in cancer diagnosis and treatment. This review aims to provide a comprehensive overview of tumor subclone formation mechanisms, evolutionary models, analytical methods, and clinical implications, offering insights into precision oncology and future translational research.
Collapse
Affiliation(s)
- Yuhong Zhang
- Department of Oncology, Clinical Medical College, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou, 646099, Sichuan, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Weidong Wang
- Department of Oncology, Clinical Medical College, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou, 646099, Sichuan, China.
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Patel MS, Almubarak M, Matta J, Ortiz-Sanchez C, Encarnacion J, Ruiz-Deya G, Dutil J, Dhillon J, Yamoah K, Berglund A, Park H, Kilari D, Balagurunathan Y, Wang L, Park JY. 5hmC-profiles in Puerto Rican Hispanic/Latino men with aggressive prostate cancer. Front Oncol 2025; 15:1541878. [PMID: 40265030 PMCID: PMC12011585 DOI: 10.3389/fonc.2025.1541878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Puerto Rican (PR) Hispanic/Latino (H/L) men are an understudied population that has the highest prostate cancer (PCa) specific mortality among other Hispanic populations. Little information is known about the higher mortality in PR H/L men. It is thought that epigenetic changes in key genes may play a critical role in aggressive tumors. Methods We aimed to identify key 5-hydroxymethylcytosine (5hmC) changes in PR H/L men with aggressive PCa. We performed sequencing analysis using the 5hmC-enriched DNA from 22 prostate tumors and 24 adjacent normal FFPE samples. Results We identified 808 differentially methylated genes (DMGs) in tumors compared to adjacent normal tissues. These genes suggest key mechanisms, including upregulated signatures of negative Androgen Receptor (AR) regulation, Wnt/β-catenin pathway activation, and downregulation of tumor suppressor genes. Pathway analysis of DMGs demonstrated that DNA repair pathway was most upregulated in tumors. Since 5hmC abundance positively correlates with gene expression levels, we further investigated 808 DMGs in TCGA PCa gene expression data. Further, we identified 59 DMGs with significant gene expression changes in the same direction. Additionally, we identified 111 aggressiveness-related DMGs, of which, two hypomethylated genes (CCDC122, NUDT15) and four hypermethylated genes (PVT1, RPL30, TRMT12, UBR5) were found to be altered at transcriptomic level in a concordant manner in PR H/L PCa patients. Aberrant 5hmC and GE changes in these six genes were also associated with progression-free survival in the mixed PCa population. Discussion The 5hmC modifications and associated gene expression changes in these six genes could be linked to the highest prostate cancer (PCa)-specific mortality in PR H/L men. In conclusion, our study identified 59 DMGs showing concordant epigenetic and transcriptomic changes in tumor tissues and 111 DMGs showing association with aggressive PCa among PR H/L men. Our findings have significant implications for understanding these key genes' molecular mechanisms, which may drive PCa progression and mortality in this population. This will help in developing potential biomarkers or therapeutic targets for personalized treatment strategies in this high-risk subgroup. Future research will explore how these genes contribute to PCa-specific mortality through molecular analyses, with plans to validate them in a larger validation cohort.
Collapse
Affiliation(s)
- Manishkumar S. Patel
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Mousa Almubarak
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Carmen Ortiz-Sanchez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Jarline Encarnacion
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Gilberto Ruiz-Deya
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Julie Dutil
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Hyun Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Deepak Kilari
- Division of Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yoganand Balagurunathan
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Liang Wang
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jong Y. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
3
|
Zhao J, Tang B, Shen P, Zeng H, Wei Q. Empowering PARP inhibition through rational combination: Mechanisms of PARP inhibitors and combinations with a focus on the treatment of metastatic castration-resistant prostate cancer. Crit Rev Oncol Hematol 2025; 210:104698. [PMID: 40089046 DOI: 10.1016/j.critrevonc.2025.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have revolutionized the treatment of many cancers. Metastatic castration-resistant prostate cancer (mCRPC) is an area where PARP inhibitors are intensively studied; the efficacy with PARP inhibitor monotherapy in patients with homologous recombination repair mutations following novel hormonal therapy have prompted the investigation of combination therapy, with adding an androgen receptor pathway inhibitor (ARPI) being one focus of research. Data on PARP inhibitor monotherapy and combination therapy for mCRPC are accumulating, and it is important to navigate through the complex data to inform treatment decision. Here we review the mechanisms of action of PARP inhibitors, their pharmacological properties, the synergistic activity of PARP inhibitors plus other drug classes, and the clinical evidence on monotherapy and combination therapy in patients with mCRPC. We propose key considerations in the selection of agents and treatment sequence for mCRPC, such as efficacy, toxicity profiles, biomarkers, and interactions with concomitant medications.
Collapse
Affiliation(s)
- Jinge Zhao
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Tang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Ganapathy K, Harrs CF, Harris S, Staklinski SJ, Khatib A, Park JY, Chakrabarti R. Reciprocal regulation between DNMT3A/3B and microRNAs miRs-299-3p/-30e is a causal factor for the downregulation of microRNAs targeting androgen receptor in prostate cancer. Heliyon 2025; 11:e41948. [PMID: 39944334 PMCID: PMC11815930 DOI: 10.1016/j.heliyon.2025.e41948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 03/16/2025] Open
Abstract
Background Promoter hypermethylation is one of the events that downregulate microRNAs (miRNA), resulting in the differential expression of genes implicated in the progression of cancer. We previously reported that microRNAs (miRNA)-299-3p and -30e target androgen receptor (AR) and are downregulated in advanced prostate cancer (PCa). Here we report that miR-34c, an AR targeting miRNA and miR-299-3p, both are differentially downregulated in PCa cells from African American (AA) and Caucasian American (CA) patients due to disparate promoter hypermethylation in these miRNA genes. Methods We performed bisulfite sequencing based promoter methylation analysis with or without treatment with DNA methyl transferase (DNMT) inhibitor 5-Aza-2'-deoxycytidine (AzaC). Luciferase reporter assays and RNA pulldown assays are conducted for miRNA -DNMT interaction analysis. We performed DNMT activity assays and ectopic expression of miRNAs to study their effects. Results We observed higher promoter methylation of these miRNA genes in cells derived from an AA patient compared to cells of CA origin, which can be reversed through AzaC treatment. Differential expression and activity of DNMT3A and 3B are noted in PCa cells from AA and CA origins. Immunoprecipitation of Ago revealed bound DNMT3A and 3B mRNAs with miRs-299-3p and -30e in the RISC. Luciferase reporter assays confirmed binding of miRs-299-3p and -30e to the UTRs of DNMT3A and 3B mRNAs. Overexpression of miRs-299-3p and -30e downregulated DNMT3A/B mRNA and protein expression and DNMT activity of DNMTs. Ectopic expression of miR-299-3p restored expression of miRs-34c and -30e in PCa cells. Similarly, overexpression of miR-30e restored expression of miRs-34c and -299-3p. Conclusion Our study provides evidence that ectopic expression of miRs-30e and -299-3p restore the loss of expression of miRs-299-3p and -34c miRNAs mediated by DNMT-induced promoter hypermethylation. This study establishes a feedback regulation between AR targeting miRNAs and DNMTs in PCa cells and provides an insight into the mechanism of the aberrant expression of AR in advanced PCa that is potentially mediated through the downregulation of miRs-299-3p, -34c and -30e and stabilization of expression and activities of DNMTs.
Collapse
Affiliation(s)
- Kavya Ganapathy
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Christian F. Harrs
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Samuel Harris
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Stephen J. Staklinski
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Ayman Khatib
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | | | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
5
|
Patel MS, Almubarak M, Matta J, Ortiz-Sanchez C, Encarnacion J, Ruiz-Deya G, Dutil J, Dhillon J, Yamoah K, Berglund A, Park H, Kilari D, Balagurunathan Y, Wang L, Park JY. 5hmC-profiles in Puerto Rican Hispanic/Latino men with aggressive prostate cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.26.24315621. [PMID: 39502659 PMCID: PMC11537326 DOI: 10.1101/2024.10.26.24315621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Puerto Rican (PR) Hispanic/Latino (H/L) men are an understudied population that has the highest prostate cancer (PCa) specific mortality among other Hispanic populations. Little information is known about the higher mortality in PR H/L men. It is thought that epigenetic changes in key genes may play a critical role in aggressive tumors. We aimed to identify key 5-hydroxymethylcytosine (5hmC) changes in PR H/L men with aggressive PCa. We performed sequencing analysis using the 5hmC-enriched DNA from 22 prostate tumors and 24 adjacent normal FFPE samples. We identified 808 differentially methylated genes (DMGs) in tumors compared to adjacent normal tissues (FDR<0.05, log2FC>|0.4|). Pathway analysis of DMGs demonstrated that DNA repair pathway was most upregulated in tumors. Since 5hmC abundance positively correlates with gene expression levels, we further investigated 808 DMGs in TCGA PCa gene expression data. Further, we identified 59 DMGs (80.1%, FDR<0.05, ΔGE (gene expression) >|1|) with significant gene expression changes in the same direction. Additionally, we identified 111 aggressiveness-related DMGs, of which, two hypomethylated genes ( CCDC122 , NUDT15 ) and four hypermethylated genes ( PVT1 , RPL30 , TRMT12 , UBR5 ) were found to be altered at transcriptomic level in a concordant manner in PR H/L PCa patients (N=86). The aberrant 5hmC (N=55) and GE (N=497) changes in these six genes were also associated with progression-free survival in the mixed PCa population. In conclusion, our study identified 59 DMGs showing concordant epigenetic and transcriptomic changes in tumor tissues and 111 DMGs showing association with aggressive PCa among PR H/L men.
Collapse
|
6
|
Yavuz S, Abraham TE, Houtsmuller AB, van Royen ME. Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors. Cells 2024; 13:1693. [PMID: 39451211 PMCID: PMC11506798 DOI: 10.3390/cells13201693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The androgen receptor (AR), a member of the nuclear steroid hormone receptor family of transcription factors, plays a crucial role not only in the development of the male phenotype but also in the development and growth of prostate cancer. While AR structure and AR interactions with coregulators and chromatin have been studied in detail, improving our understanding of AR function in gene transcription regulation, the spatio-temporal organization and the role of microscopically discernible AR foci in the nucleus are still underexplored. This review delves into the molecular mechanisms underlying AR foci formation, focusing on liquid-liquid phase separation and its role in spatially organizing ARs and their binding partners within the nucleus at transcription sites, as well as the influence of 3D-genome organization on AR-mediated gene transcription.
Collapse
Affiliation(s)
- Selçuk Yavuz
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| | - Tsion E. Abraham
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Adriaan B. Houtsmuller
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| |
Collapse
|
7
|
Yamamoto S, Obinata D, Takayama K, Funakoshi D, Fujiwara K, Hara M, Takahashi S, Inoue S. Anillin actin-binding protein expression correlates with poor prognosis for prostate cancer patients. Asian J Urol 2024; 11:569-574. [PMID: 39533998 PMCID: PMC11551517 DOI: 10.1016/j.ajur.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/12/2023] [Indexed: 11/16/2024] Open
Abstract
Objective Octamer transcription factor 1 (OCT1), a transcription factor that interacts with androgen receptor, is involved in prostate cancer (PCa) progression. The OCT1 target gene, Anillin actin-binding protein (ANLN), is highly expressed in castration-resistant PCa tissue; however, it remains unclear whether ANLN expression in hormone-sensitive PCa tissue could be used as a predictive biomarker for poor prognosis of patients. We aimed to investigate ANLN expression in PCa tissue obtained via radical prostatectomy and its correlation with clinical parameters. Methods Immunohistochemical staining for ANLN was performed on 86 PCa specimens, followed by evaluation using immunoreactivity (IR) scores. Prognosis was analyzed by the log-rank test using the Kaplan-Meier method to generate a cancer-specific survival curve. The correlations between ANLN IR and clinical parameters as well as OCT1 IR were analyzed using the Chi-squared test. Results The median IR score was 0 for ANLN. Accordingly, given the low median IR score, an IR score of ≥3 was defined as positive. There were 17 (19.8%) ANLN-positive cases, and these cases had a significantly poorer prognosis. Multivariate analysis revealed that the Gleason score, pathological tumor and lymph node stages, and positive ANLN expression were significant predictors of poor prognosis. Notably, patients with both positive ANLN and high OCT1 expression had a significantly decreased overall survival (p=0.001). Conclusion ANLN, which is a OCT1 target gene especially in castration-resistant PCa, is expressed in a small number of hormone-sensitive PCa cases. Both positive ANLN expression and high OCT1 expression are significantly correlated with poor prognosis for PCa patients.
Collapse
Affiliation(s)
- Shinichiro Yamamoto
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Daigo Funakoshi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Kyoko Fujiwara
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda Surugadai, Chiyoda-ku, Tokyo, Japan
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, Japan
| |
Collapse
|
8
|
Chen B, Guo L, Wang L, Wu P, Zheng X, Tan C, Xie N, Sun X, Zhou M, Huang H, Hao N, Lei Y, Yan K, Wu D, Du Y. Leveraging cell death patterns to predict metastasis in prostate adenocarcinoma and targeting PTGDS for tumor suppression. Sci Rep 2024; 14:21680. [PMID: 39289451 PMCID: PMC11408614 DOI: 10.1038/s41598-024-72985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Metastasis is the major cause of treatment failure in patients with prostate adenocarcinoma (PRAD). Diverse programmed cell death (PCD) patterns play an important role in tumor metastasis and hold promise as predictive indicators for PRAD metastasis. Using the LASSO Cox regression method, we developed PCD score (PCDS) based on differentially expressed genes (DEGs) associated with PCD. Clinical correlation, external validation, functional enrichment analysis, mutation landscape analysis, tumor immune environment analysis, and immunotherapy analysis were conducted. The role of Prostaglandin D2 Synthase (PTGDS) in PRAD was examined through in vitro experiments, single-cell, and Mendelian randomization (MR) analysis. PCDS is elevated in patients with higher Gleason scores, higher T stage, biochemical recurrence (BCR), and higher prostate-specific antigen (PSA) levels. Individuals with higher PCDS are prone to metastasis, metastasis after BCR, BCR, and castration resistance. Moreover, PRAD patients with low PCDS responded positively to immunotherapy. Random forest analysis and Mendelian randomization analysis identified PTGDS as the top gene associated with PRAD metastasis and in vitro experiments revealed that PTGDS was considerably downregulated in PRAD cells against normal prostate cells. Furthermore, the overexpression of PTGDS was found to suppress the migration, invasion, proliferationof DU145 and LNCaP cells. To sum up, PCDS may be a useful biomarker for forecasting the possibility of metastasis, recurrence, castration resistance, and the efficacy of immunotherapy in PRAD patients. Additionally, PTGDS was identified as a viable therapeutic target for the management of PRAD.
Collapse
Affiliation(s)
- Bohong Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Li Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Peiqiang Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyu Zheng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Congzhu Tan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Na Xie
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyue Sun
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Mingguo Zhou
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Haoxiang Huang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Na Hao
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 716000, Shaanxi Province, China
| | - Yangyang Lei
- Yan'an University, Yan'an, 710061, Shaanxi Province, China
| | - Kun Yan
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Dapeng Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Department of Urology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.
| | - Yuefeng Du
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Department of Urology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
9
|
Xie Q, Hu Y, Zhang C, Zhang C, Qin J, Zhao Y, An Q, Zheng J, Shi C. Curcumin blunts epithelial-mesenchymal transition to alleviate invasion and metastasis of prostate cancer through the JARID1D demethylation. Cancer Cell Int 2024; 24:303. [PMID: 39218854 PMCID: PMC11366129 DOI: 10.1186/s12935-024-03483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common and prevalent cancers in men worldwide. The majority of PCa-related deaths result from metastasis rather than primary tumors. Several studies have focused on the relationship between male-specific genes encoded on the Y chromosome and PCa metastasis; however, the relationship between the male specific protein encoded on the Y chromosome and tumor suppression has not been fully clarified. Here, we report a male specific protein of this type, the histone H3 lysine 4 (H3K4) demethylase JARID1D, which has the ability to inhibit the gene expression program related to cell invasion, and can thus form a phenotype that inhibits the invasion of PCa cells. However, JARID1D exhibits low expression level in advanced PCa, and which is related to rapid invasion and metastasis in patients with PCa. Curcumin, as a multi-target drug, can enhance the expression and demethylation activity of JARID1D, affect the androgen receptor (AR) and epithelial-mesenchymal transition (EMT) signaling cascade, and inhibit the metastatic potential of castration resistant cancer (CRPC). These findings suggest that using curcumin to increase the expression and demethylation activity of JARID1D may be a feasible strategy to inhibit PCa metastasis by regulating EMT and AR.
Collapse
Affiliation(s)
- Qinghua Xie
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yaohua Hu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chenyang Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Qin
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yong Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jie Zheng
- National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
10
|
Liu YN, Chen WY, Yeh HL, Chen WH, Jiang KC, Li HR, Dung PVT, Chen ZQ, Lee WJ, Hsiao M, Huang J, Wen YC. MCTP1 increases the malignancy of androgen-deprived prostate cancer cells by inducing neuroendocrine differentiation and EMT. Sci Signal 2024; 17:eadc9142. [PMID: 38861615 DOI: 10.1126/scisignal.adc9142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Neuroendocrine prostate cancer (PCa) (NEPC), an aggressive subtype that is associated with poor prognosis, may arise after androgen deprivation therapy (ADT). We investigated the molecular mechanisms by which ADT induces neuroendocrine differentiation in advanced PCa. We found that transmembrane protein 1 (MCTP1), which has putative Ca2+ sensing function and multiple Ca2+-binding C2 domains, was abundant in samples from patients with advanced PCa. MCTP1 was associated with the expression of the EMT-associated transcription factors ZBTB46, FOXA2, and HIF1A. The increased abundance of MCTP1 promoted PC3 prostate cancer cell migration and neuroendocrine differentiation and was associated with SNAI1-dependent EMT in C4-2 PCa cells after ADT. ZBTB46 interacted with FOXA2 and HIF1A and increased the abundance of MCTP1 in a hypoxia-dependent manner. MCTP1 stimulated Ca2+ signaling and AKT activation to promote EMT and neuroendocrine differentiation by increasing the SNAI1-dependent expression of EMT and neuroendocrine markers, effects that were blocked by knockdown of MCTP1. These data suggest an oncogenic role for MCTP1 in the maintenance of a rare and aggressive prostate cancer subtype through its response to Ca2+ and suggest its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Zi-Qing Chen
- Division of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yu-Ching Wen
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Obinata D, Takayama K, Inoue S, Takahashi S. Exploring androgen receptor signaling pathway in prostate cancer: A path to new discoveries. Int J Urol 2024; 31:590-597. [PMID: 38345202 DOI: 10.1111/iju.15424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
Androgen deprivation therapy has achieved significant success in treating prostate cancer through strategies centered on the androgen receptor. However, the emergence of castration-resistant prostate cancer highlights this therapy limitation, underscoring the need to elucidate the mechanisms of treatment resistance. This review aimed to focus on multifaceted resistance mechanisms, including androgen receptor overexpression, splice variants, missense mutations, the involvement of the glucocorticoid receptor, and alterations in coregulators and transcription factors, revealing their roles in castration-resistant prostate cancer progression. These mechanisms promote cell survival and proliferation, depending on the androgen receptor signaling pathway, leading to resistance to conventional therapies. Amplification and mutations in the androgen receptor gene facilitate selective adaptation in treatment-resistant cells, consequently diminishing therapeutic efficacy. Furthermore, the activation of glucocorticoid receptors and aberrant regulation of specific coregulators and transcription factors contribute to the activation of androgen receptor-independent signaling pathways, promoting cell survival and proliferation. These findings hold promise for identifying new targets for treating castration-resistant prostate cancer and developing personalized treatment strategies. The development of future therapies will hinge on precisely targeting the androgen receptor signaling pathway, necessitating a deeper understanding of the molecular targets unique to castration-resistant prostate cancer.
Collapse
MESH Headings
- Humans
- Male
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Signal Transduction
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/therapy
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation
- Androgen Antagonists/therapeutic use
- Gene Expression Regulation, Neoplastic
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/genetics
- Prostatic Neoplasms/therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Obinata D, Takayama K, Lawrence MG, Funakoshi D, Hara M, Niranjan B, Teng L, Taylor RA, Risbridger GP, Takahashi S, Inoue S. Patient-derived castration-resistant prostate cancer model revealed CTBP2 upregulation mediated by OCT1 and androgen receptor. BMC Cancer 2024; 24:554. [PMID: 38698344 PMCID: PMC11067191 DOI: 10.1186/s12885-024-12298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Prostate cancer is dependent on androgen receptor (AR) signaling, and androgen deprivation therapy (ADT) has proven effective in targeting prostate cancer. However, castration-resistant prostate cancer (CRPC) eventually emerges. AR signaling inhibitors (ARSI) have been also used, but resistance to these agents develops due to genetic AR alterations and epigenetic dysregulation. METHODS In this study, we investigated the role of OCT1, a member of the OCT family, in an AR-positive CRPC patient-derived xenograft established from a patient with resistance to ARSI and chemotherapy. We conducted a genome-wide analysis chromatin immunoprecipitation followed by sequencing and bioinformatic analyses using public database. RESULTS Genome-wide analysis of OCT1 target genes in PDX 201.1 A revealed distinct OCT1 binding sites compared to treatment-naïve cells. Bioinformatic analyses revealed that OCT1-regulated genes were associated with cell migration and immune system regulation. In particular, C-terminal Binding Protein 2 (CTBP2), an OCT1/AR target gene, was correlated with poor prognosis and immunosuppressive effects in the tumor microenvironment. Metascape revealed that CTBP2 knockdown affects genes related to the immune response to bacteria. Furthermore, TISIDB analysis suggested the relationship between CTBP2 expression and immune cell infiltration in prostate cancer, suggesting that it may contribute to immune evasion in CRPC. CONCLUSIONS Our findings shed light on the genome-wide network of OCT1 and AR in AR-positive CRPC and highlight the potential role of CTBP2 in immune response and tumor progression. Targeting CTBP2 may represent a promising therapeutic approach for aggressive AR-positive CRPC. Further validation will be required to explore novel therapeutic strategies for CRPC management.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku Tokyo, Tokyo, 173-0015, Japan
| | - Mitchell G Lawrence
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Daigo Funakoshi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Birunthi Niranjan
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Linda Teng
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
- Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Gail P Risbridger
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku Tokyo, Tokyo, 173-0015, Japan.
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan.
| |
Collapse
|
13
|
Chen M, Zou C, Tian Y, Li W, Li Y, Zhang D. An integrated ceRNA network identifies miR-375 as an upregulated miRNA playing a tumor suppressive role in aggressive prostate cancer. Oncogene 2024; 43:1594-1607. [PMID: 38565944 DOI: 10.1038/s41388-024-03011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Prostate cancer (PCa) remains a significant cause of morbidity and mortality among men worldwide. A number of genes have been implicated in prostate tumorigenesis, but the mechanisms underlying their dysregulation are still incompletely understood. Evidence has established the competing endogenous RNA (ceRNA) theory as a novel regulatory mechanism for post-transcriptional alterations. Yet, a comprehensive characterization of ceRNA network in PCa lacks. Here we utilize stringent in-silico methods to construct a large ceRNA network across different PCa stages, and provide experimental demonstration for the competing regulation among protumorigenic SEC23A, PHTF2, and their corresponding ceRNA pairs. Using machine learning, we establish a ceRNA-based signature (ceRNA_sig) predictive of androgen receptor (AR) activity, tumor aggressiveness, and patient outcomes. Importantly, we identify miR-375 as a key node in PCa ceRNA network, which is upregulated in PCa relative to normal tissues. Forced expression of miR-375 significantly inhibits, while its inhibition promotes, aggressive behaviors of both AR+ and AR- PCa cells in vitro and in vivo. Mechanistically, we show that miR-375 predominantly targets genes possessing oncogenic roles (e.g., proliferation, DNA repair, and metastasis), and thus release targets with tumor suppressive functions. This action model well clarifies why an upregulated miRNA plays a tumor suppressive role in PCa. Together, our study provides new insights into understanding of transcriptomic aberrations during PCa evolution, and nominates miR-375 as a potential therapeutic target for combating aggressive PCa.
Collapse
Affiliation(s)
- Mengjie Chen
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, School of BioMedical Sciences, Hunan University, Changsha, China
| | - Cheng Zou
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, School of BioMedical Sciences, Hunan University, Changsha, China.
| | - Yu Tian
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, School of BioMedical Sciences, Hunan University, Changsha, China
| | - Wenchao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yingying Li
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, School of BioMedical Sciences, Hunan University, Changsha, China
| | - Dingxiao Zhang
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, School of BioMedical Sciences, Hunan University, Changsha, China.
- Shenzhen Research Institute, Hunan University, Shenzhen, China.
| |
Collapse
|
14
|
Yalala S, Gondane A, Poulose N, Liang J, Mills IG, Itkonen HM. CDK9 inhibition activates innate immune response through viral mimicry. FASEB J 2024; 38:e23628. [PMID: 38661032 DOI: 10.1096/fj.202302375r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Cancer cells frequently exhibit hyperactivation of transcription, which can lead to increased sensitivity to compounds targeting the transcriptional kinases, in particular CDK9. However, mechanistic details of CDK9 inhibition-induced cancer cell-selective anti-proliferative effects remain largely unknown. Here, we discover that CDK9 inhibition activates the innate immune response through viral mimicry in cancer cells. In MYC over-expressing prostate cancer cells, CDK9 inhibition leads to the gross accumulation of mis-spliced RNA. Double-stranded RNA (dsRNA)-activated kinase can recognize these mis-spliced RNAs, and we show that the activity of this kinase is required for the CDK9 inhibitor-induced anti-proliferative effects. Using time-resolved transcriptional profiling (SLAM-seq), targeted proteomics, and ChIP-seq, we show that, similar to viral infection, CDK9 inhibition significantly suppresses transcription of most genes but allows selective transcription and translation of cytokines related to the innate immune response. In particular, CDK9 inhibition activates NFκB-driven cytokine signaling at the transcriptional and secretome levels. The transcriptional signature induced by CDK9 inhibition identifies prostate cancers with a high level of genome instability. We propose that it is possible to induce similar effects in patients using CDK9 inhibition, which, we show, causes DNA damage in vitro. In the future, it is important to establish whether CDK9 inhibitors can potentiate the effects of immunotherapy against late-stage prostate cancer, a currently lethal disease.
Collapse
Affiliation(s)
- Shivani Yalala
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aishwarya Gondane
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ninu Poulose
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jing Liang
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Harri M Itkonen
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Guerrero-Ochoa P, Rodríguez-Zapater S, Anel A, Esteban LM, Camón-Fernández A, Espilez-Ortiz R, Gil-Sanz MJ, Borque-Fernando Á. Prostate Cancer and the Mevalonate Pathway. Int J Mol Sci 2024; 25:2152. [PMID: 38396837 PMCID: PMC10888820 DOI: 10.3390/ijms25042152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Antineoplastic therapies for prostate cancer (PCa) have traditionally centered around the androgen receptor (AR) pathway, which has demonstrated a significant role in oncogenesis. Nevertheless, it is becoming progressively apparent that therapeutic strategies must diversify their focus due to the emergence of resistance mechanisms that the tumor employs when subjected to monomolecular treatments. This review illustrates how the dysregulation of the lipid metabolic pathway constitutes a survival strategy adopted by tumors to evade eradication efforts. Integrating this aspect into oncological management could prove valuable in combating PCa.
Collapse
Affiliation(s)
- Patricia Guerrero-Ochoa
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
| | - Sergio Rodríguez-Zapater
- Minimally Invasive Research Group (GITMI), Faculty of Veterinary Medicine, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Alberto Anel
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Luis Mariano Esteban
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain
| | - Alejandro Camón-Fernández
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
| | - Raquel Espilez-Ortiz
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Area of Urology, Department of Surgery, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - María Jesús Gil-Sanz
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Ángel Borque-Fernando
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Area of Urology, Department of Surgery, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
16
|
Matsuoka T, Sugiyama A, Miyawaki Y, Hidaka Y, Okuno Y, Sakai H, Tanaka H, Yoshikawa K, Fukui T, Mizuno K, Sumiyoshi T, Goto T, Inoue T, Akamatsu S, Kobayashi T, Nakamura E. Newly developed preclinical models reveal broad-spectrum CDK inhibitors as potent drugs for CRPC exhibiting primary resistance to enzalutamide. Cancer Sci 2024; 115:283-297. [PMID: 37923364 PMCID: PMC10823279 DOI: 10.1111/cas.15984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023] Open
Abstract
Androgen-deprivation therapy is a standard treatment for advanced prostate cancer. However, most patients eventually acquire resistance and progress to castration-resistant prostate cancer (CRPC). In this study, we established new CRPC cell lines, AILNCaP14 and AILNCaP15, from LNCaP cells under androgen-deprived conditions. Unlike most pre-existing CRPC cell lines, both cell lines expressed higher levels of androgen receptor (AR) and prostate-specific antigen (PSA) than parental LNCaP cells. Moreover, these cells exhibited primary resistance to enzalutamide. Since AR signaling plays a significant role in the development of CRPC, PSA promoter sequences fused with GFP were introduced into AILNCaP14 cells to conduct GFP fluorescence-based chemical screening. We identified flavopiridol, a broad-spectrum CDK inhibitor, as a candidate drug that could repress AR transactivation of CRPC cells, presumably through the inhibition of phosphorylation of AR on the serine 81 residue (pARSer81 ). Importantly, this broad-spectrum CDK inhibitor inhibited the proliferation of AILNCaP14 cells both in vitro and in vivo. Moreover, a newly developed liver metastatic model using AILNCaP15 cells revealed that the compound attenuated tumor growth of CRPC harboring highly metastatic properties. Finally, we developed a patient-derived xenograft (PDX) model of CRPC and DCaP CR from a patient presenting therapeutic resistance to enzalutamide, abiraterone, and docetaxel. Flavopiridol successfully suppressed the tumor growth of CRPC in this PDX model. Since ARSer81 was found to be phosphorylated in clinical CRPC samples, our data suggested that broad-spectrum CDK inhibitors might be a potent candidate drug for the treatment of CRPC, including those exhibiting primary resistance to enzalutamide.
Collapse
Grants
- 15K21115 Ministry of Education, Culture, Sports, Science and Technology
- 16K15686 Ministry of Education, Culture, Sports, Science and Technology
- 20K18112 Ministry of Education, Culture, Sports, Science and Technology
- 26670700 Ministry of Education, Culture, Sports, Science and Technology
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Takashi Matsuoka
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Aiko Sugiyama
- DSK Project, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Yoshifumi Miyawaki
- DSK Project, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Yusuke Hidaka
- DSK Project, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Yukiko Okuno
- Medical Research Support Center, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroaki Sakai
- DSK Project, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Hiroki Tanaka
- DSK Project, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Kiyotsugu Yoshikawa
- Laboratory of Pharmacotherapy, Department of Clinical Pharmacy, Faculty of Pharmaceutical SciencesDoshisha Women's College of Liberal ArtsKyotoJapan
| | - Tomohiro Fukui
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Kei Mizuno
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takayuki Sumiyoshi
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takayuki Goto
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takahiro Inoue
- Department of Nephro‐Urologic Surgery and AndrologyMie University Graduate School of MedicineTsuJapan
| | - Shusuke Akamatsu
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takashi Kobayashi
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Eijiro Nakamura
- Department of UrologyNational Cancer Center HospitalTokyoJapan
| |
Collapse
|
17
|
Rawat C, Ben-Salem S, Singh N, Chauhan G, Rabljenovic A, Vaghela V, Venkadakrishnan VB, Macdonald JD, Dahiya UR, Ghanem Y, Bachour S, Su Y, DePriest AD, Lee S, Muldong M, Kim HT, Kumari S, Valenzuela MM, Zhang D, Hu Q, Cortes Gomez E, Dehm SM, Zoubeidi A, Jamieson CAM, Nicolas M, McKenney J, Willard B, Klein EA, Magi-Galluzzi C, Stauffer SR, Liu S, Heemers HV. Prostate Cancer Progression Relies on the Mitotic Kinase Citron Kinase. Cancer Res 2023; 83:4142-4160. [PMID: 37801613 PMCID: PMC10841833 DOI: 10.1158/0008-5472.can-23-0883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/14/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.
Collapse
Affiliation(s)
- Chitra Rawat
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Salma Ben-Salem
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Nidhi Singh
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Gaurav Chauhan
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | | | - Vishwa Vaghela
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Varadha Balaji Venkadakrishnan
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio
| | | | - Ujjwal R Dahiya
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Yara Ghanem
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Salam Bachour
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Yixue Su
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Adam D DePriest
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sanghee Lee
- Department of Urology, UC San Diego, La Jolla, California
| | | | - Hyun-Tae Kim
- Department of Urology, UC San Diego, La Jolla, California
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sangeeta Kumari
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | | | - Dingxiao Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- School of Biomedical Sciences, Hunan University, Changsa, China
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Scott M Dehm
- Masonic Cancer Center and Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, Minnesota
| | - Amina Zoubeidi
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Canada
| | | | - Marlo Nicolas
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Jesse McKenney
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | | | - Eric A Klein
- Department of Urology, Cleveland Clinic, Cleveland, Ohio
| | | | - Shaun R Stauffer
- Center for Therapeutics Discovery, Cleveland Clinic, Cleveland, Ohio
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | |
Collapse
|
18
|
Zheng K, Hai Y, Xi Y, Zhang Y, Liu Z, Chen W, Hu X, Zou X, Hao J. Integrative multi-omics analysis unveils stemness-associated molecular subtypes in prostate cancer and pan-cancer: prognostic and therapeutic significance. J Transl Med 2023; 21:789. [PMID: 37936202 PMCID: PMC10629187 DOI: 10.1186/s12967-023-04683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Prostate cancer (PCA) is the fifth leading cause of cancer-related deaths worldwide, with limited treatment options in the advanced stages. The immunosuppressive tumor microenvironment (TME) of PCA results in lower sensitivity to immunotherapy. Although molecular subtyping is expected to offer important clues for precision treatment of PCA, there is currently a shortage of dependable and effective molecular typing methods available for clinical practice. Therefore, we aim to propose a novel stemness-based classification approach to guide personalized clinical treatments, including immunotherapy. METHODS An integrative multi-omics analysis of PCA was performed to evaluate stemness-level heterogeneities. Unsupervised hierarchical clustering was used to classify PCAs based on stemness signature genes. To make stemness-based patient classification more clinically applicable, a stemness subtype predictor was jointly developed by using four PCA datasets and 76 machine learning algorithms. RESULTS We identified stemness signatures of PCA comprising 18 signaling pathways, by which we classified PCA samples into three stemness subtypes via unsupervised hierarchical clustering: low stemness (LS), medium stemness (MS), and high stemness (HS) subtypes. HS patients are sensitive to androgen deprivation therapy, taxanes, and immunotherapy and have the highest stemness, malignancy, tumor mutation load (TMB) levels, worst prognosis, and immunosuppression. LS patients are sensitive to platinum-based chemotherapy but resistant to immunotherapy and have the lowest stemness, malignancy, and TMB levels, best prognosis, and the highest immune infiltration. MS patients represent an intermediate status of stemness, malignancy, and TMB levels with a moderate prognosis. We further demonstrated that these three stemness subtypes are conserved across pan-tumor. Additionally, the 9-gene stemness subtype predictor we developed has a comparable capability to 18 signaling pathways to make tumor diagnosis and to predict tumor recurrence, metastasis, progression, prognosis, and efficacy of different treatments. CONCLUSIONS The three stemness subtypes we identified have the potential to be a powerful tool for clinical tumor molecular classification in PCA and pan-cancer, and to guide the selection of immunotherapy or other sensitive treatments for tumor patients.
Collapse
Affiliation(s)
- Kun Zheng
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youlong Hai
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yue Xi
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Yukun Zhang
- Beijing University of Chinese Medicine East Hospital, Zaozhuang Hospital, Zaozhuang, 277000, Shandong, China
| | - Zheqi Liu
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wantao Chen
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyong Hu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Senapati D, Sharma V, Rath SK, Rai U, Panigrahi N. Functional implications and therapeutic targeting of androgen response elements in prostate cancer. Biochimie 2023; 214:188-198. [PMID: 37460038 DOI: 10.1016/j.biochi.2023.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The androgen receptor (AR) plays an essential role in the growth and progression of prostate cancer (CaP). Ligand-activated AR inside the nucleus binds to the androgen response element (ARE) of the target genes in dimeric form and recruits transcriptional machinery to facilitate gene transcription. Pharmacological compounds that inhibit the AR action either bind to the ligand binding domain (LBD) or interfere with the interactions of AR with other co-regulatory proteins, slowing the progression of the disease. However, the emergence of resistance to conventional treatment makes clinical management of CaP difficult. Resistance has been associated with activation of androgen/AR axis that restores AR transcriptional activity. Activated AR signaling in resistance cases can be mediated by several mechanisms including AR amplification, gain-of-function AR mutations, androgen receptor variant (ARVs), intracrine androgen production, and overexpression of AR coactivators. Importantly, in castration resistant prostate cancer, ARVs lacking the LBD become constitutively active and promote hormone-independent development, underlining the need to concentrate on the other domain or the AR-DNA interface for the identification of novel actionable targets. In this review, we highlight the plasticity of AR-DNA binding and explain how fine-tuning AR's cooperative interactions with DNA translate into developing an alternative strategy to antagonize AR activity.
Collapse
Affiliation(s)
- Dhirodatta Senapati
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India.
| | - Vikas Sharma
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Santosh Kumar Rath
- School of Pharmaceuticals and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Uddipak Rai
- School of Pharmaceuticals and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Naresh Panigrahi
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
20
|
Fu B, Wang L, Jia T, Wei Z, Nama N, Liang J, Liao X, Liu X, Gao Y, Liu X, Mao RS, Wang K, Guo J, Chen SS. Androgen receptor and MYC transcriptomes are equilibrated in multilayer regulatory circuitries in prostate cancer. Prostate 2023; 83:1415-1429. [PMID: 37565264 PMCID: PMC10529406 DOI: 10.1002/pros.24603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The discovery of androgen receptor (AR) having transrepression effects completes the circle of its functionalities as a typical transcription factor, which intrinsically bears dual functions of activation and repression linked to co-factor competition and redistribution. Indeed, AR dual functions are exemplified by locus-wide regulation of the oncogenic 8q24-MYC region. METHODS RT-qPCR assay and public RNA-profiling datasets were used to assess MYC transcription in androgen-sensitive cell lines. Public ChIP-seq and RNA-Seq datasets were computed to evaluate AR-MYC direct and indirect signatures. Gene sets in typical MYC and AR pathways were monitored to validate their cross-talks. Bio-informatics and chromosome conformation capture (3C) assay were performed in the AR gene locus to examine androgen-elicited distal regulation. Finally, co-factor re-distribution were globally tracked between AR and MYC binding sites. RESULTS In this report, we found MYC responded negatively to androgen with hypersensitivity, rivaling AR natural functions as an innate androgen effector. Furthermore, both direct and indirect AR and MYC transcriptional programs were actively in equilibration. With established androgen-mediated versus MYC-mediated gene subsets, we validated AR and MYC pathways were both bidirectional and extensively entangled. In addition, we determined that the AR gene locus resembled the MYC gene region and both loci were androgen-repressed via epigenetics and chromatin architectural alterations. Significantly, transcriptional factor profiling along the prostate cancer (PCa) genome exposed that PCa transcriptomes were dynamically equilibrated between AR-binding site and MYC-binding site. CONCLUSION Together, our findings stratified AR-MYC interactions that are extensively wired and intricately organized to compensate for essential PCa transcriptional programs and neutralize excessive signaling.
Collapse
Affiliation(s)
- Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
| | - Liyang Wang
- Department of Medicine, Hematology‐Oncology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachussetts, USA
- Department of Cell Development Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, ShaanXi, P.R.China
| | - Tianwei Jia
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R.China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, P.R.China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, P.R.China
| | - Zhao Wei
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, P.R.China
| | - Nuosu Nama
- Department of Medicine, Hematology‐Oncology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachussetts, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jiaqian Liang
- Department of Urology, Wuhan No.1 Hospital, Wuhan, P.R.China
| | - Xinghua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, WuHan, Hubei, P.R.China
| | - XiaMing Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Yanfei Gao
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, P.R.China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
| | - Raymond Shen Mao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju Guo
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
| | - Shaoyong Shawn Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
- Department of Medicine, Hematology‐Oncology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachussetts, USA
| |
Collapse
|
21
|
Lautert-Dutra W, Melo CM, Chaves LP, Souza FC, Crozier C, Sundby AE, Woroszchuk E, Saggioro FP, Avante FS, dos Reis RB, Squire JA, Bayani J. Identification of tumor-agnostic biomarkers for predicting prostate cancer progression and biochemical recurrence. Front Oncol 2023; 13:1280943. [PMID: 37965470 PMCID: PMC10641020 DOI: 10.3389/fonc.2023.1280943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
The diverse clinical outcomes of prostate cancer have led to the development of gene signature assays predicting disease progression. Improved prostate cancer progression biomarkers are needed as current RNA biomarker tests have varying success for intermediate prostate cancer. Interest grows in universal gene signatures for invasive carcinoma progression. Early breast and prostate cancers share characteristics, including hormone dependence and BRCA1/2 mutations. Given the similarities in the pathobiology of breast and prostate cancer, we utilized the NanoString BC360 panel, comprising the validated PAM50 classifier and pathway-specific signatures associated with general tumor progression as well as breast cancer-specific classifiers. This retrospective cohort of primary prostate cancers (n=53) was stratified according to biochemical recurrence (BCR) status and the CAPRA-S to identify genes related to high-risk disease. Two public cohort (TCGA-PRAD and GSE54460) were used to validate the results. Expression profiling of our cohort uncovered associations between PIP and INHBA with BCR and high CAPRA-S score, as well as associations between VCAN, SFRP2, and THBS4 and BCR. Despite low levels of the ESR1 gene compared to AR, we found strong expression of the ER signaling signature, suggesting that BCR may be driven by ER-mediated pathways. Kaplan-Meier and univariate Cox proportional hazards regression analysis indicated the expression of ESR1, PGR, VCAN, and SFRP2 could predict the occurrence of relapse events. This is in keeping with the pathways represented by these genes which contribute to angiogenesis and the epithelial-mesenchymal transition. It is likely that VCAN works by activating the stroma and remodeling the tumor microenvironment. Additionally, SFRP2 overexpression has been associated with increased tumor size and reduced survival rates in breast cancer and among prostate cancer patients who experienced BCR. ESR1 influences disease progression by activating stroma, stimulating stem/progenitor prostate cancer, and inducing TGF-β. Estrogen signaling may therefore serve as a surrogate to AR signaling during progression and in hormone-refractory disease, particularly in prostate cancer patients with stromal-rich tumors. Collectively, the use of agnostic biomarkers developed for breast cancer stratification has facilitated a precise clinical classification of patients undergoing radical prostatectomy and highlighted the therapeutic potential of targeting estrogen signaling in prostate cancer.
Collapse
Affiliation(s)
- William Lautert-Dutra
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Camila M. Melo
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luiz P. Chaves
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Francisco C. Souza
- Division of Urology, Department of Surgery and Anatomy, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Cheryl Crozier
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Adam E. Sundby
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Elizabeth Woroszchuk
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Fabiano P. Saggioro
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Filipe S. Avante
- Division of Urology, Department of Surgery and Anatomy, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rodolfo B. dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Jeremy A. Squire
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Jane Bayani
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Dai C, Dehm SM, Sharifi N. Targeting the Androgen Signaling Axis in Prostate Cancer. J Clin Oncol 2023; 41:4267-4278. [PMID: 37429011 PMCID: PMC10852396 DOI: 10.1200/jco.23.00433] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/12/2023] Open
Abstract
Activation of the androgen receptor (AR) and AR-driven transcriptional programs is central to the pathophysiology of prostate cancer. Despite successful translational efforts in targeting AR, therapeutic resistance often occurs as a result of molecular alterations in the androgen signaling axis. The efficacy of next-generation AR-directed therapies for castration-resistant prostate cancer has provided crucial clinical validation for the continued dependence on AR signaling and introduced a range of new treatment options for men with both castration-resistant and castration-sensitive disease. Despite this, however, metastatic prostate cancer largely remains an incurable disease, highlighting the need to better understand the diverse mechanisms by which tumors thwart AR-directed therapies, which may inform new therapeutic avenues. In this review, we revisit concepts in AR signaling and current understandings of AR signaling-dependent resistance mechanisms as well as the next frontier of AR targeting in prostate cancer.
Collapse
Affiliation(s)
- Charles Dai
- Massachusetts General Hospital Cancer Center, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Scott M. Dehm
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
- Department of Urology, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
23
|
Logotheti S, Papadaki E, Zolota V, Logothetis C, Vrahatis AG, Soundararajan R, Tzelepi V. Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated "Omics" Approaches to Explore Measurable Metrics. Cancers (Basel) 2023; 15:4357. [PMID: 37686633 PMCID: PMC10486655 DOI: 10.3390/cancers15174357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.
Collapse
Affiliation(s)
- Souzana Logotheti
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Eugenia Papadaki
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
- Department of Informatics, Ionian University, 49100 Corfu, Greece;
| | - Vasiliki Zolota
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasiliki Tzelepi
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| |
Collapse
|
24
|
Butler LM, Evergren E. Ultrastructural analysis of prostate cancer tissue provides insights into androgen-dependent adaptations to membrane contact site establishment. Front Oncol 2023; 13:1217741. [PMID: 37529692 PMCID: PMC10389664 DOI: 10.3389/fonc.2023.1217741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
Membrane trafficking and organelle contact sites are important for regulating cell metabolism and survival; processes often deregulated in cancer. Prostate cancer is the second leading cause of cancer-related death in men in the developed world. While early-stage disease is curable by surgery or radiotherapy there is an unmet need to identify prognostic biomarkers, markers to treatment response and new therapeutic targets in intermediate-late stage disease. This study explored the morphology of organelles and membrane contact sites in tumor tissue from normal, low and intermediate histological grade groups. The morphology of organelles in secretory prostate epithelial cells; including Golgi apparatus, ER, lysosomes; was similar in prostate tissue samples across a range of Gleason scores. Mitochondrial morphology was not dramatically altered, but the number of membrane contacts with the ER notably increased with disease progression. A three-fold increase of tight mitochondria-ER membrane contact sites was observed in the intermediate Gleason score group compared to normal tissue. To investigate whether these changes were concurrent with an increased androgen signaling in the tissue, we investigated whether an anti-androgen used in the clinic to treat advanced prostate cancer (enzalutamide) could reverse the phenotype. Patient-derived explant tissues with an intermediate Gleason score were cultured ex vivo in the presence or absence of enzalutamide and the number of ER-mitochondria contacts were quantified for each matched pair of tissues. Enzalutamide treated tissue showed a significant reduction in the number and length of mitochondria-ER contact sites, suggesting a novel androgen-dependent regulation of these membrane contact sites. This study provides evidence for the first time that prostate epithelial cells undergo adaptations in membrane contact sites between mitochondria and the ER during prostate cancer progression. These adaptations are androgen-dependent and provide evidence for a novel hormone-regulated mechanism that support establishment and extension of MAMs. Future studies will determine whether these changes are required to maintain pro-proliferative signaling and metabolic changes that support prostate cancer cell viability.
Collapse
Affiliation(s)
- Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Emma Evergren
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
25
|
Chetta P, Sriram R, Zadra G. Lactate as Key Metabolite in Prostate Cancer Progression: What Are the Clinical Implications? Cancers (Basel) 2023; 15:3473. [PMID: 37444583 PMCID: PMC10340474 DOI: 10.3390/cancers15133473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Advanced prostate cancer represents the fifth leading cause of cancer death in men worldwide. Although androgen-receptor signaling is the major driver of the disease, evidence is accumulating that disease progression is supported by substantial metabolic changes. Alterations in de novo lipogenesis and fatty acid catabolism are consistently reported during prostate cancer development and progression in association with androgen-receptor signaling. Therefore, the term "lipogenic phenotype" is frequently used to describe the complex metabolic rewiring that occurs in prostate cancer. However, a new scenario has emerged in which lactate may play a major role. Alterations in oncogenes/tumor suppressors, androgen signaling, hypoxic conditions, and cells in the tumor microenvironment can promote aerobic glycolysis in prostate cancer cells and the release of lactate in the tumor microenvironment, favoring immune evasion and metastasis. As prostate cancer is composed of metabolically heterogenous cells, glycolytic prostate cancer cells or cancer-associated fibroblasts can also secrete lactate and create "symbiotic" interactions with oxidative prostate cancer cells via lactate shuttling to sustain disease progression. Here, we discuss the multifaceted role of lactate in prostate cancer progression, taking into account the influence of the systemic metabolic and gut microbiota. We call special attention to the clinical opportunities of imaging lactate accumulation for patient stratification and targeting lactate metabolism.
Collapse
Affiliation(s)
- Paolo Chetta
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Giorgia Zadra
- Institute of Molecular Genetics, National Research Council (IGM-CNR), 27100 Pavia, Italy
| |
Collapse
|
26
|
Koistinen H, Kovanen RM, Hollenberg MD, Dufour A, Radisky ES, Stenman UH, Batra J, Clements J, Hooper JD, Diamandis E, Schilling O, Rannikko A, Mirtti T. The roles of proteases in prostate cancer. IUBMB Life 2023; 75:493-513. [PMID: 36598826 PMCID: PMC10159896 DOI: 10.1002/iub.2700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 01/05/2023]
Abstract
Since the proposition of the pro-invasive activity of proteolytic enzymes over 70 years ago, several roles for proteases in cancer progression have been established. About half of the 473 active human proteases are expressed in the prostate and many of the most well-characterized members of this enzyme family are regulated by androgens, hormones essential for development of prostate cancer. Most notably, several kallikrein-related peptidases, including KLK3 (prostate-specific antigen, PSA), the most well-known prostate cancer marker, and type II transmembrane serine proteases, such as TMPRSS2 and matriptase, have been extensively studied and found to promote prostate cancer progression. Recent findings also suggest a critical role for proteases in the development of advanced and aggressive castration-resistant prostate cancer (CRPC). Perhaps the most intriguing evidence for this role comes from studies showing that the protease-activated transmembrane proteins, Notch and CDCP1, are associated with the development of CRPC. Here, we review the roles of proteases in prostate cancer, with a special focus on their regulation by androgens.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Ruusu-Maaria Kovanen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, U.S.A
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - John D. Hooper
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Eleftherios Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
27
|
Kumar R, Sena LA, Denmeade SR, Kachhap S. The testosterone paradox of advanced prostate cancer: mechanistic insights and clinical implications. Nat Rev Urol 2023; 20:265-278. [PMID: 36543976 PMCID: PMC10164147 DOI: 10.1038/s41585-022-00686-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
The discovery of the benefits of castration for prostate cancer treatment in 1941 led to androgen deprivation therapy, which remains a mainstay of the treatment of men with advanced prostate cancer. However, as early as this original publication, the inevitable development of castration-resistant prostate cancer was recognized. Resistance first manifests as a sustained rise in the androgen-responsive gene, PSA, consistent with reactivation of the androgen receptor axis. Evaluation of clinical specimens demonstrates that castration-resistant prostate cancer cells remain addicted to androgen signalling and adapt to chronic low-testosterone states. Paradoxically, results of several studies have suggested that treatment with supraphysiological levels of testosterone can retard prostate cancer growth. Insights from these studies have been used to investigate administration of supraphysiological testosterone to patients with prostate cancer for clinical benefits, a strategy that is termed bipolar androgen therapy (BAT). BAT involves rapid cycling from supraphysiological back to near-castration testosterone levels over a 4-week cycle. Understanding how BAT works at the molecular and cellular levels might help to rationalize combining BAT with other agents to achieve increased efficacy and tumour responses.
Collapse
Affiliation(s)
- Rajendra Kumar
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Laura A Sena
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Sushant Kachhap
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
28
|
Bergom HE, Shabaneh A, Day A, Ali A, Boytim E, Tape S, Lozada JR, Shi X, Kerkvliet CP, McSweeney S, Pitzen SP, Ludwig M, Antonarakis ES, Drake JM, Dehm SM, Ryan CJ, Wang J, Hwang J. ALAN is a computational approach that interprets genomic findings in the context of tumor ecosystems. Commun Biol 2023; 6:417. [PMID: 37059746 PMCID: PMC10104859 DOI: 10.1038/s42003-023-04795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
Gene behavior is governed by activity of other genes in an ecosystem as well as context-specific cues including cell type, microenvironment, and prior exposure to therapy. Here, we developed the Algorithm for Linking Activity Networks (ALAN) to compare gene behavior purely based on patient -omic data. The types of gene behaviors identifiable by ALAN include co-regulators of a signaling pathway, protein-protein interactions, or any set of genes that function similarly. ALAN identified direct protein-protein interactions in prostate cancer (AR, HOXB13, and FOXA1). We found differential and complex ALAN networks associated with the proto-oncogene MYC as prostate tumors develop and become metastatic, between different cancer types, and within cancer subtypes. We discovered that resistant genes in prostate cancer shared an ALAN ecosystem and activated similar oncogenic signaling pathways. Altogether, ALAN represents an informatics approach for developing gene signatures, identifying gene targets, and interpreting mechanisms of progression or therapy resistance.
Collapse
Affiliation(s)
- Hannah E Bergom
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Ashraf Shabaneh
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Abderrahman Day
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Atef Ali
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Ella Boytim
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Sydney Tape
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - John R Lozada
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Xiaolei Shi
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Carlos Perez Kerkvliet
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Sean McSweeney
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Samuel P Pitzen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Justin M Drake
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Charles J Ryan
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Prostate Cancer Foundation, Santa Monica, CA, USA
| | - Jinhua Wang
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Justin Hwang
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA.
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
29
|
Vasilatis DM, Lucchesi CA, Ghosh PM. Molecular Similarities and Differences between Canine Prostate Cancer and Human Prostate Cancer Variants. Biomedicines 2023; 11:biomedicines11041100. [PMID: 37189720 DOI: 10.3390/biomedicines11041100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Dogs are one of few species that naturally develop prostate cancer (PCa), which clinically resembles aggressive, advanced PCa in humans. Moreover, PCa-tumor samples from dogs are often androgen receptor (AR)-negative and may enrich our understanding of AR-indifferent PCa in humans, a highly lethal subset of PCa for which few treatment modalities are available This narrative review discusses the molecular similarities between dog PCa and specific human-PCa variants, underscoring the possibilities of using the dog as a novel pre-clinical animal model for human PCa, resulting in new therapies and diagnostics that may benefit both species.
Collapse
Affiliation(s)
- Demitria M Vasilatis
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Veterans Affairs (VA)-Northern California Healthcare System, Mather, CA 95655, USA
| | | | - Paramita M Ghosh
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Veterans Affairs (VA)-Northern California Healthcare System, Mather, CA 95655, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
30
|
Hung CL, Liu HH, Fu CW, Yeh HH, Hu TL, Kuo ZK, Lin YC, Jhang MR, Hwang CS, Hsu HC, Kung HJ, Wang LY. Targeting androgen receptor and the variants by an orally bioavailable Proteolysis Targeting Chimeras compound in castration resistant prostate cancer. EBioMedicine 2023; 90:104500. [PMID: 36893587 PMCID: PMC10011747 DOI: 10.1016/j.ebiom.2023.104500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Despite the advent of improved therapeutic options for advanced prostate cancer, the durability of clinical benefits is limited due to inevitable development of resistance. By constitutively sustaining androgen receptor (AR) signaling, expression of ligand-binding domain truncated AR variants (AR-V(ΔLBD)) accounts for the major mechanism underlying the resistance to anti-androgen drugs. Strategies to target AR and its LBD truncated variants are needed to prevent the emergence or overcome drug resistance. METHODS We utilize Proteolysis Targeting Chimeras (PROTAC) technology to achieve induced degradation of both full-length AR (AR-FL) and AR-V(ΔLBD) proteins. In the ITRI-PROTAC design, an AR N-terminal domain (NTD) binding moiety is appended to von-Hippel-Lindau (VHL) or Cereblon (CRBN) E3 ligase binding ligand with linker. FINDINGS In vitro studies demonstrate that ITRI-PROTAC compounds mechanistically degrade AR-FL and AR-V(ΔLBD) proteins via ubiquitin-proteasome system, leading to impaired AR transactivation on target gene expression, and inhibited cell proliferation accompanied by apoptosis activation. The compounds also significantly inhibit enzalutamide-resistant growth of castration resistant prostate cancer (CRPC) cells. In castration-, enzalutamide-resistant CWR22Rv1 xenograft model without hormone ablation, ITRI-90 displays a pharmacokinetic profile with decent oral bioavailability and strong antitumor efficacy. INTERPRETATION AR NTD that governs the transcriptional activities of all active variants has been considered attractive therapeutic target to block AR signaling in prostate cancer cells. We demonstrated that utilizing PROTAC for induced AR protein degradation via NTD represents an efficient alternative therapeutic strategy for CRPC to overcome anti-androgen resistance. FUNDING The funding detail can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Chiu-Lien Hung
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Hao-Hsuan Liu
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Chih-Wei Fu
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Hsun-Hao Yeh
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsan-Lin Hu
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Zong-Keng Kuo
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Yu-Chin Lin
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Mei-Ru Jhang
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Chrong-Shiong Hwang
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Hung-Chih Hsu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan 33302, Taiwan; Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
| |
Collapse
|
31
|
Raith F, O’Donovan DH, Lemos C, Politz O, Haendler B. Addressing the Reciprocal Crosstalk between the AR and the PI3K/AKT/mTOR Signaling Pathways for Prostate Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032289. [PMID: 36768610 PMCID: PMC9917236 DOI: 10.3390/ijms24032289] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The reduction in androgen synthesis and the blockade of the androgen receptor (AR) function by chemical castration and AR signaling inhibitors represent the main treatment lines for the initial stages of prostate cancer. Unfortunately, resistance mechanisms ultimately develop due to alterations in the AR pathway, such as gene amplification or mutations, and also the emergence of alternative pathways that render the tumor less or, more rarely, completely independent of androgen activation. An essential oncogenic axis activated in prostate cancer is the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, as evidenced by the frequent alterations of the negative regulator phosphatase and tensin homolog (PTEN) and by the activating mutations in PI3K subunits. Additionally, crosstalk and reciprocal feedback loops between androgen signaling and the PI3K/AKT/mTOR signaling cascade that activate pro-survival signals and play an essential role in disease recurrence and progression have been evidenced. Inhibitors addressing different players of the PI3K/AKT/mTOR pathway have been evaluated in the clinic. Only a limited benefit has been reported in prostate cancer up to now due to the associated side effects, so novel combination approaches and biomarkers predictive of patient response are urgently needed. Here, we reviewed recent data on the crosstalk between AR signaling and the PI3K/AKT/mTOR pathway, the selective inhibitors identified, and the most advanced clinical studies, with a focus on combination treatments. A deeper understanding of the complex molecular mechanisms involved in disease progression and treatment resistance is essential to further guide therapeutic approaches with improved outcomes.
Collapse
Affiliation(s)
- Fabio Raith
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Daniel H. O’Donovan
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Clara Lemos
- Bayer Research and Innovation Center, Bayer US LLC, 238 Main Street, Cambridge, MA 02142, USA
| | - Oliver Politz
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Bernard Haendler
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-2215-41198
| |
Collapse
|
32
|
Lothion-Roy J, Haigh DB, Harris AE, Metzler VM, Alsaleem M, Toss MS, Kariri Y, Ntekim A, Robinson BD, Khani F, Gudas LJ, Allegrucci C, James VH, Madhusudan S, Mather M, Emes RD, Archer N, Fray RG, Rakha E, Jeyapalan JN, Rutland CS, Mongan NP, Woodcock CL. Clinical and molecular significance of the RNA m 6A methyltransferase complex in prostate cancer. Front Genet 2023; 13:1096071. [PMID: 36733939 PMCID: PMC9887525 DOI: 10.3389/fgene.2022.1096071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal mRNA modification and is dynamically regulated through distinct protein complexes that methylate, demethylate, and/or interpret the m6A modification. These proteins, and the m6A modification, are involved in the regulation of gene expression, RNA stability, splicing and translation. Given its role in these crucial processes, m6A has been implicated in many diseases, including in cancer development and progression. Prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in men and recent studies support a role for m6A in PCa. Despite this, the literature currently lacks an integrated analysis of the expression of key components of the m6A RNA methyltransferase complex, both in PCa patients and in well-established cell line models. For this reason, this study used immunohistochemistry and functional studies to investigate the mechanistic and clinical significance of the METTL3, METTL14, WTAP and CBLL1 components of the m6A methyltransferase complex in PCa specimens and cell lines. Expression of METTL3 and CBLL1, but not METTL14 and WTAP, was associated with poorer PCa patient outcomes. Expression of METTL3, METTL14, WTAP and CBLL1 was higher in PCa cells compared with non-malignant prostate cells, with the highest expression seen in castrate-sensitive, androgen-responsive PCa cells. Moreover, in PCa cell lines, expression of METTL3 and WTAP was found to be androgen-regulated. To investigate the mechanistic role(s) of the m6A methyltransferase complex in PCa cells, short hairpin RNA (shRNA)-mediated knockdown coupled with next generation sequencing was used to determine the transcriptome-wide roles of METTL3, the catalytic subunit of the m6A methyltransferase complex. Functional depletion of METTL3 resulted in upregulation of the androgen receptor (AR), together with 134 AR-regulated genes. METTL3 knockdown also resulted in altered splicing, and enrichment of cell cycle, DNA repair and metabolic pathways. Collectively, this study identified the functional and clinical significance of four essential m6A complex components in PCa patient specimens and cell lines for the first time. Further studies are now warranted to determine the potential therapeutic relevance of METTL3 inhibitors in development to treat leukaemia to benefit patients with PCa.
Collapse
Affiliation(s)
- Jennifer Lothion-Roy
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Daisy B. Haigh
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Anna E. Harris
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Veronika M. Metzler
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Mansour Alsaleem
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Medicine, University of Nottingham, Nottingham, United Kingdom,Department of Applied Medical Science, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Michael S. Toss
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Yousif Kariri
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Medicine, University of Nottingham, Nottingham, United Kingdom,Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Atara Ntekim
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom,Department of Radiation Oncology, University Hospital Ibadan, University of Ibadan, Ibadan, Nigeria
| | - Brian D. Robinson
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Cinzia Allegrucci
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Victoria H. James
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Srinivasan Madhusudan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Melissa Mather
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Richard D. Emes
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nathan Archer
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Rupert G. Fray
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Emad Rakha
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jennie N. Jeyapalan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Catrin S. Rutland
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nigel P. Mongan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom,Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Nigel P. Mongan, , ; Corinne L. Woodcock,
| | - Corinne L. Woodcock
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom,*Correspondence: Nigel P. Mongan, , ; Corinne L. Woodcock,
| |
Collapse
|
33
|
Metzler VM, de Brot S, Haigh DB, Woodcock CL, Lothion-Roy J, Harris AE, Nilsson EM, Ntekim A, Persson JL, Robinson BD, Khani F, Laursen KB, Gudas LJ, Toss MS, Madhusudan S, Rakha E, Heery DM, Rutland CS, Mongan NP, Jeyapalan JN. The KDM5B and KDM1A lysine demethylases cooperate in regulating androgen receptor expression and signalling in prostate cancer. Front Cell Dev Biol 2023; 11:1116424. [PMID: 37152294 PMCID: PMC10154691 DOI: 10.3389/fcell.2023.1116424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Histone H3 lysine 4 (H3K4) methylation is key epigenetic mark associated with active transcription and is a substrate for the KDM1A/LSD1 and KDM5B/JARID1B lysine demethylases. Increased expression of KDM1A and KDM5B is implicated in many cancer types, including prostate cancer (PCa). Both KDM1A and KDM5B interact with AR and promote androgen regulated gene expression. For this reason, there is great interested in the development of new therapies targeting KDM1A and KDM5B, particularly in the context of castrate resistant PCa (CRPC), where conventional androgen deprivation therapies and androgen receptor signalling inhibitors are no longer effective. As there is no curative therapy for CRPC, new approaches are urgently required to suppress androgen signalling that prevent, delay or reverse progression to the castrate resistant state. While the contribution of KDM1A to PCa is well established, the exact contribution of KDM5B to PCa is less well understood. However, there is evidence that KDM5B is implicated in numerous pro-oncogenic mechanisms in many different types of cancer, including the hypoxic response, immune evasion and PI3/AKT signalling. Here we elucidate the individual and cooperative functions of KDM1A and KDM5B in PCa. We show that KDM5B mRNA and protein expression is elevated in localised and advanced PCa. We show that the KDM5 inhibitor, CPI-455, impairs androgen regulated transcription and alternative splicing. Consistent with the established role of KDM1A and KDM5B as AR coregulators, we found that individual pharmacologic inhibition of KDM1A and KDM5 by namoline and CPI-455 respectively, impairs androgen regulated transcription. Notably, combined inhibition of KDM1A and KDM5 downregulates AR expression in CRPC cells. Furthermore, combined KDM1A and KDM5 inhibition impairs PCa cell proliferation and invasion more than individual inhibition of KDM1A and KDM5B. Collectively our study has identified individual and cooperative mechanisms involving KDM1A and KDM5 in androgen signalling in PCa. Our findings support the further development of KDM1A and KDM5B inhibitors to treat advanced PCa. Further work is now required to confirm the therapeutic feasibility of combined inhibition of KDM1A and KDM5B as a novel therapeutic strategy for targeting AR positive CRPC.
Collapse
Affiliation(s)
- Veronika M. Metzler
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Daisy B. Haigh
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Corinne L. Woodcock
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Anna E. Harris
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Emeli M. Nilsson
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Atara Ntekim
- Department of Oncology, University Hospital Ibadan, Ibadan, Nigeria
| | - Jenny L. Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, Sweden
| | - Brian D. Robinson
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Kristian B. Laursen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Michael S. Toss
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Emad Rakha
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - David M. Heery
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Catrin S. Rutland
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Mongan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Nigel P. Mongan, , ; Jennie N. Jeyapalan,
| | - Jennie N. Jeyapalan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nigel P. Mongan, , ; Jennie N. Jeyapalan,
| |
Collapse
|
34
|
Naito M, Ikeda K, Aoyama S, Kanamoto M, Akasaka Y, Kido Y, Nakanishi M, Kanna M, Yamamotoya T, Matsubara A, Hinata N, Asano T, Nakatsu Y. Par14 interacts with the androgen receptor, augmenting both its transcriptional activity and prostate cancer proliferation. Cancer Med 2022; 12:8464-8475. [PMID: 36583514 PMCID: PMC10134346 DOI: 10.1002/cam4.5587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a major cause of cancer morbidity and mortality for men globally, and androgen signaling clearly drives its onset and progression. Androgen receptor (AR) regulation is complex and remains elusive, despite several studies tackling these issues. Therefore, elucidating the mechanism(s) underlying AR regulation is a potentially promising approach to suppressing PCa. METHODS We report that Par14, one isoform of the prolyl isomerases homologous to Pin1, is a critical regulator of AR transcriptional activity and is essential for PCa cell growth. RESULTS Par14 was shown to be overexpressed in PCa, based on analyses of deposited data. Importantly, overexpression of Par14 significantly enhanced androgen-sensitive LNCap cell growth. In contrast, silencing of Par14 dramatically decreased cell growth in LNCap cells by causing cell cycle arrest. Mechanistically, silencing of the Par14 gene dramatically induced cyclin-dependent kinase inhibitor p21 at both the mRNA and the protein level through modulating the localization of p53. In addition, suppression of Par14 in LNCap cells was shown to downregulate the expressions of androgen response genes, at both the mRNA and the protein level, induced by dihydrotestosterone. Par14 was shown to directly associate with AR in nuclei via its DNA-binding domain and augment AR transcriptional activity. CONCLUSION Thus, Par14 plays a critical role in PCa progression, and its enhancing effects on AR signaling are likely to be involved in the underlying molecular mechanisms. These findings suggest Par14 to be a promising therapeutic target for PCa.
Collapse
Affiliation(s)
- Miki Naito
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan.,Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Kenichiro Ikeda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Shunya Aoyama
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Mayu Kanamoto
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yasuyuki Akasaka
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan.,Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yuri Kido
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Mikako Nakanishi
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Machi Kanna
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Takeshi Yamamotoya
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan.,Department of Urology, Hiroshima General Hospital, Hatsukaichi, Hiroshima, Japan
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Tomoichiro Asano
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yusuke Nakatsu
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| |
Collapse
|
35
|
高山 賢. [Recent advances in the sex steroid hormone action involved in the development of dementia and frailty]. Nihon Ronen Igakkai Zasshi 2022; 59:430-445. [PMID: 36476689 DOI: 10.3143/geriatrics.59.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- 賢一 高山
- 東京都健康長寿医療センター研究所老化機構研究チームシステム加齢医学
| |
Collapse
|
36
|
Eickhoff N, Bergman AM, Zwart W. Homing in on a Moving Target: Androgen Receptor Cistromic Plasticity in Prostate Cancer. Endocrinology 2022; 163:6705578. [PMID: 36125208 DOI: 10.1210/endocr/bqac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) is the critical driver in prostate cancer and exerts its function mainly through transcriptional control. Recent advances in clinical studies and cell line models have illustrated that AR chromatin binding features are not static; rather they are highly variable yet reproducibly altered between clinical stages. Extensive genomic analyses of AR chromatin binding features in different disease stages have revealed a high degree of plasticity of AR chromatin interactions in clinical samples. Mechanistically, AR chromatin binding patterns are associated with specific somatic mutations on AR and other permutations, including mutations of AR-interacting proteins. Here we summarize the most recent studies on how the AR cistrome is dynamically altered in prostate cancer models and patient samples, and what implications this has for the identification of therapeutic targets to avoid the emergence of treatment resistance.
Collapse
Affiliation(s)
- Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
37
|
Takayama KI, Inoue S. Targeting phase separation on enhancers induced by transcription factor complex formations as a new strategy for treating drug-resistant cancers. Front Oncol 2022; 12:1024600. [PMID: 36263200 PMCID: PMC9574090 DOI: 10.3389/fonc.2022.1024600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
The limited options for treating patients with drug-resistant cancers have emphasized the need to identify alternative treatment targets. Tumor cells have large super-enhancers (SEs) in the vicinity of important oncogenes for activation. The physical process of liquid-liquid phase separation (LLPS) contributes to the assembly of several membrane-less organelles in mammalian cells. Intrinsically disordered regions (IDRs) of proteins induce LLPS formation by developing condensates. It was discovered that key transcription factors (TFs) undergo LLPS in SEs. In addition, TFs play critical roles in the epigenetic and genetic regulation of cancer progression. Recently, we revealed the essential role of disease-specific TF collaboration changes in advanced prostate cancer (PC). OCT4 confers epigenetic changes by promoting complex formation with TFs, such as Forkhead box protein A1 (FOXA1), androgen receptor (AR) and Nuclear respiratory factor 1 (NRF1), inducing PC progression. It was demonstrated that TF collaboration through LLPS underlying transcriptional activation contributes to cancer aggressiveness and drug resistance. Moreover, the disruption of TF-mediated LLPS inhibited treatment-resistant PC tumor growth. Therefore, we propose that repression of TF collaborations involved in the LLPS of SEs could be a promising strategy for advanced cancer therapy. In this article, we summarize recent evidence highlighting the formation of LLPS on enhancers as a potent therapeutic target in advanced cancers.
Collapse
Affiliation(s)
- Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
- *Correspondence: Satoshi Inoue,
| |
Collapse
|
38
|
Marklund M, Schultz N, Friedrich S, Berglund E, Tarish F, Tanoglidi A, Liu Y, Bergenstråhle L, Erickson A, Helleday T, Lamb AD, Sonnhammer E, Lundeberg J. Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones. Nat Commun 2022; 13:5475. [PMID: 36115838 PMCID: PMC9482614 DOI: 10.1038/s41467-022-33069-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
The molecular mechanisms underlying lethal castration-resistant prostate cancer remain poorly understood, with intratumoral heterogeneity a likely contributing factor. To examine the temporal aspects of resistance, we analyze tumor heterogeneity in needle biopsies collected before and after treatment with androgen deprivation therapy. By doing so, we are able to couple clinical responsiveness and morphological information such as Gleason score to transcriptome-wide data. Our data-driven analysis of transcriptomes identifies several distinct intratumoral cell populations, characterized by their unique gene expression profiles. Certain cell populations present before treatment exhibit gene expression profiles that match those of resistant tumor cell clusters, present after treatment. We confirm that these clusters are resistant by the localization of active androgen receptors to the nuclei in cancer cells post-treatment. Our data also demonstrates that most stromal cells adjacent to resistant clusters do not express the androgen receptor, and we identify differentially expressed genes for these cells. Altogether, this study shows the potential to increase the power in predicting resistant tumors.
Collapse
Affiliation(s)
- Maja Marklund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Niklas Schultz
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Stefanie Friedrich
- Department of Biochemistry and Biophysics, Stockholm University, Science for Laboratory, Solna, Sweden
| | - Emelie Berglund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Firas Tarish
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Anna Tanoglidi
- Department of Pathology, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Yao Liu
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Ludvig Bergenstråhle
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Andrew Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Thomas Helleday
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Erik Sonnhammer
- Department of Biochemistry and Biophysics, Stockholm University, Science for Laboratory, Solna, Sweden.
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
39
|
Zhu W, Wan F, Xu W, Liu Z, Wang J, Zhang H, Huang S, Ye D. Positive epigenetic regulation loop between AR and NSUN2 promotes prostate cancer progression. Clin Transl Med 2022; 12:e1028. [PMID: 36169095 PMCID: PMC9516604 DOI: 10.1002/ctm2.1028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a major type of cancer in man worldwide. Androgen deprivation therapy (ADT) and the next-generation androgen receptor (AR) pathway inhibitors have acquired great success in treating PCa. However, patients treated with ADT or AR targeted therapy are inevitably developing into castration-resistant prostate cancer (CRPC) or becoming drug resistance. The role of mRNA 5-methylcytosine (m5C) modification in cancers is largely unknown. This study aimed to explore the role of the m5C methyltransferase NSUN2 in Prostate cancer (PCa). METHODS The expression of NSUN2 and its clinicopathological impact were evaluated in PCa cohorts. The effect of NSUN2 on the biological characteristics of PCa cells was investigated on the basis of gain-offunction and loss-of-function analyses. Subcutaneous models further uncovered the role of NSUN2 in tumor growth. Epi-transcriptome assays with RNA bisulfite sequencing (RNA-BisSeq) analysis and in vitro enzyme reaction assays were performed to validate the targeted effect of NSUN2 on AR. AR-binding sites in the NSUN2 promoter were investigated by ChIP and luciferase assays to uncover the interplay between NSUN2 and AR signaling. RIP-qPCR and EMSA methods were performed to confirm that YBX1 binds to AR m5 C sites. RESULTS NSUN2 is highly expressed in PCa and predicts poor outcome. NSUN2 plays roles as a PCa oncogene both in vitro and in vivo. Depletion of NSUN2 results in decreased expression and activities of AR, including AR-V7. Mechanistically, NSUN2 posttranscriptionally stabilized AR by cluster m5 C modification in a m5CYBX1-dependent manner. Strikingly, treatment with enzalutamide, an effective AR inhibitor, reduces NSUN2 expression and decreases the m5C modification level in prostate cancer cells. Finally, we found that AR transcriptionally regulates NSUN2. CONCLUSION NSUN2 stabilizes AR mRNA through cluster 5-methylcytosine modification and activates a positive feedback loop to promote prostate cancer.
Collapse
Affiliation(s)
- Wenkai Zhu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Qingdao InstituteSchool of Life MedicineDepartment of UrologyFudan University Shanghai Cancer Center, Fudan UniversityQingdaoChina
| | - Fangning Wan
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Qingdao InstituteSchool of Life MedicineDepartment of UrologyFudan University Shanghai Cancer Center, Fudan UniversityQingdaoChina
| | - Wenhao Xu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Qingdao InstituteSchool of Life MedicineDepartment of UrologyFudan University Shanghai Cancer Center, Fudan UniversityQingdaoChina
| | - Zheng Liu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Qingdao InstituteSchool of Life MedicineDepartment of UrologyFudan University Shanghai Cancer Center, Fudan UniversityQingdaoChina
| | - Junjie Wang
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Qingdao InstituteSchool of Life MedicineDepartment of UrologyFudan University Shanghai Cancer Center, Fudan UniversityQingdaoChina
| | - Hena Zhang
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Dingwei Ye
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Qingdao InstituteSchool of Life MedicineDepartment of UrologyFudan University Shanghai Cancer Center, Fudan UniversityQingdaoChina
| |
Collapse
|
40
|
Caggiano C, Pieraccioli M, Pitolli C, Babini G, Zheng D, Tian B, Bielli P, Sette C. The androgen receptor couples promoter recruitment of RNA processing factors to regulation of alternative polyadenylation at the 3' end of transcripts. Nucleic Acids Res 2022; 50:9780-9796. [PMID: 36043441 PMCID: PMC9508809 DOI: 10.1093/nar/gkac737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PC) relies on androgen receptor (AR) signaling. While hormonal therapy (HT) is efficacious, most patients evolve to an incurable castration-resistant stage (CRPC). To date, most proposed mechanisms of acquired resistance to HT have focused on AR transcriptional activity. Herein, we uncover a new role for the AR in alternative cleavage and polyadenylation (APA). Inhibition of the AR by Enzalutamide globally regulates APA in PC cells, with specific enrichment in genes related to transcription and DNA topology, suggesting their involvement in transcriptome reprogramming. AR inhibition selects promoter-distal polyadenylation sites (pAs) enriched in cis-elements recognized by the cleavage and polyadenylation specificity factor (CPSF) complex. Conversely, promoter-proximal intronic pAs relying on the cleavage stimulation factor (CSTF) complex are repressed. Mechanistically, Enzalutamide induces rearrangement of APA subcomplexes and impairs the interaction between CPSF and CSTF. AR inhibition also induces co-transcriptional CPSF recruitment to gene promoters, predisposing the selection of pAs depending on this complex. Importantly, the scaffold CPSF160 protein is up-regulated in CRPC cells and its depletion represses HT-induced APA patterns. These findings uncover an unexpected role for the AR in APA regulation and suggest that APA-mediated transcriptome reprogramming represents an adaptive response of PC cells to HT.
Collapse
Affiliation(s)
- Cinzia Caggiano
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome 00168, Italy.,IRCCS Fondazione Policlinico A. Gemelli, Rome 00168, Italy
| | - Marco Pieraccioli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome 00168, Italy.,IRCCS Fondazione Policlinico A. Gemelli, Rome 00168, Italy
| | - Consuelo Pitolli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome 00168, Italy.,IRCCS Fondazione Policlinico A. Gemelli, Rome 00168, Italy
| | | | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Bin Tian
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.,IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome 00168, Italy.,IRCCS Fondazione Policlinico A. Gemelli, Rome 00168, Italy
| |
Collapse
|
41
|
Chen M, Lingadahalli S, Narwade N, Lei KMK, Liu S, Zhao Z, Zheng Y, Lu Q, Tang AHN, Poon TCW, Cheung E. TRIM33 drives prostate tumor growth by stabilizing androgen receptor from Skp2-mediated degradation. EMBO Rep 2022; 23:e53468. [PMID: 35785414 DOI: 10.15252/embr.202153468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 12/23/2022] Open
Abstract
Androgen receptor (AR) is a master transcription factor that drives prostate cancer (PCa) development and progression. Alterations in the expression or activity of AR coregulators significantly impact the outcome of the disease. Using a proteomics approach, we identified the tripartite motif-containing 33 (TRIM33) as a novel transcriptional coactivator of AR. We demonstrate that TRIM33 facilitates AR chromatin binding to directly regulate a transcription program that promotes PCa progression. TRIM33 further stabilizes AR by protecting it from Skp2-mediated ubiquitination and proteasomal degradation. We also show that TRIM33 is essential for PCa tumor growth by avoiding cell-cycle arrest and apoptosis, and TRIM33 knockdown sensitizes PCa cells to AR antagonists. In clinical analyses, we find TRIM33 upregulated in multiple PCa patient cohorts. Finally, we uncover an AR-TRIM33-coactivated gene signature highly expressed in PCa tumors and predict disease recurrence. Overall, our results reveal that TRIM33 is an oncogenic AR coactivator in PCa and a potential therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Mi Chen
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Shreyas Lingadahalli
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Nitin Narwade
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Kate Man Kei Lei
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Pilot Laboratory, University of Macau, Taipa, Macau SAR.,Institute of Translational Medicine, University of Macau, Taipa, Macau SAR
| | | | - Zuxianglan Zhao
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Yimin Zheng
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Qian Lu
- Xuzhou Medical University, Xuzhou, China
| | | | - Terence Chuen Wai Poon
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR.,Pilot Laboratory, University of Macau, Taipa, Macau SAR.,Institute of Translational Medicine, University of Macau, Taipa, Macau SAR
| | - Edwin Cheung
- Cancer Centre, University of Macau, Taipa, Macau SAR.,Centre for Precision Medicine Research and Training, University of Macau, Taipa, Macau SAR.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR.,Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| |
Collapse
|
42
|
Kimura N, Takayama KI, Yamada Y, Kume H, Fujimura T, Inoue S. Ribonuclease H2 Subunit A Preserves Genomic Integrity and Promotes Prostate Cancer Progression. CANCER RESEARCH COMMUNICATIONS 2022; 2:870-883. [PMID: 36923313 PMCID: PMC10010380 DOI: 10.1158/2767-9764.crc-22-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Homeostasis of genomic integrity should be regulated to promote proliferation and inhibit DNA damage-induced cell death in cancer. Ribonuclease H2 (RNase H2) maintains genome stability by controlling DNA:RNA hybrid and R-loop levels. Here, we identified that RNase H2 subunit A (RNASEH2A), a component of RNase H2, is highly expressed in castration-resistant prostate cancer (CRPC) tissues compared with localized prostate cancer. Interestingly, we showed that RNASEH2A suppressed R-loop levels to prevent cell apoptosis induced by DNA damage in prostate cancer cells. Both in vivo and in vitro studies revealed that RNASEH2A promotes cell growth and migration via the negative regulation of p53 and positive regulation of AR and AR-V7. Mechanistically, epigenetic regulation followed by R-loop accumulation in these promoters was observed for these gene regulations. Importantly, IHC analysis demonstrated that R-loop formation increased in CRPC tissues and correlated with RNASEH2A expression levels. Notably, two small molecules targeting RNase H2 activity were found to suppress CRPC tumor growth with no significant toxic effects. Collectively, we propose that RNASEH2A overexpression is a hallmark of prostate cancer progression by maintaining genomic stability to prevent R-loop-mediated apoptosis induction. Targeting RNase H2 activity could be a potential strategy for treating CRPC tumors. Significance RNASEH2A was demonstrated to be highly upregulated in aggressive prostate cancer to degrade R-loop accumulation and preserve genomic stability for tumor growth, suggesting that RNase H2 activity could be a promising therapeutic target.
Collapse
Affiliation(s)
- Naoki Kimura
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yuta Yamada
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
43
|
Dutta S, Polavaram NS, Islam R, Bhattacharya S, Bodas S, Mayr T, Roy S, Albala SAY, Toma MI, Darehshouri A, Borkowetz A, Conrad S, Fuessel S, Wirth M, Baretton GB, Hofbauer LC, Ghosh P, Pienta KJ, Klinkebiel DL, Batra SK, Muders MH, Datta K. Neuropilin-2 regulates androgen-receptor transcriptional activity in advanced prostate cancer. Oncogene 2022; 41:3747-3760. [PMID: 35754042 PMCID: PMC9979947 DOI: 10.1038/s41388-022-02382-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 01/22/2023]
Abstract
Aberrant transcriptional activity of androgen receptor (AR) is one of the dominant mechanisms for developing of castration-resistant prostate cancer (CRPC). Analyzing AR-transcriptional complex related to CRPC is therefore important towards understanding the mechanism of therapy resistance. While studying its mechanism, we observed that a transmembrane protein called neuropilin-2 (NRP2) plays a contributory role in forming a novel AR-transcriptional complex containing nuclear pore proteins. Using immunogold electron microscopy, high-resolution confocal microscopy, chromatin immunoprecipitation, proteomics, and other biochemical techniques, we delineated the molecular mechanism of how a specific splice variant of NRP2 becomes sumoylated upon ligand stimulation and translocates to the inner nuclear membrane. This splice variant of NRP2 then stabilizes the complex between AR and nuclear pore proteins to promote CRPC specific gene expression. Both full-length and splice variants of AR have been identified in this specific transcriptional complex. In vitro cell line-based assays indicated that depletion of NRP2 not only destabilizes the AR-nuclear pore protein interaction but also inhibits the transcriptional activities of AR. Using an in vivo bone metastasis model, we showed that the inhibition of NRP2 led to the sensitization of CRPC cells toward established anti-AR therapies such as enzalutamide. Overall, our finding emphasize the importance of combinatorial inhibition of NRP2 and AR as an effective therapeutic strategy against treatment refractory prostate cancer.
Collapse
Affiliation(s)
- Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Navatha Shree Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas Mayr
- Rudolf Becker Laboratory for Prostate Cancer Research, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Technische Universitaet Dresden, Dresden, Germany
| | - Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Marieta I. Toma
- Institute of Pathology, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Technische Universitaet Dresden, Dresden, Germany
| | - Anza Darehshouri
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Angelika Borkowetz
- Department of Urology, Technische Universitaet Dresden, Dresden, Germany
| | - Stefanie Conrad
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universitaet Dresden, Dresden, Germany,Center for Healthy Aging, Technische Universitaet Dresden, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, Technische Universitaet Dresden, Dresden, Germany
| | - Manfred Wirth
- Department of Urology, Technische Universitaet Dresden, Dresden, Germany
| | - Gustavo B. Baretton
- Institute of Pathology, Technische Universitaet Dresden, Dresden, Germany,German Cancer Consortium (DKTK), partner site Dresden and German Research Center (DKFZ), Heidelberg, Germany,Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universitaet Dresden, Germany
| | - Lorenz C. Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universitaet Dresden, Dresden, Germany,Center for Healthy Aging, Technische Universitaet Dresden, Dresden, Germany,German Cancer Consortium (DKTK), partner site Dresden and German Research Center (DKFZ), Heidelberg, Germany
| | - Paramita Ghosh
- Department of Biochemistry and Molecular Medicine, University of California Davis
| | - Kenneth J. Pienta
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David L Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael H. Muders
- Rudolf Becker Laboratory for Prostate Cancer Research, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Technische Universitaet Dresden, Dresden, Germany
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
44
|
Pulliam TL, Awad D, Han JJ, Murray MM, Ackroyd JJ, Goli P, Oakhill JS, Scott JW, Ittmann MM, Frigo DE. Systemic Ablation of Camkk2 Impairs Metastatic Colonization and Improves Insulin Sensitivity in TRAMP Mice: Evidence for Cancer Cell-Extrinsic CAMKK2 Functions in Prostate Cancer. Cells 2022; 11:1890. [PMID: 35741020 PMCID: PMC9221545 DOI: 10.3390/cells11121890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Despite early studies linking calcium-calmodulin protein kinase kinase 2 (CAMKK2) to prostate cancer cell migration and invasion, the role of CAMKK2 in metastasis in vivo remains unclear. Moreover, while CAMKK2 is known to regulate systemic metabolism, whether CAMKK2's effects on whole-body metabolism would impact prostate cancer progression and/or related comorbidities is not known. Here, we demonstrate that germline ablation of Camkk2 slows, but does not stop, primary prostate tumorigenesis in the TRansgenic Adenocarcinoma Mouse Prostate (TRAMP) genetic mouse model. Consistent with prior epidemiological reports supporting a link between obesity and prostate cancer aggressiveness, TRAMP mice fed a high-fat diet exhibited a pronounced increase in the colonization of lung metastases. We demonstrated that this effect on the metastatic spread was dependent on CAMKK2. Notably, diet-induced lung metastases exhibited a highly aggressive neuroendocrine phenotype. Concurrently, Camkk2 deletion improved insulin sensitivity in the same mice. Histological analyses revealed that cancer cells were smaller in the TRAMP;Camkk2-/- mice compared to TRAMP;Camkk2+/+ controls. Given the differences in circulating insulin levels, a known regulator of cell growth, we hypothesized that systemic CAMKK2 could promote prostate cancer cell growth and disease progression in part through cancer cell-extrinsic mechanisms. Accordingly, host deletion of Camkk2 impaired the growth of syngeneic murine prostate tumors in vivo, confirming nonautonomous roles for CAMKK2 in prostate cancer. Cancer cell size and mTOR signaling was diminished in tumors propagated in Camkk2-null mice. Together, these data indicate that, in addition to cancer cell-intrinsic roles, CAMKK2 mediates prostate cancer progression via tumor-extrinsic mechanisms. Further, we propose that CAMKK2 inhibition may also help combat common metabolic comorbidities in men with advanced prostate cancer.
Collapse
Affiliation(s)
- Thomas L. Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
| | - Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jenny J. Han
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
| | - Mollianne M. Murray
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
| | - Jeffrey J. Ackroyd
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
| | - Pavithr Goli
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
| | - Jonathan S. Oakhill
- St Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia; (J.S.O.); (J.W.S.)
| | - John W. Scott
- St Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia; (J.S.O.); (J.W.S.)
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3065, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Michael M. Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L. Duncan Cancer Center, Houston, TX 77030, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Daniel E. Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.L.P.); (D.A.); (J.J.H.); (M.M.M.); (J.J.A.); (P.G.)
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
45
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
46
|
Xie K, Tan K, Naylor MJ. Transcription Factors as Novel Therapeutic Targets and Drivers of Prostate Cancer Progression. Front Oncol 2022; 12:854151. [PMID: 35547880 PMCID: PMC9082354 DOI: 10.3389/fonc.2022.854151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Prostate cancer is the second most diagnosed cancer among men worldwide. Androgen deprivation therapy, the most common targeted therapeutic option, is circumvented as prostate cancer progresses from androgen dependent to castrate-resistant disease. Whilst the nuclear receptor transcription factor, androgen receptor, drives the growth of prostate tumor during initial stage of the disease, androgen resistance is associated with poorly differentiated prostate cancer. In the recent years, increased research has highlighted the aberrant transcriptional activities of a small number of transcription factors. Along with androgen receptors, dysregulation of these transcription factors contributes to both the poorly differentiated phenotypes of prostate cancer cells and the initiation and progression of prostate carcinoma. As master regulators of cell fate decisions, these transcription factors may provide opportunity for the development of novel therapeutic targets for the management of prostate cancer. Whilst some transcriptional regulators have previously been notoriously difficult to directly target, technological advances offer potential for the indirect therapeutic targeting of these transcription factors and the capacity to reprogram cancer cell phenotype. This mini review will discuss how recent advances in our understanding of transcriptional regulators and material science pave the way to utilize these regulatory molecules as therapeutic targets in prostate cancer.
Collapse
Affiliation(s)
- Kangzhe Xie
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| | - Keely Tan
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
47
|
Hwang JH, Arafeh R, Seo JH, Baca SC, Ludwig M, Arnoff TE, Sawyer L, Richter C, Tape S, Bergom HE, McSweeney S, Rennhack JP, Klingenberg SA, Cheung ATM, Kwon J, So J, Kregel S, Van Allen EM, Drake JM, Freedman ML, Hahn WC. CREB5 reprograms FOXA1 nuclear interactions to promote resistance to androgen receptor targeting therapies. eLife 2022; 11:73223. [PMID: 35550030 PMCID: PMC9135408 DOI: 10.7554/elife.73223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Metastatic castration resistant prostate cancers (mCRPC) are treated with therapies that antagonize the androgen receptor (AR). Nearly all patients develop resistance to AR-targeted therapies (ART). Our previous work identified CREB5 as an upregulated target gene in human mCRPC that promoted resistance to all clinically-approved ART. The mechanisms by which CREB5 promotes progression of mCRPC or other cancers remains elusive. Integrating ChIP-seq and rapid immunoprecipitation and mass spectroscopy of endogenous proteins (RIME), we report that cells overexpressing CREB5 demonstrate extensive reprogramming of nuclear protein-protein interactions in response to the ART agent enzalutamide. Specifically, CREB5 physically interacts with AR, the pioneering actor FOXA1, and other known co-factors of AR and FOXA1 at transcription regulatory elements recently found to be active in mCRPC patients. We identified a subset of CREB5/FOXA1 co-interacting nuclear factors that have critical functions for AR transcription (GRHL2, HOXB13) while others (TBX3, NFIC) regulated cell viability and ART resistance and were amplified or overexpressed in mCRPC. Upon examining the nuclear protein interactions and the impact of CREB5 expression on the mCRPC patient transcriptome, we found CREB5 was associated with Wnt signaling and epithelial to mesenchymal transitions, implicating these pathways in CREB5/FOXA1-mediated ART resistance. Overall, these observations define the molecular interactions among CREB5, FOXA1, and pathways that promote ART resistance.
Collapse
Affiliation(s)
- Justin H Hwang
- Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Rand Arafeh
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, United States
| | | | - Lydia Sawyer
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Camden Richter
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Sydney Tape
- Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Hannah E Bergom
- Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Sean McSweeney
- Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Jonathan P Rennhack
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | | | | | - Jason Kwon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Jonathan So
- 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Steven Kregel
- Department of Cancer Biology, Loyola University Chicago, Maywood, United States
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Justin M Drake
- Department of Pharmacology and Urology, University of Minnesota, Minneapolis, United States
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| |
Collapse
|
48
|
Srivastava SK, Khan MA, Anand S, Zubair H, Deshmukh SK, Patel GK, Singh S, Andrews J, Wang B, Carter JE, Singh AP. MYB interacts with androgen receptor, sustains its ligand-independent activation and promotes castration resistance in prostate cancer. Br J Cancer 2022; 126:1205-1214. [PMID: 34837075 PMCID: PMC9023474 DOI: 10.1038/s41416-021-01641-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Aberrant activation of androgen receptor signalling following castration therapy is a common clinical observation in prostate cancer (PCa). Earlier, we demonstrated the role of MYB overexpression in androgen-depletion resistance and PCa aggressiveness. Here, we investigated MYB-androgen receptor (AR) crosstalk and its functional significance. METHODS Interaction and co-localization of MYB and AR were examined by co-immunoprecipitation and immunofluorescence analyses, respectively. Protein levels were measured by immunoblot analysis and enzyme-linked immunosorbent assay. The role of MYB in ligand-independent AR transcriptional activity and combinatorial gene regulation was studied by promoter-reporter and chromatin immunoprecipitation assays. The functional significance of MYB in castration resistance was determined using an orthotopic mouse model. RESULTS MYB and AR interact and co-localize in the PCa cells. MYB-overexpressing PCa cells retain AR in the nucleus even when cultured under androgen-deprived conditions. AR transcriptional activity is also sustained in MYB-overexpressing cells in the absence of androgens. MYB binds and promotes AR occupancy to the KLK3 promoter. MYB-overexpressing PCa cells exhibit greater tumorigenicity when implanted orthotopically and quickly regain growth following castration leading to shorter mice survival, compared to those carrying low-MYB-expressing prostate tumours. CONCLUSIONS Our findings reveal a novel MYB-AR crosstalk in PCa and establish its role in castration resistance.
Collapse
Affiliation(s)
- Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Sachin Kumar Deshmukh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Girijesh Kumar Patel
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Joel Andrews
- Bioimaging Core Facility, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL, 36688, USA
| | - James Elliot Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA.
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
49
|
Abstract
In 2011, CAMKK2, the gene encoding calcium/calmodulin-dependent kinase kinase 2 (CAMKK2), was demonstrated to be a direct target of the androgen receptor and a driver of prostate cancer progression. Results from multiple independent studies have confirmed these findings and demonstrated the potential role of CAMKK2 as a clinical biomarker and therapeutic target in advanced prostate cancer using a variety of preclinical models. Drug development efforts targeting CAMKK2 have begun accordingly. CAMKK2 regulation can vary across disease stages, which might have important implications in the use of CAMKK2 as a biomarker. Moreover, new non-cell-autonomous roles for CAMKK2 that could affect tumorigenesis, metastasis and possible comorbidities linked to disease and treatment have emerged and could present novel treatment opportunities for prostate cancer.
Collapse
|
50
|
Obinata D, Funakoshi D, Takayama K, Hara M, Niranjan B, Teng L, Lawrence MG, Taylor RA, Risbridger GP, Suzuki Y, Takahashi S, Inoue S. OCT1-target neural gene PFN2 promotes tumor growth in androgen receptor-negative prostate cancer. Sci Rep 2022; 12:6094. [PMID: 35413990 PMCID: PMC9005514 DOI: 10.1038/s41598-022-10099-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Androgen and androgen receptor (AR) targeted therapies are the main treatment for most prostate cancer (PC) patients. Although AR signaling inhibitors are effective, tumors can evade this treatment by transforming to an AR-negative PC via lineage plasticity. OCT1 is a transcription factor interacting with the AR to enhance signaling pathways involved in PC progression, but its role in the emergence of the AR-negative PC is unknown. We performed chromatin immunoprecipitation sequencing (ChIP-seq) in patient-derived castration-resistant AR-negative PC cells to identify genes that are regulated by OCT1. Interestingly, a group of genes associated with neural precursor cell proliferation was significantly enriched. Then, we focused on neural genes STNB1 and PFN2 as OCT1-targets among them. Immunohistochemistry revealed that both STNB1 and PFN2 are highly expressed in human AR-negative PC tissues. Knockdown of SNTB1 and PFN2 by siRNAs significantly inhibited migration of AR-negative PC cells. Notably, knockdown of PFN2 showed a marked inhibitory effect on tumor growth in vivo. Thus, we identified OCT1-target genes in AR-negative PC using a patient-derived model, clinicopathologial analysis and an animal model.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan.,Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Daigo Funakoshi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Birunthi Niranjan
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Linda Teng
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Mitchell G Lawrence
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.,Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.,Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia.,Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Physiology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Gail P Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.,Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences Graduate School of Frontier Sciences, University of Tokyo, 5-1-5, Kashiwanoha, Chiba, Chiba, 277-8562, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan. .,Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan.
| |
Collapse
|