Hu W, Shi Q, Chen Z, Yin H, Zhong H, Wang P. Co
2N/Co
2Mo
3O
8 Heterostructure as a Highly Active Electrocatalyst for an Alkaline Hydrogen Evolution Reaction.
ACS APPLIED MATERIALS & INTERFACES 2021;
13:8337-8343. [PMID:
33555869 DOI:
10.1021/acsami.0c20271]
[Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of earth-abundant electrocatalysts with high intrinsic activity, abundant active sites, and good electrical conductivity is of vital importance for the market penetration of clean energy technologies. We herein report a facile synthesis of a self-supported Co2N/CoN/Co2Mo3O8 heterostructured catalyst on cobalt foam (CF) by a hydrothermal process followed by nitridation treatment. Our first-principles calculations revealed that Co2Mo3O8 and Co2N could work in concert to provide active sites for an alkaline hydrogen evolution reaction (HER). The hierarchical and nanoporous architecture of the Co2N/CoN/Co2Mo3O8 catalyst ensured an abundance of accessible active sites. The direct growth of metalloid CoxN nanoparticles on the defective Co2Mo3O8 substrate endowed the catalyst with good electrical conductivity. As a consequence, the Co2N/CoN/Co2Mo3O8/CF catalyst showed extraordinarily high activity and good stability toward the alkaline HER, outperforming most existing non-precious electrocatalysts. In particular, it exhibited a comparable catalytic performance to the commercial Pt/C catalyst at a current density of 100 mA cm-2.
Collapse