1
|
Guerriero A, Ienco A, Hicks T, Cilibrizzi A. Beyond transition block metals: exploring the reactivity of phosphine PTA and its oxide [PTA(O)] towards gallium(iii). RSC Adv 2024; 14:21139-21150. [PMID: 38966814 PMCID: PMC11223513 DOI: 10.1039/d4ra02877e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The water-soluble cage-like phosphine PTA (1,3,5-triaza-7-phosphaadamantane) and its phosphine oxide derivative [PTA(O)] (1,3,5-triaza-7-phosphaadamantane-7-oxide) were used to explore their reactivity towards two gallium(iii)-halide precursors, namely GaCl3 and GaI3, for the first time. By using various reaction conditions, a series of N-mono-protonated phosphine salts with [GaCl4]- or [I]- as counterions were obtained in all cases, while the formation of coordinated Ga-PTA and Ga-[PTA(O)] complexes was not observed. All compounds were characterized in solution using multinuclear NMR spectroscopy (1H, 13C{1H}, 31P{1H} and 71Ga) and in the solid state using FT-IR spectroscopy and X-ray crystal diffraction. The new Ga-phosphine salts resulted stable and highly soluble in aqueous solution at room temperature. Density functional theory (DFT) calculations were also performed to further rationalize the coordination features of PTA with Ga3+ metal ion, highlighting that the phosphorus-gallium bond is about twice weaker than the phosphorus-metal bond commonly established by PTA with transition metals such as gold. Furthermore, the mono-protonation of PTA (or [PTA(O)]) makes the formation of ionic gallium-PTA coordination complexes thermodynamically unstable, as confirmed experimentally by the formation of Ga-phosphine salts reported herein.
Collapse
Affiliation(s)
- Antonella Guerriero
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino (Florence) Italy
| | - Andrea Ienco
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino (Florence) Italy
| | - Thomas Hicks
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London Franklin Wilkins Building London SE1 9NH UK
| |
Collapse
|
2
|
Rao Y, De Biasi F, Wei R, Copéret C, Emsley L. Probing Homogeneous Catalysts and Precatalysts in Solution by Exchange-Mediated Overhauser Dynamic Nuclear Polarization NMR. J Am Chem Soc 2024; 146:12587-12594. [PMID: 38685488 PMCID: PMC11082894 DOI: 10.1021/jacs.4c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Triphenylphosphine (PPh3) is a ubiquitous ligand in organometallic chemistry that has been shown to give enhanced 31P NMR signals at high magnetic field via a scalar-dominated Overhauser effect dynamic nuclear polarization (OE DNP). However, PPh3 can only be polarized via DNP in the free form, while the coordinated form is DNP-inactive. Here, we demonstrate the possibility of enhancing the 31P NMR signals of coordinated PPh3 in metal complexes in solution at room temperature by combining Overhauser effect DNP and chemical exchange between the free and coordinated PPh3 forms. With this method, we successfully obtain 31P DNP enhancements of up to 2 orders of magnitude for the PPh3 ligands in Rh(I), Ru(II), Pd(II), and Pt(II) complexes, and we show that the DNP enhancements can be used to determine the activation energy of the ligand exchange reaction.
Collapse
Affiliation(s)
- Yu Rao
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Federico De Biasi
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ran Wei
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Norouziyanlakvan S, Berro P, Rao GK, Gabidullin B, Richeson D. Electrocatalytic Reduction of CO 2 and H 2O with Zn(II) Complexes Through Metal-Ligand Cooperation. Chemistry 2024; 30:e202303147. [PMID: 38224468 DOI: 10.1002/chem.202303147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
Air and water-stable zinc (II) complexes of neutral pincer bis(diphenylphosphino)-2,6-di(amino)pyridine ("PN3P") ligands are reported. These compounds, [Zn(κ2-2,6-{Ph2PNR}2(NC5H3))Br2] (R=Me, 1; R=H, 2), were shown to be capable of electrocatalytic reduction of CO2 at -2.3 V vs. Fc+/0 to selectively yield CO in mixed water/acetonitrile solutions. These complexes also electrocatalytically generate H2 from water in acetonitrile solutions, at the same potential, with Faradaic efficiencies of up to 90 %. DFT computations support a proposed mechanism involving the first reduction of 1 or 2 occurring at the PN3P ligand. Furthermore, computational analysis suggested a mechanism involving metal-ligand cooperation of a Lewis acidic Zn(II) and a basic ligand.
Collapse
Affiliation(s)
- Somayeh Norouziyanlakvan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada
| | - Patrick Berro
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada
| | - Gyandshwar Kumar Rao
- Faculty of Science Engineering And Technology, Amity University, Haryana, India, 122413
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada
| | - Darrin Richeson
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Hu R, He F, Hou R, Wu Z, Zhang X, Shen H. The Narrow Synthetic Window for Highly Homogenous InP Quantum Dots toward Narrow Red Emission. Inorg Chem 2024; 63:3516-3524. [PMID: 38316130 DOI: 10.1021/acs.inorgchem.3c04358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Low-toxicity InP-based quantum dots (QDs) exhibit potential for replacing Cd/Pb-containing QDs in the visible and near-infrared regions. Despite advancements, further improvement relies on synthesizing homogeneous InP QDs to achieve a high color purity. In a commonly employed two-step "seed-mediated" synthetic approach, we demonstrate the high sensitivity of InP seed sizes and size distribution to the quantities of trioctylphosphine (TOP) and tris(trimethylsilyl)phosphine [(TMS)3P], attributed to the process of "self-focusing of size distribution" and enhanced reactivity of In-oleate through coordination with TOP. During growth, the processes of size focusing and defocusing are modulated by the accumulation of oleic acid and TOP molecules, as well as the amount of (TMS)3P in the growth precursor, which may relate to the dissolution process of InP magic size clusters. Through precise control, the best valley/depth ratio of InP QDs was 0.52 at the first absorption peak at 571 nm, resulting in luminescence with a full width at half-maximum of 35 at 620 nm with an absolute photoluminescence quantum yield around 90% after heteroepitaxial growth with ZnSe and ZnS shells.
Collapse
Affiliation(s)
- Ranran Hu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475000, China
| | - Fengkai He
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475000, China
| | - Ruixue Hou
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475000, China
| | - Zhenghui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475000, China
| | - Xiangtong Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475000, China
| | - Huaibin Shen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475000, China
| |
Collapse
|
5
|
Canac Y. Carbon-Phosphorus Ligands with Extreme Donating Character. CHEM REC 2023; 23:e202300187. [PMID: 37435947 DOI: 10.1002/tcr.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Carbeniophosphines [R2 C+ -PR2 ] and phosphonium ylides [R3 P+ -CR2 - ] are two complementary classes of carbon-phosphorus based ligands defined by their unique donor properties. Indeed, while carbeniophosphines are electron-poor P-ligands due to the positioning of a positive charge near the coordinating P-atom, phosphonium ylides are electron-rich C-ligands due to the presence of a negatively charged coordinating C-atom. Based on this knowledge, this account summarizes our recent contribution on these two classes of carbon-phosphorus ligands, and in particular the strategies developed to lower the donor character of carbeniophosphines and enhance that of phosphonium ylides. This led us to design, at both extremities of the donating scale, extremely electron-poor P-ligands exemplified by imidazoliophosphonites [R2 C+ -P(OR)2 ] and dicarbeniophosphines [(R2 C+ )2 -PR], and extremely electron-rich C-ligands illustrated by pincer architectures exhibiting several phosphonium ylide donor extremities. In the context of carbon-phosphorus analogy, the closely related cases of ligands where the C-atom of a NHC ligand is in close proximity of two positive charges, and that of a phosphonium ylide coordinated through its P-atom are also discussed. An overview of the synthetic methods, coordinating properties, general reactivity and electronic structure of all these C,P-based species is presented here.
Collapse
Affiliation(s)
- Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| |
Collapse
|
6
|
Cairns KR, King RP, Bannister RD, Levason W, Reid G. Synthesis, spectroscopic and structural properties of Sn(II) and Pb(II) triflate complexes with soft phosphine and arsine coordination. Dalton Trans 2023; 52:2293-2308. [PMID: 36723113 DOI: 10.1039/d2dt03687h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reaction of the divalent M(OTf)2 (M = Sn, Pb; OTf = CF3SO3) with soft phosphine and arsine ligands, L, where L = o-C6H4(ER2)2 (E = P, R = Me or Ph; E = As, R = Me), MeC(CH2ER2)3 (E = P, R = Ph; E = As, R = Me), PhP(CH2CH2PPh2)2 or P(CH2CH2PPh2)3, affords complexes of stoichiometry M(L)(OTf)2 as white powders, which have been characterised via elemental analysis, 1H, 19F{1H}, 31P{1H} and 119Sn NMR spectroscopy, with the expected 31P-119Sn and 31P-207Pb couplings clearly evident. The crystal structures of nine of these pnictine complexes are reported, in each case revealing retention of one or both OTf anions, which gives rise to a diverse range of coordination environments including monomers, as well as varying degrees of oligomerisation to form weakly associated (OTf-bridged) dimers, trimers and polymers. 19F{1H} NMR spectra indicate that the OTf is essentially anionic (dissociated) in solution. Anion metathesis of [M(OTf)2{MeC(CH2PPh2)3}] with Na[BArF] (BArF = B{3,5-(CF3)2C6H3}4) yields the corresponding [M{MeC(CH2PPh2)3}][BArF]2 salts, the crystal structures of all three (M = Ge, Sn, Pb) reveal pyramidal dications with discrete [BArF]- anions providing charge balance. Density functional theory (DFT) calculations on these [M{MeC(CH2PPh2)3}]2+ (M = Ge, Sn, Pb) dications using the B3LYP-D3 functional show the presence of a directional lone pair, which is a mixture of valence s and pz character, with the valence p-orbital character decreasing down group 14. Natural bond orbital (NBO) analysis also shows that the natural charge at the metal centre increases and the charge on the P centre decreases upon going down group 14.
Collapse
Affiliation(s)
- Kelsey R Cairns
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Rhys P King
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Robert D Bannister
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - William Levason
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
7
|
Shelyganov PA, Elsayed Moussa M, Seidl M, Scheer M. Diantimony Complexes [Cp R 2 Mo 2 (CO) 4 (μ,η 2 -Sb 2 )] (Cp R =C 5 H 5 , C 5 H 4 t Bu) as Unexpected Ligands Stabilizing Silver(I) n (n=1-4) Monomers, Dimers and Chains. Angew Chem Int Ed Engl 2023; 62:e202215650. [PMID: 36469453 PMCID: PMC10107263 DOI: 10.1002/anie.202215650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Synthesis and reactivity of transition metal compounds bearing "naked" pnictogen atoms is an active research area with remarkable bonding patterns observed in the formed compounds. Within this field, intense investigations on the coordination behavior of complexes possessing Pn and Asn (2≤n≤5) moieties have been conducted. However, studies on heavier analogues have been ignored so far due to arduous challenges related to low yields and moderate air stability. Herein, we present the first in-depth study addressing the reactivity of organometallic complexes containing Sb-donor atoms with several AgI salts. These reactions afforded twelve unprecedented aggregates as monomers, dimers as well as three- and four-membered chains of AgI ions claimed in the literature to be inaccessible. Interatomic distances as well as computational evidence obtained with help of several different methods suggest the presence of Ag⋅⋅⋅Ag interactions in all complexes containing more than one AgI ion.
Collapse
Affiliation(s)
- Pavel A. Shelyganov
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | | | - Michael Seidl
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|
8
|
Schulz J, Antala J, Císařová I, Štěpnička P. Beyond phosphorus: synthesis, reactivity, coordination behaviour and catalytic properties of 1,1'-bis(diphenylstibino)ferrocene. Dalton Trans 2023; 52:1198-1211. [PMID: 36545831 DOI: 10.1039/d2dt03770j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Compared to their widely studied phosphine counterparts, ferrocene stibines have received only marginal attention thus far. This paper describes the synthesis of 1,1'-bis(diphenylstibino)ferrocene (1*), which is an antimony analogue of the ubiquitous dppf, and our investigations into the reactivity and coordination behaviour of this compound. Thus, distibine 1 was oxidised to stiboranes fc(SbPh2X2)2 (X = Cl, 2*; F, 6*; fc = ferrocene-1,1'-diyl) and to stibine-stiborane Ph2SbfcSbPh2F2 (5*). Compounds 2 and 6 were easily hydrolysed to produce ferrocenophanes fc[SbPh2XOSbPh2X] (X = Cl, 3*; F, 7*). Removing the halogen from 3 with silver(I) salts afforded the corresponding ferrocenophanes with O-bound oxyanions, fc[SbPh2ZOSbPh2Z] (Z = NO3, 4a*; ClO4, 4b*), which were alternatively prepared from 2 and also converted back to 2 by adding a chloride source. Through investigations into the coordination behaviour of distibine 1, the following compounds were isolated and characterised: [(μ-ClO4)2{Ag(1-κ2Sb,Sb')}2] (8*), [Ag(1-κ2Sb,Sb')2]X (X = ClO4, 9a; SbF6, 9b*), [(μ(Sb,Sb')-1){(arene)MCl2}2] (10*, 11*) and [(arene)MCl(1-κ2Sb,Sb')][PF6] (12*, 13*; 10, 12: M/arene = Ru/η6-p-cymene, 11, 13; Rh/η5-C5Me5), [(η5-C5Me5)RuCl(1-κ2Sb,Sb')] (14), [MCl2(1-κ2Sb,Sb')] (M = Pd, 15*; Pt, 16*), [Pd(1-κ2Sb,Sb')2]X2 (X = BF4, 17a; SbF6, 17b*), [Pd(η2-ma)(1-κ2Sb,Sb')] (18*; ma = maleic anhydride), [(μ(Sb,Sb')-1)(AuCl)2] (19*), and [Au(1-κ2Sb,Sb')2]X (X = AuCl2, 20a*; SbF6, 20b*). Inspection of the structural parameters suggested that complexes featuring 1 exhibit less sterically strained structures than their dppf analogues due to longer M-Sb and Sb-C bonds, which reduce crowding around the ligated metal centre. Cyclic voltammetry and DFT calculations revealed that the primary electrochemical oxidation of 1 is reversible and occurs at the ferrocene unit. Based on preliminary catalytic tests in Suzuki-Miyaura biaryl coupling, Pd-1 complexes exhibited a lower efficiency than their respective Pd-dppf analogues. (An asterisk indicates that the crystal structure has been determined.).
Collapse
Affiliation(s)
- Jiří Schulz
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Jakub Antala
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Petr Štěpnička
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic.
| |
Collapse
|
9
|
King RP, Dyke JM, Levason W, Reid G. Neutral and Cationic Complexes of Silicon(IV) Halides with Phosphine Ligands. Inorg Chem 2022; 61:16905-16913. [PMID: 36222839 PMCID: PMC9597660 DOI: 10.1021/acs.inorgchem.2c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/21/2022]
Abstract
The reaction of SiI4 and PMe3 in n-hexane produced the yellow salt, [SiI3(PMe3)2]I, confirmed from its X-ray structure, containing a trigonal bipyramidal cation with trans-phosphines. This contrasts with the six-coordination found in (the known) trans-[SiX4(PMe3)2] (X = Cl, Br) complexes. The diphosphines o-C6H4(PMe2)2 and Et2P(CH2)2PEt2 form six-coordinate cis-[SiI4(diphosphine)], which were also characterized by X-ray crystallography, multinuclear NMR, and IR spectroscopy. Reaction of trans-[SiX4(PMe3)2] (X = Cl, Br) with Na[BArF] (BArF = [B{3,5-(CF3)2C6H3}4]) produced five-coordinate [SiX3(PMe3)2][BArF], but while Me3SiO3SCF3 also abstracted chloride from trans-[SiCl4(PMe3)2], the reaction products were six-coordinate complexes [SiCl3(PMe3)2(OTf)] and [SiCl2(PMe3)2(OTf)2] with the triflate coordinated. X-ray crystal structures were obtained for [SiCl3(PMe3)2][BArF] and [SiCl2(PMe3)2(OTf)2]. The charge distribution across the silicon species was also examined by natural bond orbital (NBO) analyses of the computed density functional theory (DFT) wavefunctions. For the [SiX4(PMe3)2] and [SiX3(PMe3)2]+ complexes, the positive charge on Si decreases and the negative charge on X decreases going from X = F to X = I. Upon going from [SiX4(PMe3)2] to [SiX3(PMe3)2]+, i.e., removal of X-, there is an increase in positive charge on Si and a decrease in negative charge on the X centers (except for the case X = F). The positive charge on P shows a slight decrease.
Collapse
Affiliation(s)
- Rhys P. King
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - John M. Dyke
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - William Levason
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
10
|
Hollingsworth WM, Hill EA. Exploring the potential role of heavy pnictogen elements in ligand design for new metal-ligand cooperative chemistry. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2124863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- W. M. Hollingsworth
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - E. A. Hill
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| |
Collapse
|
11
|
Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers (Basel) 2022; 14:polym14153123. [PMID: 35956637 PMCID: PMC9370903 DOI: 10.3390/polym14153123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 01/20/2023] Open
Abstract
This article studies the effects of arsine on the synthesis and thermal degradation of 4 samples of virgin polypropylene (PP-virgin) and proposes reaction mechanisms that allow understanding of its behaviour. Different points are monitored during the polypropylene synthesis to perform TGA, DSC, FT-IR, RDX, and MFI analyses later. The content of AsH3 in polypropylene varies between 0.05 and 4.73 ppm, and of arsenic in virgin PP residues between 0.001 and 4.32 ppm for PP0 and PP10, increasing in fluidity index from 3.0 to 24.51. The origin of thermo-oxidative degradation is explained by the reaction mechanisms of the Molecule AsH3 with the active titanium center of the ZN catalyst and the subsequent oxidation to form radical complexes. OO-AsH-TiCl4-MgCl2 and (OO-as-OO)2 -TiCl4-MgCl2, which, by radical reactions, give rise to the formation of functional groups aldehyde, ketone, alcohol, carboxylic acid, CO, CO2, PP-Polyol, PP-Polyether, and PP-Isopropylethers. These species caused the TG and DTG curves to increase degradation peaks in pp samples.
Collapse
|
12
|
Sinha A, Banerjee S, Gangopadhyay J. An account of chronological computational investigations to ascertain the role of pπ-pπ bonding in influencing the Lewis acidity of BX3 (X = F, Cl, Br and I): Evolution of novel parameters and relegation of π-type back bonding concept. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Gehlhaar A, Weinert HM, Wölper C, Semleit N, Haberhauer G, Schulz S. Bisstibane-distibane conversion via consecutive single-electron oxidation and reduction reaction. Chem Commun (Camb) 2022; 58:6682-6685. [PMID: 35587096 DOI: 10.1039/d2cc01986h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
peri-Substituted naphthalene complexes (Trip2Pn)2Naph (Pn = Sb 1, Bi 2) were synthesised and their redox behaviour investigated. Oxidation of 1 with [Fc][BArF] (BArF = B(C6F5)4) yielded [(Trip2Sb)(TripSb)Naph][BArF] (3) containing the stibane-coordinated stibenium cation [(Trip2Sb)(TripSb)Naph]+. Subsequent reduction of 3 with KC8 yielded distibane (TripSb)2Naph (4). 1-4 were characterised by NMR (1H, 13C) and IR spectroscopy as well as single-crystal X-ray diffraction (sc-XRD), while their electronic structures were analysed by quantum chemical computations.
Collapse
Affiliation(s)
- Alexander Gehlhaar
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Hanns Micha Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Nina Semleit
- Institute of Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany. .,Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
14
|
Remote hydroxyl group induced structural diversities in antimony(III) chalcogenones. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Xotlanihua-Flores A, Villaseñor-Granados TO, Colorado-Peralta R, Sánchez-Ruiz SA, Montes-Tolentino P, Flores-Parra A. Tin complexes derived from nitrogen-based 1,3,5-heterocyclohexanes bearing 2-hydroxypropan-1-yl, 2-diphenylphosphitepropan-1-yl and 2-diphenylphosphinepropan-1-yl as pendant N-substituents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
New 1,3,5-heterocyclohexanes bearing pendant phosphorus groups. Structure and N→P pnicogen interactions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Pachisia S, Gupta R, Gupta R. Molecular Assemblies Offering Hydrogen-Bonding Cavities: Influence of Macrocyclic Cavity and Hydrogen Bonding on Dye Adsorption. Inorg Chem 2022; 61:3616-3630. [PMID: 35156802 DOI: 10.1021/acs.inorgchem.1c03747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work presents a set of Hg macrocycles of amide-phosphine-based ligands offering H-bonding cavities of different dimensions. Such macrocycles are shown to selectively adsorb anionic dyes followed by neutral dyes as well as Prontosil, a biologically relevant antibiotic, within their cavities with the aid of H-bonding-assisted encapsulation. Kinetic experiments supported by spectroscopic and docking studies illustrate the importance of the cavity structure as well as H-bonds for the selective adsorption of dyes.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ruchika Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
18
|
Hogarth G, Al-Jibori SA, Al-Janabi A, Ghosh S, Basak-Modi S, Irzoqi AA, Wagner C, Al-Nassiry AI. Synthesis, structure and reactivity with phosphines of Hg(II) ortho-cyano-aminothiophenolate complexes formed via C-S bond cleavage and dehydrogenation of 2-aminobenzothiazoles. Dalton Trans 2022; 51:7889-7898. [DOI: 10.1039/d2dt00391k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of 2-aminobenzothiazole (abt) and substituted derivatives to Hg(OAc)2 leads to the high yield formation of ortho-cyano-aminothiophenolate (ocap) complexes [Hg{SC6H3XN(C≡N)}]n (X = H, Me, Cl, Br, NO2) resulting from dehydrogenation...
Collapse
|
19
|
Smith JE, Yang H, Gabbaï FP. An Electrophilic, Intramolecularly Base-Stabilized Platinum–Antimony Complex. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jesse E. Smith
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Haifeng Yang
- Department of Process Research & Development, MRL, Merck & Co., Rahway, New Jersey 07065, United States
| | - François P. Gabbaï
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| |
Collapse
|
20
|
King RP, Levason W, Reid G. Neutral and cationic germanium(IV) fluoride complexes with phosphine coordination - synthesis, spectroscopy and structures. Dalton Trans 2021; 50:17751-17765. [PMID: 34812814 DOI: 10.1039/d1dt03339e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The neutral complexes trans-[GeF4(PiPr3)2] and [GeF4(κ2-L)] (L = CH3C(CH2PPh2)3 or P(CH2CH2PPh2)3) are obtained from [GeF4(MeCN)2] and the ligand in CH2Cl2. Treatment of [GeF4(PMe3)2] with n equivalents of TMSOTf (Me3SiO3SCF3) leads to formation of the series [GeF4-n(PMe3)2(OTf)n] (n = 1, 2, 3), each of which contains six-coordinate Ge(IV) with trans PMe3 ligands and X-ray structural data confirm that the OTf groups interact with Ge(IV) to varying degrees. Unexpectedly, [GeF3(PMe3)2(OTf)] undergoes reductive defluorination in solution, forming the Ge(II) complex, [Ge(PMe3)3][OTf]2 (and [FPMe3]+). The bulkier PiPr3 leads to formation of the ionic [GeF3(iPr3P)2][OTf], containing a [GeF3(iPr3P)2]+ cation. [GeF4{o-C6H4(PMe2)2}], containing the cis-chelating diphosphine, also reacts with n equivalents of TMSOTf to generate [GeF4-n{o-C6H4(PMe2)2}(OTf)n] (n = 1, 2, 3). As for the PMe3 system, the trifluoride, [GeF3{o-C6H4(PMe2)2}(OTf)], is unstable to reductive defluorination in solution, producing the pyramidal Ge(II) complex [Ge{(o-C6H4(PMe2)2}(OTf)][OTf], whose crystal structure has been determined. The [GeF3{Ph2P(CH2)2PPh2}(OTf)] and [GeF2{Ph2P(CH2)2PPh2}(OTf)2], obtained similarly from the parent tetrafluoride complex, are poorly soluble, however their structures were confirmed crystallographically. The complexes in this work have been characterised via variable temperature 1H, 19F{1H} and 31P{1H} NMR studies in solution, IR spectroscopy and microanalysis and through single crystal X-ray analysis of representative examples across each series. Trends in the NMR and structural parameters are also discussed.
Collapse
Affiliation(s)
- Rhys P King
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - William Levason
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
21
|
Chalmers BA, Somisara DMUK, Surgenor BA, Athukorala Arachchige KS, Woollins JD, Bühl M, Slawin AMZ, Kilian P. Synthetic and Structural Study of peri-Substituted Phosphine-Arsines. Molecules 2021; 26:7222. [PMID: 34885804 PMCID: PMC8658757 DOI: 10.3390/molecules26237222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
A series of phosphorus-arsenic peri-substituted acenaphthene species have been isolated and fully characterised, including single crystal X-ray diffraction. Reactions of EBr3 (E = P, As) with iPr2PAcenapLi (Acenap = acenaphthene-5,6-diyl) afforded the thermally stable peri-substitution supported donor-acceptor complexes, iPr2PAcenapEBr23 and 4. Both complexes show a strong P→E dative interaction, as observed by X-ray crystallography and 31P NMR spectroscopy. DFT calculations indicated the unusual As∙∙∙As contact (3.50 Å) observed in the solid state structure of 4 results from dispersion forces rather than metallic interactions. Incorporation of the excess AsBr3 in the crystal structure of 3 promotes the formation of the ion separated species [iPr2PAcenapAsBr]+Br- 5. A decomposition product 6 containing the rare [As6Br8]2- heterocubane dianion was isolated and characterised crystallographically. The reaction between iPr2PAcenapLi and EtAsI2 afforded tertiary arsine (BrAcenap)2AsEt 7, which was subsequently lithiated and reacted with PhPCl2 and Ph2PCl to afford cyclic PhP(Acenap)2AsEt 8 and acyclic EtAs(AcenapPPh2)2 9.
Collapse
Affiliation(s)
- Brian A. Chalmers
- EaStChem School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK; (B.A.C.); (D.M.U.K.S.); (J.D.W.); (M.B.); (A.M.Z.S.)
| | - D. M. Upulani K. Somisara
- EaStChem School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK; (B.A.C.); (D.M.U.K.S.); (J.D.W.); (M.B.); (A.M.Z.S.)
| | | | | | - J. Derek Woollins
- EaStChem School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK; (B.A.C.); (D.M.U.K.S.); (J.D.W.); (M.B.); (A.M.Z.S.)
- Department of Chemistry, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Michael Bühl
- EaStChem School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK; (B.A.C.); (D.M.U.K.S.); (J.D.W.); (M.B.); (A.M.Z.S.)
| | - Alexandra M. Z. Slawin
- EaStChem School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK; (B.A.C.); (D.M.U.K.S.); (J.D.W.); (M.B.); (A.M.Z.S.)
| | - Petr Kilian
- EaStChem School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK; (B.A.C.); (D.M.U.K.S.); (J.D.W.); (M.B.); (A.M.Z.S.)
| |
Collapse
|
22
|
Ligand coordination in [Re2(CO)9(NCMe)] and [H3Re3(CO)11(NCMe)] by triphenylantimony: Reactivity studies and Sb–Ph bond cleavage to give new antimony-containing di- and trirhenium complexes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
King RP, Woodward MS, Grigg J, McRobbie G, Levason W, Reid G. Tin(IV) fluoride complexes with neutral phosphine coordination and comparisons with hard N- and O-donor ligands. Dalton Trans 2021; 50:14400-14410. [PMID: 34569574 DOI: 10.1039/d1dt02948g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of trans-[SnF4(PMe3)2] with one, two or three equivalents of Me3SiO3SCF3 (TMSOTF), respectively, in anhydrous CH2Cl2 form six-coordinate [SnF4-n(PMe3)2(OTf)n] (n = 1-3), which have been characterised by microanalysis, IR and multinuclear NMR (1H, 19F{1H}, 31P{1H} and 119Sn) spectroscopy. The crystal structure of [SnF3(PMe3)2(OTf)] reveals the three fluorines are in a mer-arrangement with mutually trans PMe3 ligands. The multinuclear NMR spectra confirm this structure is retained in solution, and show that [SnF2(PMe3)2(OTf)2] has trans-phosphines, while [SnF(PMe3)2(OTf)3] has trans PMe3 groups and hence mer-triflate ligands. The [SnF4-n(PMe3)2(OTf)n] are unstable in solution and the decomposition products include [Me3PF]+ and the tin(II) complexes [Sn(PMe3)2(OTf)2] and [Sn3F5(OTf)], both of the latter identified by their crystal structures. The reaction of trans-[SnF4(PiPr3)2] containing the bulkier phosphine, with one and two equivalents of TMSOTf produced unstable mono- and bis-triflates, which the NMR data also suggest contain weakly coordinated triflate, [SnF3(PiPr3)2(OTf)] and [SnF2(PiPr3)2(OTf)2], again with axial phosphines, although some OTf dissociation from the former to give [SnF3(PiPr3)2]+ may occur in solution at room temperature. The new phosphine complexes of SnF4, trans-[SnF4(PiPr3)2] and (cis) [SnF4(κ2-triphos)] (triphos = CH3C(CH2PPh2)3) have also been fully characterised, including the crystal structure of [SnF4(κ2-triphos)]. Attempts to promote P3-coordination by further treatment of this complex with TMSOTf were unsuccessful. The [SnF4(L)2] (L = dmso, py, pyNO, DMF, OPPh3) complexes, which exist as mixtures of cis and trans isomers, react with one equivalent of TMSOTf, followed by addition of one equivalent of L, to form the ionic [SnF3(L)3][OTf] complexes, which were characterised by microanalysis, IR and multinuclear NMR spectroscopy. In nitromethane solution they are a mixture of mer and fac isomers based upon multinuclear NMR data (1H, 19F{1H}, 119Sn). Reaction of [SnF4(OPPh3)2] with two equivalents of TMSOTf and further OPPh3 produced [SnF2(OPPh3)4][OTf]2, which is a mixture of cis and trans isomers in solution. The crystal structure of [SnF2(OPPh3)4][OTf]2 confirms the trans isomer in the solid state, with the triflate ionic. These complexes are rare examples of fluorotin(IV) cations with neutral monodentate ligands.
Collapse
Affiliation(s)
- Rhys P King
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | | | - Julian Grigg
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St Giles, Bucks, HP8 4SP, UK
| | - Graeme McRobbie
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St Giles, Bucks, HP8 4SP, UK
| | - William Levason
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
24
|
Berro P, Norouziyanlakvan S, Rao GK, Gabidullin B, Richeson D. Electrocatalytic reduction of CO 2 to CO and HCO 2- with Zn(II) complexes displaying cooperative ligand reduction. Chem Commun (Camb) 2021; 57:9292-9295. [PMID: 34519316 DOI: 10.1039/d1cc03887g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Air-stable zinc(II) pyridyl phosphine complexes, [Zn(κ2-2,6-{Ph2PNMe}2(NC5H3))Br2] (1) and [Zn(κ2-2-{Ph2PNMe}(NC5H3))Br2] (2) are reported and 1 was capable of electrocatalytic reduction of CO2 at -2.3 V vs. Fc+/0 to yield CO/HCO2H in mixed water/acetonitrile solutions. DFT computations support a proposed mechanism involving electron transfer reactions from a species with the anionic PN3P ligand ("L-/Zn(II)").
Collapse
Affiliation(s)
- Patrick Berro
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| | - Somayeh Norouziyanlakvan
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| | - Gyaneshwar Kumar Rao
- Department of Chemistry, Amity School of Applied Sciences, Amity University, Haryana-122413, India
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| | - Darrin Richeson
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
25
|
King RP, Greenacre VK, Levason W, Dyke JM, Reid G. Pyramidal Dicationic Ge(II) Complexes with Homoleptic Neutral Pnictine Coordination: A Combined Experimental and Density Functional Theory Study. Inorg Chem 2021; 60:12100-12108. [PMID: 34319096 DOI: 10.1021/acs.inorgchem.1c01308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unusual series of Ge(II) dicationic species with homoleptic phosphine and arsine coordination, [Ge(L)][OTf]2, L = 3 × PMe3, triphos (MeC(CH2PPh2)3), triars (MeC(CH2AsMe2)3), or κ3-tetraphos (P(CH2CH2PPh2)3) (OTf- = O3SCF3-) have been prepared by reaction of [GeCl2(dioxane)] with L and 2 mol equiv of Me3SiOTf in anhydrous CH2Cl2 (or MeCN for L = triars, triphos). X-ray crystal structures are reported for [Ge(PMe3)3][OTf]2, [Ge(triars)][OTf]2, and [Ge(κ3-tetraphos)][OTf]2, confirming homoleptic P3- or As3-coordination at Ge(II) in each case and with the discrete OTf- anions providing a charge balance. The Ge-P/As bond lengths are significantly shorter than those in neutral germanium(II) dihalide complexes with diphosphine or diarsine coordination. Solution NMR spectroscopic data indicate that the complexes are labile in solution. Using excess AsMe3 and [GeCl2(dioxane)] gives only the neutral product, [Ge(AsMe2)2(OTf)2], the crystal structure of which shows four coordination at Ge(II), via two As donor atoms and an O atom from two κ1-OTf- ligands; further weak, long-range intermolecular interactions give a chain polymer. The electronic structure of the [Ge(PMe3)3]2+ dication has been investigated using density functional theory (DFT) calculations. The computed geometrical parameters for this dication are in good agreement with the experimental X-ray crystallographic values in [Ge(PMe3)3][OTf]2. The results also indicate that the pyramidal arrangement of the [Ge(PMe3)3]2+ (computed P-Ge-P angle 96.8° at the B3LYP-D3 level) arises from a balance between electronic energy (Eelec) contributions, which favor a lower P-Ge-P angle, and nuclear-nuclear contributions (Enn), which favor a higher P-Ge-P angle, to the total energy (ETOT). An Atoms in Molecules (AIM) analysis reveals that one reason why Eelec decreases as the P-Ge-P angle decreases is because of C···H and H···H interactions between atoms on different CH3 groups. The stability of the [Ge(PMe3)3]2+ dication is enhanced by the distribution of a significant part of the positive charge on Ge2+ to the atomic centers of the PMe3 ligands. Similar results were obtained for [Ge(AsMe3)3][OTf]2, showing the tris-AsMe3 complex to be less stable compared to the PMe3 analogue. Related calculations were also performed for the neutral [Ge(PMe3)2(OTf)2] and [Ge(AsMe3)2(OTf)2] complexes.
Collapse
Affiliation(s)
- Rhys P King
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | | | - William Levason
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - John M Dyke
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
26
|
Egorova IV, Zhidkov VV, Grinishak IP, Rodionova NА, Bagryanskaya IY, Pervukhina NV. Synthesis and Structure of Antimony Complex Compounds [(4-N,N-Me2C6H4)3MeSb]I and [(4-N,N-Me2C6H4)3MeSb]2[Hg2I6]·2DMSO. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221070148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
|
28
|
Structural Evidence for Pnictogen-Centered Lewis Acidity in Cationic Platinum-Stibine Complexes Featuring Pendent Amino or Ammonium Groups. Molecules 2021; 26:molecules26071985. [PMID: 33915809 PMCID: PMC8036533 DOI: 10.3390/molecules26071985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/26/2022] Open
Abstract
As part of our continuing interest in the chemistry of cationic antimony Lewis acids as ligands for late transition metals, we have now investigated the synthesis of platinum complexes featuring a triarylstibine ligand substituted by an o-[(dimethylamino)methyl]phenyl group referred to as ArN. More specifically, we describe the synthesis of the amino stibine ligand Ph2SbArN (L) and its platinum dichloride complex [LPtCl]Cl which exists as a chloride salt and which shows weak coordination of the amino group to the antimony center. We also report the conversion of [LPtCl]Cl into a tricationic complex [LHPt(SMe2)]3+ which has been isolated as a tris-triflate salt after reaction of [LPtCl]Cl with SMe2, HOTf and AgOTf. Finally, we show that [LHPt(SMe2)][OTf]3 acts as a catalyst for the cyclization of 2-allyl-2-(2-propynyl)malonate.
Collapse
|
29
|
Piesch M, Gabbaï FP, Scheer M. Phosphino‐Stibine Ligands for the Synthesis of Heterometallic Complexes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Martin Piesch
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Germany
| | - Francois P. Gabbaï
- Department of Chemistry Texas A&M University 77843–3255 College Station TX USA
| | - Manfred Scheer
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Germany
| |
Collapse
|
30
|
Lipshultz JM, Li G, Radosevich AT. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. J Am Chem Soc 2021; 143:1699-1721. [PMID: 33464903 PMCID: PMC7934640 DOI: 10.1021/jacs.0c12816] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing number of organopnictogen redox catalytic methods have emerged-especially within the past 10 years-that leverage the plentiful reversible two-electron redox chemistry within Group 15. The goal of this Perspective is to provide readers the context to understand the dramatic developments in organopnictogen catalysis over the past decade with an eye toward future development. An exposition of the fundamental differences in the atomic structure and bonding of the pnictogens, and thus the molecular electronic structure of organopnictogen compounds, is presented to establish the backdrop against which organopnictogen redox reactivity-and ultimately catalysis-is framed. A deep appreciation of these underlying periodic principles informs an understanding of the differing modes of organopnictogen redox catalysis and evokes the key challenges to the field moving forward. We close by addressing forward-looking directions likely to animate this area in the years to come. What new catalytic manifolds can be developed through creative catalyst and reaction design that take advantage of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis?
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Prokudina YV, Davydova EI, Virovets A, Stöger B, Peresypkina E, Pomogaeva AV, Timoshkin AY. Structures and Chemical Bonding in Antimony(III) Bromide Complexes with Pyridine. Chemistry 2020; 26:16338-16348. [PMID: 32672367 DOI: 10.1002/chem.202002261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Indexed: 12/21/2022]
Abstract
Weakly or "partially" bonded molecules are an important link between the chemical and van der Waals interactions. Molecular structures of six new SbBr3 -Py complexes in the solid state have been determined by single-crystal X-ray diffraction analysis. In all complexes all Sb atoms adopt a pseudo-octahedral coordination geometry which is completed by additional Sb⋅⋅⋅Br contacts shorter than the sum of the van der Waals radii, with Br-Sb⋅⋅⋅Br angles close to 180°. To reveal the nature of Sb-Br and Sb-N interactions, the DFT calculations were performed followed by the analysis of the electrostatic potentials, the orbital interactions and the topological analysis. Based on Natural Bond Orbital (NBO) analysis, the Sb-Br interactions range from the covalent bonds to the pnictogen bonds. A simple structural parameter, non-covalence criterion (NCC) is defined as a ratio of the atom-atom distance to the linear combination of sums of covalent and van der Waals radii. NCC correlates with E(2) values for Sb-N, Sb-Cl and Sb-Br bonds, and appears to be useful criterion for a preliminary evaluation of the bonding situation.
Collapse
Affiliation(s)
- Yana V Prokudina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Elena I Davydova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Alexander Virovets
- University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Berthold Stöger
- X-Ray Center, TU Wien, Getreidemarkt, 9, 1060, Vienna, Austria
| | | | - Anna V Pomogaeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Alexey Y Timoshkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| |
Collapse
|
32
|
Hirakawa F, Nakagawa H, Honda S, Ishida S, Iwamoto T. Trialkylphosphines Having a Bulky Phosphacyclopentane Backbone: Structural and Redox Properties Depending on the Exocyclic Alkyl Groups and EPR Observation of a Persistent Trialkylphosphine Radical Cation. J Org Chem 2020; 85:14634-14642. [PMID: 32700539 DOI: 10.1021/acs.joc.0c01393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bulky phosphines and their redox properties have received increased attention in the view of useful auxiliary ligands for transition metal catalysts and Lewis-base components of frustrated Lewis pairs for chemical transformations. Herein we report the synthesis, structure, and properties of a series of trialkylphosphines 2R (R = methyl, ethyl, isopropyl, tert-butyl, 1-adamantyl) that possess the bulky 2,2,5,5-tetrakis(trimethylsilyl)-1-phosphacyclopentane as a structural backbone. Among these phosphines, 2Ad, which contains an adamantyl moiety, has a very large buried volume (%Vbur) for a trialkylphosphine (62.0) and shows a quasi-reversible oxidative wave at a lower oxidation potential (-0.12 V in CH2Cl2, vs ferrocene/ferrocenium couple) by cyclic voltammetry. The reaction of 2Ad with AgPF6 afforded a cationic silver aquo complex [Ag(2Ad)(H2O)]+[PF6]-, whereas the reaction with NOSbF6 gave a persistent phosphine radical cation [2Ad]•+. Based on the EPR spectra and DFT studies, the spin and positive charge of [2Ad]•+ are localized on the phosphorus atom.
Collapse
Affiliation(s)
- Fumiya Hirakawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroshi Nakagawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shunya Honda
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
33
|
Nejman PS, Curzon TE, Bühl M, McKay D, Woollins JD, Ashbrook SE, Cordes DB, Slawin AMZ, Kilian P. Phosphorus–Bismuth Peri-Substituted Acenaphthenes: A Synthetic, Structural, and Computational Study. Inorg Chem 2020; 59:5616-5625. [DOI: 10.1021/acs.inorgchem.0c00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Phillip S. Nejman
- EaStChem School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 ST, U.K
| | - Thomasine E. Curzon
- EaStChem School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 ST, U.K
| | - Michael Bühl
- EaStChem School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 ST, U.K
| | - David McKay
- EaStChem School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 ST, U.K
| | - J. Derek Woollins
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Sharon E. Ashbrook
- EaStChem School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 ST, U.K
| | - David B. Cordes
- EaStChem School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 ST, U.K
| | | | - Petr Kilian
- EaStChem School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 ST, U.K
| |
Collapse
|
34
|
Dyke JM, Emsley JW, Greenacre VK, Levason W, Monzittu FM, Reid G, De Luca G. Tertiary Phosphine and Arsine Complexes of Phosphorus Pentafluoride: Synthesis, Properties, and Electronic Structures. Inorg Chem 2020; 59:4517-4526. [PMID: 32186860 DOI: 10.1021/acs.inorgchem.9b03630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of PMe3 or PPh3 with PF5 in anhydrous CH2Cl2 or hexane forms the white, moisture-sensitive complexes [PF5(PR3)] (R = Me, Ph). Similar reactions involving the diphosphines o-C6H4(PR2)2 afford the complexes [PF4{o-C6H4(PR2)2}][PF6]. The X-ray structures of [PF5(PR3)] and [PF4{o-C6H4(PMe2)2}][PF6] show pseudo-octahedral fluorophosphorus centers. Multinuclear NMR spectra (1H, 19F{1H}, 31P{1H}) show that in solution in CH2Cl2/CD2Cl2 the structures determined crystallographically are the only species present for [PF5(PMe3)] and [PF4{o-C6H4(PMe2)2}][PF6] but that [PF5(PPh3)] and [PF4{o-C6H4(PPh2)2}][PF6] exhibit reversible dissociation of the phosphine at ambient temperatures, although exchange slows at low temperatures. The complex 19F{1H} and 31P{1H} NMR spectra have been analyzed, including those of the cation [PF4{o-C6H4(PMe2)2}]+, which is a second-order AA'XX'B2M spin system. The unstable [PF5(AsMe3)], which decomposes in a few hours at ambient temperatures, has also been isolated and spectroscopically characterized; neither AsPh3 nor SbEt3 forms similar complexes. The electronic structures of the PF5 complexes have been explored by DFT calculations. The DFT optimized geometries for [PF5(PMe3)], [PF5(PPh3)], and [PF4{o-C6H4(PMe2)2}]+ are in good agreement with their respective crystal structure geometries. DFT calculations on the PF5-L complexes reveal the P-L bond strength falls with L in the order PMe3 > PPh3 > AsMe3, consistent with the experimentally observed stabilities, and in the PF5-L complexes, electron transfer from L to PF5 on forming these complexes also follows the order PMe3 > PPh3 ≈ AsMe3.
Collapse
Affiliation(s)
- John M Dyke
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - James W Emsley
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | | | - William Levason
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | | | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Giuseppina De Luca
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende 87036, Italy
| |
Collapse
|
35
|
Synthesis, properties and structures of gallium(III) and indium(III) halide complexes with neutral pnictine coordination. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Suman P, Lone MY, Janardan S, Jha PC, Sivaramakrishna A, Clayton HS. Studies on stability and structural aspects of hydrazide-based hypercoordinate silicon(IV) complexes. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1753714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Pothini Suman
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Mohsin Y. Lone
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Sannapaneni Janardan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Prakash C. Jha
- Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | | |
Collapse
|
37
|
Egorova I, Zhidkov V, Zubakina I, Rodionova N, Eltsov I. Synthesis and structure of a new complex of mercury(II) with an organoantimony ligand – tris(2,6-dimethoxyphenyl)stibane. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Tay WS, Li Y, Lu Y, Pullarkat SA, Leung PH. Chemoselective Synthesis and Evaluation of β-Oxovinylarsines as an Arsenic Synthetic Precursor. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wee Shan Tay
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637616 Singapore
| | - Yongxin Li
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637616 Singapore
| | - Yunpeng Lu
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637616 Singapore
| | - Sumod A. Pullarkat
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637616 Singapore
| | - Pak-Hing Leung
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637616 Singapore
| |
Collapse
|
39
|
Vignesh KR, Alexandropoulos DI, Xie H, Dunbar KR. Six-coordinate mononuclear dysprosium(iii) single-molecule magnets with the triphenylphosphine oxide ligand. Dalton Trans 2020; 49:4694-4698. [DOI: 10.1039/d0dt00801j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three rare octahedral mononuclear DyIII complexes bearing triphenylphosphine oxide and halide ligands are reported. The Cl− and Br− analogues exhibit SMM behavior under a small dc field. Ab initio CASSCF calculations reveal a higher energy barrier for an analogous complex with iodides.
Collapse
Affiliation(s)
| | | | - Haomiao Xie
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Kim R. Dunbar
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| |
Collapse
|
40
|
Sorg JR, Schneider T, Wohlfarth L, Schäfer TC, Sedykh A, Müller-Buschbaum K. Sb- and Bi-based coordination polymers with N-donor ligands with and without lone-pair effects and their photoluminescence properties. Dalton Trans 2020; 49:4904-4913. [PMID: 32232237 DOI: 10.1039/d0dt00265h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fifteen new sublimable Sb- and Bi-based chlorido, bromido and iodido coordination polymers (CPs) with linear bispyridyl ligands are presented in this work and compared in terms of their crystal structures and photoluminescence properties. The Sb-CPs occur in two structural motifs: 1∞[Sb2X6(L)2] (X: Cl (a), Br (b), I (c); L: 1,2-bis(4-pyridyl)ethylene (bpe) (1), 1,2-bis(4-pyridyl)ethane (bpa) (2), 4,4'-bipyridine (bipy) (X: Br, I; 3)) with two polymorphs showing negligible stereochemical demand of the lone-pair and 1∞[SbCl3(bipy)] (3a) featuring a stereochemically active lone pair with significant 5p-contribution at SbIII. This is accompanied by differences in the coordination polyhedra being octahedral for high s-character, whereas a high p-character of the lone pair results in a square pyramid as the coordination sphere. The Bi-CPs are represented by the general formula 1∞[Bi2X6(L)2] (X: Cl (a), Br (b), I (c); L: 1,2-bis(4-pyridyl)ethylene (bpe) (4), 1,2-bis(4-pyridyl)ethane (bpa) (5)) and thus show no significant 6p-character of the lone pairs. For examining the parallels and differences between the SbIII- and BiIII-CPs, both are compared in terms of structures and luminescence properties, as well as with related literature known CPs. Altogether, this comparison of structures and properties allows for gaining new insights into the photoluminescence mechanisms of the Sb and Bi-containing CPs. For the first time, distinct hints on the participation of inter-valence charge transfer transitions in E3+-pairs (E: Sb, Bi) were observed for the Sb- and Bi-containing coordination polymers constructed from N-donor ligands.
Collapse
Affiliation(s)
- Jens R Sorg
- Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tilman Schneider
- Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Luise Wohlfarth
- Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas C Schäfer
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| | - Alexander Sedykh
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| | - Klaus Müller-Buschbaum
- Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany and Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany. and Center for Materials Research (LAMA), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.
| |
Collapse
|
41
|
|
42
|
Greenacre VK, King RP, Levason W, Reid G. Neutral and cationic phosphine and arsine complexes of tin(iv) halides: synthesis, properties, structures and anion influence. Dalton Trans 2019; 48:17097-17105. [PMID: 31702752 DOI: 10.1039/c9dt03683k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of trans-[SnCl4(PR3)2] (R = Me or Et) with trimethylsilyltriflate (TMSOTf) in CH2Cl2 solution substitutes one chloride to form [SnCl3(PR3)2(OTf)]; addition of excess TMSOTf does not substitute further chlorides. The complexes have been fully characterised by microanalysis, IR and multinuclear NMR (1H, 13C{1H}, 19F{1H}, 31P{1H}, 119Sn) spectroscopy. The crystal structure of [SnCl3(PMe3)2(OTf)] revealed mer-chlorines and trans-phosphines. In contrast, trans-[SnBr4(PR3)2], [SnCl4{Et2P(CH2)2PEt2}], [SnCl4{o-C6H4(PMe2)2}] and [SnCl4{o-C6H4(AsMe2)2}] did not react with TMSOTf in CH2Cl2 solution even after 3 days. The arsine complexes, [SnX4(AsEt3)2] (X = Cl, Br), were confirmed as trans-isomers by similar spectroscopic and structural studies, while attempts to isolate [SnI4(AsEt3)2] were unsuccessful and reaction of SnX4 with SbR3 (R = Et, iPr) resulted in reduction to SnX2 and formation of R3SbX2. trans-[SnCl4(AsEt3)2] is converted by TMSOTf into [SnCl3(AsEt3)2(OTf)], whose X-ray structure reveals the same geometry found in the phosphine analogues, with the triflate coordinated. The salts, [SnCl3(PEt3)2][AlCl4] and [SnCl2(PEt3)2][AlCl4]2 were made by treatment of [SnCl4(PEt3)2] with one and two mol. equivalents, respectively, of AlCl3 in anhydrous CH2Cl2, whereas reaction of [SnCl4(AsEt3)2] with AlCl3 produced a mixture including Et3AsCl2 and [Et3AsCl][Sn(AsEt3)Cl5] (the latter identified crystallographically). In contrast, using Na[BArF] (BArF = [B{3,5-(CF3)2C6H3}4]-) produced [SnCl3(PEt3)2][BArF] and also allowed clean isolation of the arsine analogue, [SnCl3(AsEt3)2][BArF]. [SnCl4{o-C6H4(PMe2)2}] also reacts with AlCl3 in CH2Cl2 to form [SnCl3{o-C6H4(PMe2)2}][AlCl4] and [SnCl2{o-C6H4(PMe2)2}][AlCl4]2. Multinuclear NMR spectroscopy on the [AlCl4]- salts show that δ31P and δ119Sn move progressively to high frequency on conversion from the neutral complex to the mono- and the di-cations, whilst 1J(119Sn-31P) follow the trend: [SnCl3{o-C6H4(PMe2)2}]+ > [SnCl4{o-C6H4(PMe2)2}] > [SnCl2{o-C6H4(PMe2)2}]2+. DFT studies on selected complexes show only small changes in ligand geometries and bond lengths between the halide and triflate complexes, consistent with the X-ray crystallographic data reported and the HOMO and LUMO energies are relatively unperturbed upon the introduction of (coordinated) triflate, whereas the energies of both are ca. 4 eV lower in the cationic species and reveal significant hybridisation across the pnictine ligands.
Collapse
Affiliation(s)
| | - Rhys P King
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - William Levason
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
43
|
Hinterding SOM, Berends AC, Kurttepeli M, Moret ME, Meeldijk JD, Bals S, van der Stam W, de Mello Donega C. Tailoring Cu + for Ga 3+ Cation Exchange in Cu 2-xS and CuInS 2 Nanocrystals by Controlling the Ga Precursor Chemistry. ACS NANO 2019; 13:12880-12893. [PMID: 31617701 PMCID: PMC6890264 DOI: 10.1021/acsnano.9b05337] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/16/2019] [Indexed: 05/22/2023]
Abstract
Nanoscale cation exchange (CE) has resulted in colloidal nanomaterials that are unattainable by direct synthesis methods. Aliovalent CE is complex and synthetically challenging because the exchange of an unequal number of host and guest cations is required to maintain charge balance. An approach to control aliovalent CE reactions is the use of a single reactant to both supply the guest cation and extract the host cation. Here, we study the application of GaCl3-L complexes [L = trioctylphosphine (TOP), triphenylphosphite (TPP), diphenylphosphine (DPP)] as reactants in the exchange of Cu+ for Ga3+ in Cu2-xS nanocrystals. We find that noncomplexed GaCl3 etches the nanocrystals by S2- extraction, whereas GaCl3-TOP is unreactive. Successful exchange of Cu+ for Ga3+ is only possible when GaCl3 is complexed with either TPP or DPP. This is attributed to the pivotal role of the Cu2-xS-GaCl3-L activated complex that forms at the surface of the nanocrystal at the onset of the CE reaction, which must be such that simultaneous Ga3+ insertion and Cu+ extraction can occur. This requisite is only met if GaCl3 is bound to a phosphine ligand, with a moderate bond strength, to allow facile dissociation of the complex at the nanocrystal surface. The general validity of this mechanism is demonstrated by using GaCl3-DPP to convert CuInS2 into (Cu,Ga,In)S2 nanocrystals, which increases the photoluminescence quantum yield 10-fold, while blue-shifting the photoluminescence into the NIR biological window. This highlights the general applicability of the mechanistic insights provided by our work.
Collapse
Affiliation(s)
- Stijn O. M. Hinterding
- Condensed Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508
TA Utrecht, The Netherlands
| | - Anne C. Berends
- Condensed Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508
TA Utrecht, The Netherlands
| | - Mert Kurttepeli
- Electron Microscopy for Materials Science (EMAT),
University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp,
Belgium
| | - Marc-Etienne Moret
- Organic Chemistry and Catalysis, Debye Institute for
Nanomaterials Science, Utrecht University, Universiteitsweg 99,
3584 CG Utrecht, The Netherlands
| | - Johannes D. Meeldijk
- Electron Microscopy Utrecht, Debye Institute for
Nanomaterials Science, Utrecht University, 3584 CH Utrecht,
The Netherlands
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT),
University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp,
Belgium
| | - Ward van der Stam
- Condensed Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508
TA Utrecht, The Netherlands
| | - Celso de Mello Donega
- Condensed Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508
TA Utrecht, The Netherlands
- E-mail:
| |
Collapse
|
44
|
Wang Y, Ma X, Ding Y, Wang J, Yang Z. The study on the solubility of main group organometallics in selected solvents and the thermodynamic model of solubility correlation under inert atmosphere. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Kokunov YV, Kovalev VV, Gorbunova YE, Churakov AV, Kozyukhin S. Molecular Complex of Cadmium(II) Trifluoroacetate with Triphenylphosphine: Crystal Structure and Luminescence Properties. RUSS J COORD CHEM+ 2019. [DOI: 10.1134/s1070328419070042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Zanchin G, Gavezzoli A, Bertini F, Ricci G, Leone G. Homo- and Copolymerization of Ethylene with Norbornene Catalyzed by Vanadium(III) Phosphine Complexes. Molecules 2019; 24:molecules24112088. [PMID: 31159332 PMCID: PMC6600629 DOI: 10.3390/molecules24112088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/16/2022] Open
Abstract
Herein, we report the homo- and co-polymerization of ethylene (E) with norbornene (NB) catalyzed by vanadium(III) phosphine complexes of the type VCl3(PMenPh3-n)2 [n = 2 (1a), 1 (1b)] and VCl3(PR3)2 [R = phenyl (Ph, 1c), cyclohexyl (Cy, 1d), tert-butyl (tBu, 1e)]. In the presence of Et2AlCl and Cl3CCOOEt (ETA), 1a-1e exhibit good activities for the polymerization of ethylene, affording linear, semicrystalline PEs with a melting temperature of approximately 130 °C. Mainly alternating copolymers with high comonomer incorporation were obtained in the E/NB copolymerization. A relationship was found between the electronic and steric properties of the phosphine ligands and the catalytic performance. Overall, the presence of electron-withdrawing ligand substituents increases the productivity, complexes with aryl phosphine (weaker σ-donor character) exhibiting a higher (co)polymerization initiation rate than those with alkyl phosphines (stronger σ-donor character). Steric effects also seem to play a key role since 1d and 1e, having large size phosphines (PCy3 θ = 170° and PtBu3 θ = 182°, respectively) are more active than 1a (PMe2Ph θ = 122°). In this case, the larger size of PtBu3 and PCy3 likely compensates for their higher donor strength compared to PMe2Ph.
Collapse
Affiliation(s)
- Giorgia Zanchin
- CNR-Istituto per lo Studio delle Macromolecole (ISMAC), via A. Corti 12, I-20133 Milano, Italy.
| | - Alessia Gavezzoli
- CNR-Istituto per lo Studio delle Macromolecole (ISMAC), via A. Corti 12, I-20133 Milano, Italy.
| | - Fabio Bertini
- CNR-Istituto per lo Studio delle Macromolecole (ISMAC), via A. Corti 12, I-20133 Milano, Italy.
| | - Giovanni Ricci
- CNR-Istituto per lo Studio delle Macromolecole (ISMAC), via A. Corti 12, I-20133 Milano, Italy.
| | - Giuseppe Leone
- CNR-Istituto per lo Studio delle Macromolecole (ISMAC), via A. Corti 12, I-20133 Milano, Italy.
| |
Collapse
|
47
|
Muessig JH, Stennett TE, Schmidt U, Dewhurst RD, Mailänder L, Braunschweig H. Oxidative addition of arsenic halides to platinum(0). Dalton Trans 2019; 48:3547-3550. [PMID: 30758372 DOI: 10.1039/c8dt04995e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of AsCl3 with Pt(0) complexes [Pt(PCy3)2], [Pt(PCy3)(IMes)] and [Pt(IMes)2] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) resulted in oxidative addition of As-Cl bonds at the Pt centres to form complexes of the form trans-[PtCl(AsCl2)L2]. Two of these compounds were characterised by X-ray diffraction, making them the first structurally characterised examples of AsX2 ligands (X = halogen). AsBr3 also underwent oxidative addition to [Pt(PCy3)2], forming trans-[PtBr(AsBr2)(PCy3)2] in situ, as judged by 31P NMR spectroscopy. This reaction was unselective, yielding several products, of which a Pt3As2 cluster could be identified by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Jonas H Muessig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Lei J, Peng L, Qiu R, Liu Y, Chen Y, Au CT, Yin SF. Establishing the correlation between catalytic performance and N→Sb donor–acceptor interaction: systematic assessment of azastibocine halide derivatives as water tolerant Lewis acids. Dalton Trans 2019; 48:8478-8487. [DOI: 10.1039/c9dt01100e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of organoantimony(iii) halide complexes with a tetrahydrodibenzo[c,f][1,5]azastibocine framework were synthesized and employed as water tolerant Lewis acid catalysts.
Collapse
Affiliation(s)
- Jian Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Lingteng Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yongping Liu
- School of Medicine
- Hunan University of Chinese Medicine
- Changsha 410208
- P. R. China
| | - Yi Chen
- School of Medicine
- Hunan University of Chinese Medicine
- Changsha 410208
- P. R. China
| | - Chak-Tong Au
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
50
|
|