1
|
Huang S, Huang G. The utilization of quantum dot labeling as a burgeoning technique in the field of biological imaging. RSC Adv 2024; 14:20884-20897. [PMID: 38957578 PMCID: PMC11217725 DOI: 10.1039/d4ra04402a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Quantum dots (QDs), with their unique optical and physical properties, have revolutionized the field of biological imaging, providing researchers with tools to explore cellular processes and molecular interactions in unprecedented detail. This review explores the diverse properties of QDs, emphasizing their application in biological imaging and addressing both their advantages and challenges. We discuss the developments in QD technology that have facilitated their integration into bioimaging, highlighting the role of surface modifications in enhancing their biocompatibility and functionality. The varied applications of QDs in both in vitro and in vivo imaging settings are examined, showcasing their capacity to deliver brighter, more stable, and multiplexed imaging solutions compared to traditional fluorescent dyes. Furthermore, we delve into the challenges associated with QD use, particularly concerns regarding their potential toxicity and long-term effects on biological systems, and explore ongoing research aimed at mitigating these issues. Finally, we discuss future directions in QD technology, anticipating advancements that will further solidify their role in biological imaging and open up new avenues for scientific exploration.
Collapse
Affiliation(s)
- Shiyu Huang
- School of Chemistry and Chemical Engineering, Southwest University Chongqing 400700 China
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University Chongqing 401331 China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
2
|
Tozawa M, Miyamae C, Akiyoshi K, Kameyama T, Yamamoto T, Motomura G, Fujisaki Y, Uematsu T, Kuwabata S, Torimoto T. One-pot synthesis of Ag-In-Ga-S nanocrystals embedded in a Ga 2O 3 matrix and enhancement of band-edge emission by Na + doping. NANOSCALE ADVANCES 2023; 5:7057-7066. [PMID: 38059040 PMCID: PMC10696949 DOI: 10.1039/d3na00755c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
I-III-VI-based semiconductor quantum dots (QDs) have been intensively explored because of their unique controllable optoelectronic properties. Here we report one-pot synthesis of Na-doped Ag-In-Ga-S (AIGS) QDs incorporated in a Ga2O3 matrix. The obtained QDs showed a sharp band-edge photoluminescence peak at 557 nm without a broad-defect site emission. The PL quantum yield (QY) of such QDs was 58%, being much higher than that of AIGS QDs without Na+ doping, 29%. The obtained Na-doped AIGS/Ga2O3 composite particles were used as an emitting layer of green QD light-emitted diodes. A sharp electroluminescence (EL) peak was observed at 563 nm, being similar to that in the PL spectrum of the QDs used. The external quantum efficiency of the device was 0.6%.
Collapse
Affiliation(s)
- Makoto Tozawa
- Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Chie Miyamae
- Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Kazutaka Akiyoshi
- Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Tatsuya Kameyama
- Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Takahisa Yamamoto
- Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Genichi Motomura
- Science & Technology Research Laboratories, Japan Broadcasting Corporation (NHK) 1-10-11 Kinuta, Setagaya-ku Tokyo 157-8510 Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Yoshihide Fujisaki
- Science & Technology Research Laboratories, Japan Broadcasting Corporation (NHK) 1-10-11 Kinuta, Setagaya-ku Tokyo 157-8510 Japan
| | - Taro Uematsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Susumu Kuwabata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Tsukasa Torimoto
- Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
3
|
Sobhanan J, Anas A, Biju V. Nanomaterials for Fluorescence and Multimodal Bioimaging. CHEM REC 2023; 23:e202200253. [PMID: 36789795 DOI: 10.1002/tcr.202200253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Bioconjugated nanomaterials replace molecular probes in bioanalysis and bioimaging in vitro and in vivo. Nanoparticles of silica, metals, semiconductors, polymers, and supramolecular systems, conjugated with contrast agents and drugs for image-guided (MRI, fluorescence, PET, Raman, SPECT, photodynamic, photothermal, and photoacoustic) therapy infiltrate into preclinical and clinical settings. Small bioactive molecules like peptides, proteins, or DNA conjugated to the surfaces of drugs or probes help us to interface them with cells and tissues. Nevertheless, the toxicity and pharmacokinetics of nanodrugs, nanoprobes, and their components become the clinical barriers, underscoring the significance of developing biocompatible next-generation drugs and contrast agents. This account provides state-of-the-art advancements in the preparation and biological applications of bioconjugated nanomaterials and their molecular, cell, and in vivo applications. It focuses on the preparation, bioimaging, and bioanalytical applications of monomodal and multimodal nanoprobes composed of quantum dots, quantum clusters, iron oxide nanoparticles, and a few rare earth metal ion complexes.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala, 682 018, India
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan
| |
Collapse
|
4
|
Tang A, Li Y, Wang R, Yang J, Ma C, Li Z, Zou Q, Li H. Charge transport of F4TCNQ with different electronic states in single-molecule junctions. Chem Commun (Camb) 2023; 59:1305-1308. [PMID: 36633258 DOI: 10.1039/d2cc06341g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular conductance of 2,3,5,6-tetrafluoro-7,7,8,8,-tetracyano-quinodimethane (F4TCNQ) with different electronic states (neutral, radical anion, and dianion) was investigated by the scanning tunneling microscope break junction (STM-BJ) technique. These electronic states have distinct conductance, and the conductance decreases in the order of neutral > radical anion > dianion. Surprisingly, the molecular conductance of the neutral F4TCNQ junction reaches 10-1.17G0, attributed to its LUMO energy level being close to the Fermi level of the gold electrode. Moreover, we found that neutral F4TCNQ can be gradually reduced to radical anions under a relatively low bias voltage of 100 mV. These results will advance the development of organic optoelectronic devices and molecule electronics.
Collapse
Affiliation(s)
- Ajun Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Jiawei Yang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chaoqi Ma
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Zhi Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Qi Zou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
5
|
Facile synthesis of Cu2+ ion-doped CdOZn3(PO4)2 hybrid composite and their optical and photoluminescence properties. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Ham KM, Kim M, Bock S, Kim J, Kim W, Jung HS, An J, Song H, Kim JW, Kim HM, Rho WY, Lee SH, Park SM, Kim DE, Jun BH. Highly Bright Silica-Coated InP/ZnS Quantum Dot-Embedded Silica Nanoparticles as Biocompatible Nanoprobes. Int J Mol Sci 2022; 23:ijms231810977. [PMID: 36142888 PMCID: PMC9502493 DOI: 10.3390/ijms231810977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Quantum dots (QDs) have outstanding optical properties such as strong fluorescence, excellent photostability, broad absorption spectra, and narrow emission bands, which make them useful for bioimaging. However, cadmium (Cd)-based QDs, which have been widely studied, have potential toxicity problems. Cd-free QDs have also been studied, but their weak photoluminescence (PL) intensity makes their practical use in bioimaging challenging. In this study, Cd-free QD nanoprobes for bioimaging were fabricated by densely embedding multiple indium phosphide/zinc sulfide (InP/ZnS) QDs onto silica templates and coating them with a silica shell. The fabricated silica-coated InP/ZnS QD-embedded silica nanoparticles (SiO2@InP QDs@SiO2 NPs) exhibited hydrophilic properties because of the surface silica shell. The quantum yield (QY), maximum emission peak wavelength, and full-width half-maximum (FWHM) of the final fabricated SiO2@InP QDs@SiO2 NPs were 6.61%, 527.01 nm, and 44.62 nm, respectively. Moreover, the brightness of the particles could be easily controlled by adjusting the amount of InP/ZnS QDs in the SiO2@InP QDs@SiO2 NPs. When SiO2@InP QDs@SiO2 NPs were administered to tumor syngeneic mice, the fluorescence signal was prominently detected in the tumor because of the preferential distribution of the SiO2@InP QDs@SiO2 NPs, demonstrating their applicability in bioimaging with NPs. Thus, SiO2@InP QDs@SiO2 NPs have the potential to successfully replace Cd-based QDs as highly bright and biocompatible fluorescent nanoprobes.
Collapse
Affiliation(s)
- Kyeong-Min Ham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Minhee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sungje Bock
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Wooyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | | | - Jaehyun An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Company of BioSquare, Hwaseong 18449, Korea
| | | | | | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- AI-Superconvergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat University, Daejeon 34158, Korea
| | - Seung-min Park
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: (D.-E.K.); (B.-H.J.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: (D.-E.K.); (B.-H.J.)
| |
Collapse
|
7
|
Zhang ZQ, Yao WJ, Qiao LL, Yang X, Shi J, Zhao MX. A Lysosome-Targetable Fluorescence Probe Based on L-Cysteine-Polyamine-Morpholine-Modified Quantum Dots for Imaging in Living Cells. Int J Nanomedicine 2020; 15:1611-1622. [PMID: 32210555 PMCID: PMC7069590 DOI: 10.2147/ijn.s234927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Quantum dots (QDs) are used as fluorescent probes due to their high fluorescence intensity, longevity of fluorescence, strong light-resistant bleaching ability and high light stability. Therefore, we explore a more precise probe that can target an organelle. METHODS In the current study, a new class of fluorescence probes were developed using QDs capped with 4 different L-cysteine-polyamine-morpholine linked by mercapto groups. Ligands were characterised by Electrospray ionization mass spectrometry (ESI-MS), H-Nuclear Magnetic Resonance (1H NMR) spectroscopy, and 13C NMR spectroscopy. Modified QDs were characterized by Transmission Electron Microscope (TEM), Ultraviolet and visible spectrophotometry (UV-Vis), and fluorescence microscopy. And the biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-7721 and HepG2 cells. The fluorescence imaging of modified QDs was obtained by confocal laser scanning fluorescence microscopy (CLSM). RESULTS Synthesized QDs ranged between 4 to 5 nm and had strong optical emission properties. UV-Vis and fluorescence spectra demonstrated that the cysteine-polyamine-morpholine were successfully incorporated into QD nanoparticles. The MTT results demonstrated that modified QDs had lesser cytotoxicity when compared to unmodified QDs. In addition, modified QDs had strong fluorescence intensity in HeLa cells and targeted lysosomes of HeLa cells. CONCLUSION This study demonstrates the modified QDs efficiently entered cells and could be used as a potential lysosome-targeting fluorescent probe.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Wen-Jing Yao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Lu-Lu Qiao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| |
Collapse
|
8
|
Cantelli A, Guidetti G, Manzi J, Caponetti V, Montalti M. Towards Ultra‐Bright Gold Nanoclusters. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700735] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrea Cantelli
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Gloria Guidetti
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Jeannette Manzi
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Valeria Caponetti
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Marco Montalti
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
9
|
Photophysical Properties of Film Composites of Organic Polymers with Heterometallic Complexes of Transition Metals: a Review. THEOR EXP CHEM+ 2017. [DOI: 10.1007/s11237-017-9503-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Naga Bhaskararao Y, Satyavathi K, Subba Rao M, Cole S. Synthesis and characterization of Mn2+ doped CdOZn3(PO4)2 nanocomposites. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Hu L, Zhang C, Zeng G, Chen G, Wan J, Guo Z, Wu H, Yu Z, Zhou Y, Liu J. Metal-based quantum dots: synthesis, surface modification, transport and fate in aquatic environments and toxicity to microorganisms. RSC Adv 2016. [DOI: 10.1039/c6ra13016j] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The intense interest in metal-based QDs is diluted by the fact that they cause risks to aquatic environments.
Collapse
|
12
|
Patel S, Meenakshi M, Hodage AS, Verma A, Agrawal S, Yadav A, Kumar S. Synthesis and structural characterization of monomeric mercury(ii) selenolate complexes derived from 2-phenylbenzamide ligands. Dalton Trans 2016; 45:4030-40. [DOI: 10.1039/c5dt04356e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present work describes the synthesis and structural characterization of mercury selenolate complexes derived from 2-phenylbenzamide ligands and their isolation in monomeric form for the first time.
Collapse
Affiliation(s)
- Saket Patel
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| | - Meenakshi Meenakshi
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| | - Ananda S. Hodage
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| | - Ajay Verma
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| | - Shailendra Agrawal
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| | - Abhimanyu Yadav
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| | - Sangit Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India 462 066
| |
Collapse
|
13
|
Zhou J, Yang Y, Zhang CY. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015; 115:11669-717. [DOI: 10.1021/acs.chemrev.5b00049] [Citation(s) in RCA: 472] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan Zhou
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Yang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
14
|
Montalti M, Cantelli A, Battistelli G. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem Soc Rev 2015; 44:4853-921. [DOI: 10.1039/c4cs00486h] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultra-stability and low-toxicity of silicon quantum dots and fluorescent nanodiamonds for long-termin vitroandin vivobioimaging are demonstrated.
Collapse
Affiliation(s)
- M. Montalti
- Department of Chemistry “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| | - A. Cantelli
- Department of Chemistry “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| | - G. Battistelli
- Department of Chemistry “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| |
Collapse
|
15
|
Kobayashi Y, Matsudo H, Kubota Y, Nakagawa T, Gonda K, Ohuchi N. Preparation of Silica-Coated Quantum Dot Nanoparticle Colloid Solutions and Their Application in in-vivo Fluorescence Imaging. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2015. [DOI: 10.1252/jcej.14we218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yoshio Kobayashi
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University
| | - Hiromu Matsudo
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University
| | - Yohsuke Kubota
- Division of Surgical Oncology, Graduate School of Medicine, Tohoku University
| | - Tomohiko Nakagawa
- Division of Surgical Oncology, Graduate School of Medicine, Tohoku University
| | - Kohsuke Gonda
- Division of Surgical Oncology, Graduate School of Medicine, Tohoku University
| | - Noriaki Ohuchi
- Division of Surgical Oncology, Graduate School of Medicine, Tohoku University
| |
Collapse
|
16
|
Recent advances in the field of bionanotechnology: an insight into optoelectric bacteriorhodopsin, quantum dots, and noble metal nanoclusters. SENSORS 2014; 14:19731-66. [PMID: 25340449 PMCID: PMC4239883 DOI: 10.3390/s141019731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Abstract
Molecular sensors and molecular electronics are a major component of a recent research area known as bionanotechnology, which merges biology with nanotechnology. This new class of biosensors and bioelectronics has been a subject of intense research over the past decade and has found application in a wide variety of fields. The unique characteristics of these biomolecular transduction systems has been utilized in applications ranging from solar cells and single-electron transistors (SETs) to fluorescent sensors capable of sensitive and selective detection of a wide variety of targets, both organic and inorganic. This review will discuss three major systems in the area of molecular sensors and electronics and their application in unique technological innovations. Firstly, the synthesis of optoelectric bacteriorhodopsin (bR) and its application in the field of molecular sensors and electronics will be discussed. Next, this article will discuss recent advances in the synthesis and application of semiconductor quantum dots (QDs). Finally, this article will conclude with a review of the new and exciting field of noble metal nanoclusters and their application in the creation of a new class of fluorescent sensors.
Collapse
|
17
|
Chen Y, Liang H. Applications of quantum dots with upconverting luminescence in bioimaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 135:23-32. [DOI: 10.1016/j.jphotobiol.2014.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|