1
|
Gong W, Wu T, Liu Y, Jiao S, Wang W, Yan W, Li Y, Liu Y, Zhang Y, Wang H. Insight into the photodynamic mechanism and protein binding of a nitrosyl iron-sulfur [Fe 2S 2(NO) 4] 2- cluster. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124603. [PMID: 38878720 DOI: 10.1016/j.saa.2024.124603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024]
Abstract
Iron-sulfur cluster conversion and nitrosyl modification are involved in regulating their functions and play critical roles in signaling for biological systems. Hereby, the photo-induced dynamic process of (Me4N)2[Fe2S2(NO)4] was monitored using time-resolved electron paramagnetic resonance (EPR) spectra, MS spectra and cellular imaging methods. Photo-irradiation and the solvent affect the reaction rates and products. Spectroscopic and kinetic studies have shown that the process involves at least three intermediates: spin-trapped NO free radical species with a gav at 2.040, and two other iron nitrosyl species, dinitrosyl iron units (DNICs) and mononitrosyl iron units (MNICs) with gav values at 2.031 and 2.024, respectively. Moreover, the [Fe2S2(NO)4]2- cluster could bind with ferritin and decompose gradually, and a binding state of dinitrosyl iron coordinated with Cys102 of the recombinant human heavy chain ferritin (rHuHF) was finally formed. This study provides insight into the photodynamic mechanism of nitrosyl iron - sulfur clusters to improve the understanding of physiological activity.
Collapse
Affiliation(s)
- Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yuhua Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Shuxiang Jiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenjun Yan
- Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan 030001, China
| | - Yanqiu Li
- Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan 030001, China
| | - Yanhong Liu
- Techinical Institute of Physics & Chemistry, CAS, Beijing 100190, China
| | - Yun Zhang
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Karmakar S, Patra S, Pramanik K, Adhikary A, Dey A, Majumdar A. Reactivity of Thiolate and Hydrosulfide with a Mononuclear {FeNO} 7 Complex Featuring a Very High N-O Stretching Frequency. Inorg Chem 2024; 63:8537-8555. [PMID: 38679874 DOI: 10.1021/acs.inorgchem.3c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Synthesis, characterization, electronic structure, and redox reactions of a mononuclear {FeNO}7 complex with a very high N-O stretching frequency in solution are presented. Nitrosylation of [(LKP)Fe(DMF)]2+ (1) (LKP = tris((1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methyl)amine) produced a five-coordinate {FeNO}7 complex, [(LKP)Fe(NO)]2+ (2). While complex 2 could accommodate an additional water molecule to generate a six-coordinate {FeNO}7 complex, [(LKP)Fe(NO)(H2O)]2+ (3), the coordinated H2O in 3 dissociates to generate 2 in solution. The molecular structure of 2 features a nearly linear Fe-N-O unit with an Fe-N distance of 1.744(4) Å, N-O distance of 1.162(5) Å, and
Collapse
Affiliation(s)
- Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Koushik Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Adhikary
- Department of Chemistry, Technology Campus, University of Calcutta, JD Block, Sector III, Salt Lake, Kolkata 700098, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Tabish TA, Crabtree MJ, Townley HE, Winyard PG, Lygate CA. Nitric Oxide Releasing Nanomaterials for Cardiovascular Applications. JACC Basic Transl Sci 2024; 9:691-709. [PMID: 38984042 PMCID: PMC11228123 DOI: 10.1016/j.jacbts.2023.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 07/11/2024]
Abstract
A central paradigm of cardiovascular homeostasis is that impaired nitric oxide (NO) bioavailability results in a wide array of cardiovascular dysfunction including incompetent endothelium-dependent vasodilatation, thrombosis, vascular inflammation, and proliferation of the intima. Over the course of more than a century, NO donating formulations such as organic nitrates and nitrites have remained a cornerstone of treatment for patients with cardiovascular diseases. These donors primarily produce NO in the circulation and are not targeted to specific (sub)cellular sites of action. However, safe, and therapeutic levels of NO require delivery of the right amount to a precise location at the right time. To achieve these aims, several recent strategies aimed at therapeutically generating or releasing NO in living systems have shown that polymeric and inorganic (silica, gold) nanoparticles and nanoscale metal-organic frameworks could either generate NO endogenously by the catalytic decomposition of endogenous NO substrates or can store and release therapeutically relevant amounts of NO gas. NO-releasing nanomaterials have been developed for vascular implants (such as stents and grafts) to target atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and cardiac tissue engineering. In this review, we discuss the advances in design and development of novel NO-releasing nanomaterials for cardiovascular therapeutics and critically examine the therapeutic potential of these nanoplatforms to modulate cellular metabolism, to regulate vascular tone, inhibit platelet aggregation, and limit proliferation of vascular smooth muscle with minimal toxic effects.
Collapse
Affiliation(s)
- Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
- Department of Biochemical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford, United Kingdom
| | - Helen E Townley
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Paul G Winyard
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
da Silva CDS, Ferreira KQ, Meira CS, Soares MBP, Moraes RDA, Araújo FA, Flavia Silva D, de Sá DS. Ru(II) based dual nitric oxide donors: electrochemical and photochemical reactivities and vasorelaxant effect with no cytotoxicity. Dalton Trans 2023; 52:17176-17184. [PMID: 37937931 DOI: 10.1039/d3dt02760k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The synthesized complexes, cis-[Ru(NO)(NO2)(phen)2](PF6)2 (NONO2P) and cis-[Ru(NO)(NO2)(bpy)2](PF6)2 (NONO2B), were characterized by using elemental analysis, voltammetry and electronic and vibrational spectroscopy. Under electrochemical and photochemical stimulation in an aqueous medium, there are indications of the formation of complexes, which suggests that the nitro and nitrosyl groups are converted into nitric oxide. Both compounds do not show cytotoxic activity against human umbilical vein endothelial cells (HUVECs). The cis-[Ru(NO)(NO2)(phen)2](PF6)2 complex presented vasorelaxation activity in superior mesenteric arteries from Wistar rats: the biphasic concentration-response curve indicates two sites of action. In the presence of NO scavengers, we observed an impaired relaxing effect induced by NONO2P, suggesting that the vasorelaxant effect is due to NO production from this compound.
Collapse
Affiliation(s)
- Carlos D S da Silva
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, 40170-290 Salvador, BA, Brazil.
| | - Kleber Q Ferreira
- Department of Chemistry, Federal Institute of Bahia (IFBA), Salvador, 40301-15, Brazil
| | - Cássio S Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710 Salvador, Bahia, Brazil
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, BA 41650-010, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710 Salvador, Bahia, Brazil
| | - Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, BA, 40231-300, Brazil
- Postgraduate Program in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Fênix Alexandra Araújo
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, BA, 40231-300, Brazil
- Postgraduate Program in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Darizy Flavia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, BA, 40231-300, Brazil
- Postgraduate Program in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Denise S de Sá
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, 40170-290 Salvador, BA, Brazil.
| |
Collapse
|
5
|
Bracken AJ, Dong HT, Lengel MO, Lehnert N. Exploring second coordination sphere effects in flavodiiron nitric oxide reductase model complexes. Dalton Trans 2023; 52:17360-17374. [PMID: 37938109 DOI: 10.1039/d3dt02828c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Flavodiiron nitric oxide reductases (FNORs) equip pathogens with resistance to nitric oxide (NO), an important immune defense agent in mammals, allowing these pathogens to proliferate in the human body, potentially causing chronic infections. Understanding the mechanism of how FNORs mediate the reduction of NO contributes to the greater goal of developing new therapeutic approaches against drug-resistant strains. Recent density functional theory calculations suggest that a second coordination sphere (SCS) tyrosine residue provides a hydrogen bond that is critical for the reduction of NO to N2O at the active site of FNORs [J. Lu, B. Bi, W. Lai and H. Chen, Origin of Nitric Oxide Reduction Activity in Flavo-Diiron NO Reductase: Key Roles of the Second Coordination Sphere, Angew. Chem., Int. Ed., 2019, 58, 3795-3799]. Specifically, this H-bond stabilizes the hyponitrite intermediate and reduces the energetic barrier for the N-N coupling step. At the same time, the role of the Fe⋯Fe distance and its effect on the N-N coupling step has not been fully investigated. In this study, we equipped the H[BPMP] (= 2,6-bis[[bis(2-pyridylmethyl)amino]methyl]-4-methylphenol) ligand with SCS amide groups and investigated the corresponding diiron complexes with 0-2 bridging acetate ligands. These amide groups can form hydrogen bonds with the bridging acetate ligand(s) and potentially the coordinated NO groups in these model complexes. At the same time, by changing the number of bridging acetate ligands, we can systematically vary the Fe⋯Fe distance. The reactivity of these complexes with NO was then investigated, and the formation of stable iron(II)-NO complexes was observed. Upon one-electron reduction, these NO complexes form Dinitrosyl Iron Complexes (DNICs), which were further characterized using IR and EPR spectroscopy.
Collapse
Affiliation(s)
- Abigail J Bracken
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| | - Hai T Dong
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| | - Michael O Lengel
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| | - Nicolai Lehnert
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| |
Collapse
|
6
|
Fujisawa K, Kataoka T, Terashima K, Kurihara H, de Santis Gonçalves F, Lehnert N. Coordinatively Unsaturated Nickel Nitroxyl Complex: Structure, Physicochemical Properties, and Reactivity toward Dioxygen. Molecules 2023; 28:6206. [PMID: 37687034 PMCID: PMC10489029 DOI: 10.3390/molecules28176206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
For its important roles in biology, nitrogen monoxide (·NO) has become one of the most studied and fascinating molecules in chemistry. ·NO itself acts as a "noninnocent" or "redox active" ligand to transition metal ions to give metal-NO (M-NO) complexes. Because of this uncertainty due to redox chemistry, the real description of the electronic structure of the M-NO unit requires extensive spectroscopic and theoretical studies. We previously reported the Ni-NO complex with a hindered N3 type ligand [Ni(NO)(L3)] (L3- denotes hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate anion), which contains a high-spin (hs) nickel(II) center and a coordinated 3NO-. This complex is very stable toward dioxygen due to steric protection of the nickel(II) center. Here, we report the dioxygen reactivity of a new Ni-NO complex, [Ni(NO)(I)(L1″)], with a less hindered N2 type bis(pyrazolyl)methane ligand, which creates a coordinatively unsaturated ligand environment about the nickel center. Here, L1″ denotes bis(3,5-diisopropyl-1-pyrazolyl)methane. This complex is also described as a hs-nickel(II) center with a bound 3NO-, based on spectroscopic and theoretical studies. Unexpectedly, the reaction of [Ni(NO)(I)(L1″)] with O2 yielded [Ni(κ2-O2N)(L1″)2](I3), with the oxidation of both 3NO- and the I- ion to yield NO2- and I3-. Both complexes were characterized by X-ray crystallography, IR, and UV-Vis spectroscopy and theoretical calculations.
Collapse
Affiliation(s)
- Kiyoshi Fujisawa
- Department of Chemistry, Ibaraki University, Mito 310-8512, Ibaraki, Japan
| | - Taisei Kataoka
- Department of Chemistry, Ibaraki University, Mito 310-8512, Ibaraki, Japan
| | - Kohei Terashima
- Department of Chemistry, Ibaraki University, Mito 310-8512, Ibaraki, Japan
| | - Haruka Kurihara
- Department of Chemistry, Ibaraki University, Mito 310-8512, Ibaraki, Japan
| | - Felipe de Santis Gonçalves
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA;
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA;
| |
Collapse
|
7
|
Iova OM, Marin GE, Lazar I, Stanescu I, Dogaru G, Nicula CA, Bulboacă AE. Nitric Oxide/Nitric Oxide Synthase System in the Pathogenesis of Neurodegenerative Disorders-An Overview. Antioxidants (Basel) 2023; 12:antiox12030753. [PMID: 36979000 PMCID: PMC10045816 DOI: 10.3390/antiox12030753] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Nitric oxide, a ubiquitous molecule found throughout the natural world, is a key molecule implicated in many central and benefic molecular pathways and has a well-established role in the function of the central nervous system, as numerous studies have previously shown. Dysregulation of its metabolism, mainly the upregulation of nitric oxide production, has been proposed as a trigger and/or aggravator for many neurological affections. Increasing evidence supports the implication of this molecule in prevalent neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, or amyotrophic lateral sclerosis. The mechanisms proposed for its neurotoxicity mainly center around the increased quantities of nitric oxide that are produced in the brain, their cause, and, most importantly, the pathological metabolic cascades created. These cascades lead to the formation of neuronal toxic substances that impair the neurons' function and structure on multiple levels. The purpose of this review is to present the main causes of increased pathological production, as well as the most important pathophysiological mechanisms triggered by nitric oxide, mechanisms that could help explain a part of the complex picture of neurodegenerative diseases and help develop targeted therapies.
Collapse
Affiliation(s)
- Olga-Maria Iova
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Gheorghe-Eduard Marin
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Izabella Lazar
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Stanescu
- Department of Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gabriela Dogaru
- Department of Physical Medicine and Rehabilitation, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Viilor Street, No. 46-50, 400347 Cluj-Napoca, Romania
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Choe J, Kim SJ, Kim JH, Baik MH, Lee J, Cho J. Photodynamic treatment of acute vascular occlusion by using an iron–nitrosyl complex. Chem 2023. [DOI: 10.1016/j.chempr.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
A linear tetranuclear Ni(II) acyl hydrazone Schiff base complex: preparation, crystal structure and catalytic application. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Structural, spectral, and photoreactivity properties of mono and polymetallated-2,2′-bipyridine ruthenium(II) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1717-1734. [PMID: 35104334 PMCID: PMC9486929 DOI: 10.1093/jxb/erac030] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential transition metal. Based on its redox-active nature under biological conditions, various Fe compounds serve as cofactors in redox enzymes. In plants, the photosynthetic machinery has the highest demand for Fe. In consequence, the delivery and incorporation of Fe into cofactors of the photosynthetic apparatus is the focus of Fe metabolism in leaves. Disturbance of foliar Fe homeostasis leads to impaired biosynthesis of chlorophylls and composition of the photosynthetic machinery. Nevertheless, mitochondrial function also has a significant demand for Fe. The proper incorporation of Fe into proteins and cofactors as well as a balanced intracellular Fe status in leaf cells require the ability to sense Fe, but may also rely on indirect signals that report on the physiological processes connected to Fe homeostasis. Although multiple pieces of information have been gained on Fe signalling in roots, the regulation of Fe status in leaves has not yet been clarified in detail. In this review, we give an overview on current knowledge of foliar Fe homeostasis, from the chemical forms to the allocation and sensing of Fe in leaves.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| |
Collapse
|
12
|
Grieco G, Blacque O. The reaction of rhenium nitrosyl with a sterically hindered NHC-carbene. Dalton Trans 2022; 51:1521-1526. [PMID: 34989739 PMCID: PMC8787765 DOI: 10.1039/d1dt03966k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 01/15/2023]
Abstract
In this article, we present the serendipitous synthesis of the unknown Re(I) complex [(OPPh3)Re(NO)2Cl3] (3) that we obtained reacting the Re(V) complex trans-[(PPh3)2ReOCl3] (1) with NO gas in presence of CH3COOH. We found that 3 reacts with 1,3-bis (2,4,6-trimethylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene (IMes) to yield a stable oximate-Re(III) complex [(OPPh3)Re(NO)(ONIMes)Cl3] (4). We speculate that the IMes reacts with a bent NO, because the DFT calculations excluded the formation of both dimeric and η2-NO complexes in solution. The reactivity of the NO toward the carbene is probably due to an internal fluxional process in which the NO passes from linear to bent, triggered by the π-electrons given by the three chlorides to the Re through the mesomeric effect.
Collapse
Affiliation(s)
- G Grieco
- University of Zurich Irchel, Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich, Switzerland.
| | - O Blacque
- University of Zurich Irchel, Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich, Switzerland.
| |
Collapse
|
13
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
14
|
Muniz Carvalho E, Silva Sousa EH, Bernardes‐Génisson V, Gonzaga de França Lopes L. When NO
.
Is not Enough: Chemical Systems, Advances and Challenges in the Development of NO
.
and HNO Donors for Old and Current Medical Issues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edinilton Muniz Carvalho
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Eduardo Henrique Silva Sousa
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| | - Vania Bernardes‐Génisson
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Luiz Gonzaga de França Lopes
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| |
Collapse
|
15
|
Tung CY, Tseng YT, Lu TT, Liaw WF. Insight into the Electronic Structure of Biomimetic Dinitrosyliron Complexes (DNICs): Toward the Syntheses of Amido-Bridging Dinuclear DNICs. Inorg Chem 2021; 60:15846-15873. [PMID: 34009960 DOI: 10.1021/acs.inorgchem.1c00566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ubiquitous function of nitric oxide (NO) guided the biological discovery of the natural dinitrosyliron unit (DNIU) [Fe(NO)2] as an intermediate/end product after Fe nitrosylation of nonheme cofactors. Because of the natural utilization of this cofactor for the biological storage and delivery of NO, a bioinorganic study of synthetic dinitrosyliron complexes (DNICs) has been extensively explored in the last 2 decades. The bioinorganic study of DNICs involved the development of synthetic methodology, spectroscopic discrimination, biological application of NO-delivery reactivity, and translational application to the (catalytic) transformation of small molecules. In this Forum Article, we aim to provide a systematic review of spectroscopic and computational insights into the bonding nature within the DNIU [Fe(NO)2] and the electronic structure of different types of DNICs, which highlights the synchronized advance in synthetic methodology and spectroscopic tools. With regard to the noninnocent nature of a NO ligand, spectroscopic and computational tools were utilized to provide qualitative/quantitative assignment of oxidation states of Fe and NO in DNICs with different redox levels and ligation modes as well as to probe the Fe-NO bonding interaction modulated by supporting ligands. Besides the strong antiferromagnetic coupling between high-spin Fe and paramagnetic NO ligands within the covalent DNIU [Fe(NO)2], in polynuclear DNICs, the effects of the Fe···Fe distance, nature of the bridging ligands, and type of bridging modes on the regulation of the magnetic coupling among paramagnetic DNIU [Fe(NO)2] are further reviewed. In the last part of this Forum Article, the sequential reaction of {Fe(NO)2}10 DNIC [(NO)2Fe(AMP)] (1-red) with NO(g), HBF4, and KC8 establishes a synthetic cycle, {Fe(NO)2}9-{Fe(NO)2}9 DNIC [(NO)2Fe(μ-dAMP)2Fe(NO)2] (1) → {Fe(NO)2}9 DNIC [(NO2)Fe(AMP)][BF4] (1-H) → {Fe(NO)2}10 DNIC 1-red → DNIC 1, for the transformation of NO into HNO/N2O. Of importance, the NO-induced transformation of {Fe(NO)2}10 DNIC 1-red and [(NO)2Fe(DTA)] (2-red; DTA = diethylenetriamine) unravels a synthetic strategy for preparation of the {Fe(NO)2}9-{Fe(NO)2}9 DNICs [(NO)2Fe(μ-NHR)2Fe(NO)2] containing amido-bridging ligands, which hold the potential to feature distinctive physical properties, chemical reactivities, and biological applications.
Collapse
Affiliation(s)
- Chi-Yen Tung
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University (NTHU), Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| |
Collapse
|
16
|
Reaction mechanisms relevant to the formation and utilization of [Ru(edta)(NO)] complexes in aqueous media. J Inorg Biochem 2021; 225:111595. [PMID: 34555599 DOI: 10.1016/j.jinorgbio.2021.111595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
The advancement of Ru(edta) complexes (edta4- = ethylenediamineteraacetate) mediated reactions, including NO generation and its utilization, has not been systematically reviewed to date. This review aims to report the research progress that has been made in exploring the application of Ru(edta) complexes in trapping and generation of NO. Furthermore, utilization of the potential of Ru(edta) complexes to mimic NO synthase and nitrite reductase activity, including thermodynamics and kinetics of NO binding to Ru(edta) complexes, their NO scavenging (in vitro), and antitumor activity will be discussed. Also, the role of [Ru(edta)(NO)] in mediating electrochemical reduction of nitrite, S-nitrosylation of biological thiols, and cross-talk between NO and H2S, will be covered. Reports on the NO-related chemistry of Fe(edta) complexes showing similar behavior are contextualized in this review for comparison purposes. The research contributions compiled herein will provide in-depth mechanistic knowledge for understanding the diverse routes pertaining to the formation of the [Ru(edta)(NO)] species, and its role in effecting the aforementioned reactions of biochemical significance.
Collapse
|
17
|
Pokidova OV, Kormukhina AY, Kotelnikov AI, Rudneva TN, Lyssenko KA, Sanina NA. Features of the decomposition of cationic nitrosyl iron complexes with N-ethylthiourea and penicillamine ligands in the presence of albumin. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Crack JC, Gray E, Le Brun NE. Sensing mechanisms of iron-sulfur cluster regulatory proteins elucidated using native mass spectrometry. Dalton Trans 2021; 50:7887-7897. [PMID: 34037038 PMCID: PMC8204329 DOI: 10.1039/d1dt00993a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
The ability to sense and respond to various key environmental cues is important for the survival and adaptability of many bacteria, including pathogens. The particular sensitivity of iron-sulfur (Fe-S) clusters is exploited in nature, such that multiple sensor-regulator proteins, which coordinate the detection of analytes with a (in many cases) global transcriptional response, are Fe-S cluster proteins. The fragility and sensitivity of these Fe-S clusters make studying such proteins difficult, and gaining insight of what they sense, and how they sense it and transduce the signal to affect transcription, is a major challenge. While mass spectrometry is very widely used in biological research, it is normally employed under denaturing conditions where non-covalently attached cofactors are lost. However, mass spectrometry under conditions where the protein retains its native structure and, thus, cofactors, is now itself a flourishing field, and the application of such 'native' mass spectrometry to study metalloproteins is now relatively widespread. Here we describe recent advances in using native MS to study Fe-S cluster proteins. Through its ability to accurately measure mass changes that reflect chemistry occurring at the cluster, this approach has yielded a remarkable richness of information that is not accessible by other, more traditional techniques.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
| | - Elizabeth Gray
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
19
|
Sanina N, Kozub G, Kondrat’eva T, Stupina T, Balakina A, Terent’ev A, Sulimenkov I, Ovanesyan N, Dorovatovskii P, Khrustalev V, Aldoshin S. Structure, nitric oxide (NO) generation and antitumor activity of binuclear tetranitrosyl iron complex with 4-aminothiophenolyl as nitrosyl ferredoxins mimic. J COORD CHEM 2021. [DOI: 10.1080/00958972.2020.1869222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- N.A. Sanina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of Fundamental Physicochemical Engineering, Moscow State University, Moscow, Russia
- Scientific and Educational Center “Medical Chemistry”, Moscow State Regional University, Mytishchi, Moscow Region, Russia
| | - G.I. Kozub
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - T.A. Kondrat’eva
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - T.S. Stupina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Scientific and Educational Center “Medical Chemistry”, Moscow State Regional University, Mytishchi, Moscow Region, Russia
| | - A.A. Balakina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Scientific and Educational Center “Medical Chemistry”, Moscow State Regional University, Mytishchi, Moscow Region, Russia
| | - A.A. Terent’ev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of Fundamental Physicochemical Engineering, Moscow State University, Moscow, Russia
- Scientific and Educational Center “Medical Chemistry”, Moscow State Regional University, Mytishchi, Moscow Region, Russia
| | - I.V. Sulimenkov
- Chernogolovka Branch of the N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Chernogolovkа, Russia
| | - N.S. Ovanesyan
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | | | - V.N. Khrustalev
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - S.M. Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of Fundamental Physicochemical Engineering, Moscow State University, Moscow, Russia
| |
Collapse
|
20
|
Tewari RK, Horemans N, Watanabe M. Evidence for a role of nitric oxide in iron homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:990-1006. [PMID: 33196822 DOI: 10.1093/jxb/eraa484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO), once regarded as a poisonous air pollutant, is now understood as a regulatory molecule essential for several biological functions in plants. In this review, we summarize NO generation in different plant organs and cellular compartments, and also discuss the role of NO in iron (Fe) homeostasis, particularly in Fe-deficient plants. Fe is one of the most limiting essential nutrient elements for plants. Plants often exhibit Fe deficiency symptoms despite sufficient tissue Fe concentrations. NO appears to not only up-regulate Fe uptake mechanisms but also makes Fe more bioavailable for metabolic functions. NO forms complexes with Fe, which can then be delivered into target cells/tissues. NO generated in plants can alleviate oxidative stress by regulating antioxidant defense processes, probably by improving functional Fe status and by inducing post-translational modifications in the enzymes/proteins involved in antioxidant defense responses. It is hypothesized that NO acts in cooperation with transcription factors such as bHLHs, FIT, and IRO to regulate the expression of enzymes and proteins essential for Fe homeostasis. However, further investigations are needed to disentangle the interaction of NO with intracellular target molecules that leads to enhanced internal Fe availability in plants.
Collapse
Affiliation(s)
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang, Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, Belgium
| | - Masami Watanabe
- Laboratory of Plant Biochemistry, Chiba University, Inage-ward, Yayoicho, Chiba, Japan
| |
Collapse
|
21
|
Böttcher H, Graf M, Mayer P. Reactivity of Cyanide and Thiocyanate Towards the Nitrosyl Carbonyl [Co(CO)
3
(NO)]. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hans‐Christian Böttcher
- Department Chemie Ludwig‐Maximilians‐Universität München Butenandtstraße 5–13 81377 München Germany
| | - Marion Graf
- Department Chemie Ludwig‐Maximilians‐Universität München Butenandtstraße 5–13 81377 München Germany
| | - Peter Mayer
- Department Chemie Ludwig‐Maximilians‐Universität München Butenandtstraße 5–13 81377 München Germany
| |
Collapse
|
22
|
|
23
|
Bahadoran Z, Carlström M, Mirmiran P, Ghasemi A. Nitric oxide: To be or not to be an endocrine hormone? Acta Physiol (Oxf) 2020; 229:e13443. [PMID: 31944587 DOI: 10.1111/apha.13443] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO), a highly reactive gasotransmitter, is critical for a number of cellular processes and has multiple biological functions. Due to its limited lifetime and diffusion distance, NO has been mainly believed to act in autocrine/paracrine fashion. The increasingly recognized effects of pharmacologically delivered and endogenous NO at a distant site have changed the conventional wisdom and introduced NO as an endocrine signalling molecule. The notion is greatly supported by the detection of a number of NO adducts and their circulatory cycles, which in turn contribute to the transport and delivery of NO bioactivity, remote from the sites of its synthesis. The existence of endocrine sites of synthesis, negative feedback regulation of biosynthesis, integrated storage and transport systems, having an exclusive receptor, that is, soluble guanylyl cyclase (sGC), and organized circadian rhythmicity make NO something beyond a simple autocrine/paracrine signalling molecule that could qualify for being an endocrine signalling molecule. Here, we discuss hormonal features of NO from the classical endocrine point of view and review available knowledge supporting NO as a true endocrine hormone. This new insight can provide a new framework within which to reinterpret NO biology and its clinical applications.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
24
|
Morita M, Yonezu A, Kusaka S, Hori A, Ma Y, Matsuda R. Direct observation of dimethyl sulfide trapped by MOF proving efficient removal of sulfur impurities. RSC Adv 2020; 10:4710-4714. [PMID: 35495276 PMCID: PMC9049039 DOI: 10.1039/c9ra09702c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/14/2020] [Indexed: 01/09/2023] Open
Abstract
Here, we report the adsorptive removal of trace amounts of dimethyl sulfide (DMS) using metal-organic frameworks (MOFs). Cu2+-based MOFs with open metal sites (OMSs), [Cu3(btc)2] (HKUST-1), where btc = 1,3,5-benzenetricarboxylate, and without OMSs, [Cu2(bdc)2(dabco)] (Cu-JAST-1), where bdc = 1,4-benzenedicarboxylate and dabco = 1,4-diazabicyclo[2.2.2]octane, were investigated for the removal of DMS to compare their performance with that of Ag-Y zeolite, which is currently widely used in industry. HKUST-1 exhibited a considerably higher adsorption capacity for DMS than the other adsorbents, which was confirmed by breakthrough measurements. The adsorption state of DMS with HKUST-1 was directly revealed by single-crystal X-ray diffraction (SXRD) analysis and in situ Raman spectroscopy. In addition, it was shown that DMS can be removed by HKUST-1 even under humid conditions.
Collapse
Affiliation(s)
- Masashi Morita
- Technology Innovation Division, Panasonic Corporation 3-1-1 Yagumo-naka-machi Moriguchi City Osaka 570-8501 Japan
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Akira Yonezu
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Shinpei Kusaka
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Akihiro Hori
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Yunsheng Ma
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
- Institute for Advanced Research, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
25
|
Pluth MD, Tonzetich ZJ. Hydrosulfide complexes of the transition elements: diverse roles in bioinorganic, cluster, coordination, and organometallic chemistry. Chem Soc Rev 2020; 49:4070-4134. [DOI: 10.1039/c9cs00570f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecules containing transition metal hydrosulfide linkages are diverse, spanning a variety of elements, coordination environments, and redox states, and carrying out multiple roles across several fields of chemistry.
Collapse
Affiliation(s)
- Michael D. Pluth
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Knight Campus for Accelerating Scientific Impact
- Institute of Molecular Biology
- University of Oregon
| | | |
Collapse
|
26
|
Structures and Properties of Dinitrosyl Iron and Cobalt Complexes Ligated by Bis(3,5-diisopropyl-1-pyrazolyl)methane. INORGANICS 2019. [DOI: 10.3390/inorganics7100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two dinitrosyl iron and cobalt complexes [Fe(NO)2(L1”)](BF4) and [Co(NO)2(L1”)](BF4) are synthesized and characterized, supported by a less hindered bidentate nitrogen ligand bis(3,5-diisopropyl-1-pyrazolyl)methane (denoted as L1”), are surprisingly stable under argon atmosphere. X-ray structural analysis shows a distorted tetrahedral geometry. Spectroscopic and structural parameters of the dinitrosyl iron and cobalt complexes are consistent with the previous reported {Fe(NO)2}9 and {Co(NO)2}10. Two N–O and M–N(O) stretching frequencies and their magnetic properties are also consistent with the above electronic structural assignments. We explored the dioxygen reactivities of the obtained dinitrosyl complexes. Moreover, the related [FeCl2(L1”)], [Co(NO3)2(L1”)], and [Co(NO2)2(L1”)] complexes are also characterized in detail.
Collapse
|
27
|
Truzzi DR, Augusto O, Iretskii AV, Ford PC. Dynamics of Dinitrosyl Iron Complex (DNIC) Formation with Low Molecular Weight Thiols. Inorg Chem 2019; 58:13446-13456. [DOI: 10.1021/acs.inorgchem.9b02338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Daniela R. Truzzi
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
- Departamento de Bioquímica, Instituto de Química de São Paulo, Universidade de São Paulo, Caixa Postal 26077, CEP05513-970 São Paulo, SP, Brasil
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química de São Paulo, Universidade de São Paulo, Caixa Postal 26077, CEP05513-970 São Paulo, SP, Brasil
| | - Alexei V. Iretskii
- Department of Chemistry and Environmental Sciences, Lake Superior State University, Sault Sainte Marie, Michigan 49783 United States
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
28
|
Cho SL, Liao CJ, Lu TT. Synthetic methodology for preparation of dinitrosyl iron complexes. J Biol Inorg Chem 2019; 24:495-515. [DOI: 10.1007/s00775-019-01668-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022]
|
29
|
Redox reactions of cationic nitrosyl iron complexes with thiourea and its aliphatic derivatives: The experiment and DFT investigation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Fujisawa K, Soma S, Kurihara H, Ohta A, Dong HT, Minakawa Y, Zhao J, Alp EE, Hu MY, Lehnert N. Stable Ferrous Mononitroxyl {FeNO}8 Complex with a Hindered Hydrotris(pyrazolyl)borate Coligand: Structure, Spectroscopic Characterization, and Reactivity Toward NO and O2. Inorg Chem 2019; 58:4059-4062. [DOI: 10.1021/acs.inorgchem.9b00107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kiyoshi Fujisawa
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Shoko Soma
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Haruka Kurihara
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Ayuri Ohta
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Hai T. Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yurika Minakawa
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - E. Ercan Alp
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael Y. Hu
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
de Souza GFP, Denadai JP, Picheth GF, de Oliveira MG. Long-term decomposition of aqueous S-nitrosoglutathione and S-nitroso-N-acetylcysteine: Influence of concentration, temperature, pH and light. Nitric Oxide 2019; 84:30-37. [PMID: 30630056 DOI: 10.1016/j.niox.2019.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/17/2018] [Accepted: 01/04/2019] [Indexed: 02/03/2023]
Abstract
Primary S-nitrosothiols (RSNOs) have received significant attention for their ability to modulate NO signaling in many physiological and pathophysiological processes. Such actions and their potential pharmaceutical uses demand a better knowledge of their stability in aqueous solutions. Herein, we investigated the effects of concentration, temperature, pH, room light and metal ions on the long-term kinetic behavior of two representative primary RSNOs, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC). The thermal decomposition of GSNO and SNAC were shown to be affected by the auto-catalytic action of the thiyl radicals. At 25 °C in the dark and protected from the catalytic action of metal ions, GSNO and SNAC solutions 1 mM showed half-lives of 49 and 76 days, and apparent activation energies of 84 ± 14 and 90 ± 6 kJ mol-1, respectively. Both GSNO and SNAC exhibited increased stability in the pH range 5-7. At high pH the decomposition pathway of GSNO involves the formation of an intermediate (GS-NO22-), which decomposes generating GSH and nitrite. GSNO solutions displayed lower sensitivity to the catalytic action of metal ions than SNAC and the exposure to room light led to a 5-fold increase in the initial rates of decomposition of both RSNOs. In all comparisons, SNAC solutions showed higher stability than GSNO solutions. These findings provide strategic information about the stability of GSNO and SNAC and may open new perspectives for their use as experimental or therapeutic NO donors.
Collapse
Affiliation(s)
| | | | - Guilherme F Picheth
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | |
Collapse
|
32
|
Strianese M, Palm GJ, Kohlhause D, Ndamba LA, Tabares LC, Pellecchia C. Azurin and HS-
: Towards Implementation of a Sensor for HS-
Detection. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano (SA) Italy
| | - Gottfried J. Palm
- Institute for Biochemistry; University of Greifswald; Felix-Hausdorff-Str. 4 17489 Greifswald Germany
| | - David Kohlhause
- Institute for Biochemistry; University of Greifswald; Felix-Hausdorff-Str. 4 17489 Greifswald Germany
| | - Lionel A. Ndamba
- Leiden; Leiden University; P.O. Box 9504 2300 RA Leiden Netherlands
| | - Leandro C. Tabares
- Institute for Integrative Biology of the Cell (I2BC); Department of Biochemistry, Biophysics and Structural Biology; Université Paris-Saclay, CEA, CNRS UMR 9198; 91198 Gif-sur-Yvette France
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano (SA) Italy
| |
Collapse
|
33
|
Hsiao HY, Chung CW, Santos JH, Villaflores OB, Lu TT. Fe in biosynthesis, translocation, and signal transduction of NO: toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering. Dalton Trans 2019; 48:9431-9453. [DOI: 10.1039/c9dt00777f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ubiquitous physiology of nitric oxide enables the bioinorganic engineering of [Fe(NO)2]-containing and NO-delivery scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Center for Tissue Engineering
- Chang Gung Memorial Hospital
- Taoyuan
- Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | | | - Oliver B. Villaflores
- Department of Biochemistry
- Faculty of Pharmacy
- University of Santo Tomas
- Manila
- Philippines
| | - Tsai-Te Lu
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| |
Collapse
|
34
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
35
|
Lu TT, Wang YM, Hung CH, Chiou SJ, Liaw WF. Bioinorganic Chemistry of the Natural [Fe(NO)2] Motif: Evolution of a Functional Model for NO-Related Biomedical Application and Revolutionary Development of a Translational Model. Inorg Chem 2018; 57:12425-12443. [DOI: 10.1021/acs.inorgchem.8b01818] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Yun-Ming Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30013, Taiwan
| | | | - Show-Jen Chiou
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | | |
Collapse
|
36
|
Preparation and characterization of nanocomposite polyvinyl chloride films with NO-generating activity. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0693-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Strianese M, Lamberti M, Pellecchia C. Interaction of monohydrogensulfide with a family of fluorescent pyridoxal-based Zn(ii) receptors. Dalton Trans 2018; 47:17392-17400. [DOI: 10.1039/c8dt03969k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We studied the reactivity of HS− with a family of fluorescent zinc complexes. In the case of complexes 1 and 3, we have evidence that the interaction with HS− results in the displacement of the coordinated ligand from the Zn center. For complex 2, our data points to the coordination of HS− to the metal center likely assisted by hydrogen bondings with the OH of the pyridoxal moiety.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano (SA)
- Italy
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano (SA)
- Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano (SA)
- Italy
| |
Collapse
|
38
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
39
|
|
40
|
Böttcher HC. Reaction Behavior of Decacarbonyldimetalates(2-) ( M= Cr and Mo) towards the Nitrosyl Carbonyls of Iron and Cobalt. Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201700010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hans-Christian Böttcher
- Department Chemie; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 (D) 81377 München Germany
| |
Collapse
|
41
|
Fujisawa K, Soma S, Kurihara H, Dong HT, Bilodeau M, Lehnert N. A cobalt–nitrosyl complex with a hindered hydrotris(pyrazolyl)borate coligand: detailed electronic structure, and reactivity towards dioxygen. Dalton Trans 2017; 46:13273-13289. [DOI: 10.1039/c7dt01565h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The cobalt–nitrosyl complex [Co(NO)(L3)] is supported by a highly hindered tridentate nitrogen ligand, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (denoted as L3−), and shows a linear Co–N–O unit.
Collapse
Affiliation(s)
| | - Shoko Soma
- Department of Chemistry
- Ibaraki University
- Mito 310-8512
- Japan
| | | | - Hai T. Dong
- Department of Chemistry and Department of Biophysics
- University of Michigan
- Ann Arbor
- USA
| | - Max Bilodeau
- Department of Chemistry and Department of Biophysics
- University of Michigan
- Ann Arbor
- USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|
42
|
Kindermann N, Schober A, Demeshko S, Lehnert N, Meyer F. Reductive Transformations of a Pyrazolate-Based Bioinspired Diiron–Dinitrosyl Complex. Inorg Chem 2016; 55:11538-11550. [DOI: 10.1021/acs.inorgchem.6b02080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicole Kindermann
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Anne Schober
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Nicolai Lehnert
- Department of Chemistry, The University of Michigan, 930 N. University
Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| |
Collapse
|