1
|
Kristinsson B, Janiw M, Damodaran KK. Single Crystal to Single Crystal Transformation of Porous Materials Based on Zinc Nodes and Mercaptobenzoic Acid. Chempluschem 2024; 89:e202400351. [PMID: 38984751 DOI: 10.1002/cplu.202400351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Porous coordination polymers (PCPs) are an excellent class of porous crystalline materials with tunable properties and intriguing potential applications spanning multiple disciplines. In this work, we report the synthesis and characterization of a PCP (HI-103) based on 4,4'-dithiodibenzoic acid ligand and zinc nitrate with two DMF molecules residing in the porous network. The stability of the porous network was analyzed by heating the compound at 60.0 °C for two days, and the structural analysis revealed a new PCP (HI-104) was formed with one of the DMF molecules, indicating a single-crystal to single-crystal (SCSC) transformation. The solvent molecules were completely removed by extensive drying (HI-103-dry), and the integrity of the porous network was verified by powder X-ray diffraction (PXRD) and thermogravimetric analysis. The reversibility of SCSC transformation was confirmed by treating HI-103-dry with DMF molecules, resulting in HI-103 after five days. The adsorption studies of HI-103-dry with other solvents revealed that SCSC transformation was not observed for DMA and DEA, but some structural changes were observed in the presence of DMSO. The adsorption studies performed in the presence of an equimolar mixture of DMF, DMA, and DMA indicated that HI-103-dry could selectively adsorb DMF molecules from the analogous mixture.
Collapse
Affiliation(s)
- Baldur Kristinsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavík, Iceland
| | - Mieszko Janiw
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavík, Iceland
| | - Krishna K Damodaran
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavík, Iceland
| |
Collapse
|
2
|
Wang L, Huang M, Huang J, Zhang S, Li H, Dong H, Wu XT, Wen Y. Central Metal-Triggered Structural Transformation of a 2D Layered MOF: Mechanistic Studies and Applications. Inorg Chem 2024; 63:12360-12369. [PMID: 38870427 DOI: 10.1021/acs.inorgchem.4c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The structural transformation of metal-organic frameworks (MOFs) has attracted increasing interests, which has not only produced various new structures but also served as a fantastic platform for MOF-based kinetic analysis. Multiple reaction conditions have been documented to cause structural transformation; nevertheless, central metal-induced topological alteration of MOFs is rare. Herein, we reported a structural transformation of a 2D layered Cd-MOF driven by Cd(II) ions. After being submerged in the aqueous solution of cadmium nitrate, the twofold interpenetrated 2D network of [Cd(hsb-2)(bdc)·5H2O]n [HSB-W10; bdc: 1,4-benzenedicarboxylate; hsb-2:1,2-bis(4'-pyridylmethylamino)-ethane] was converted into a novel noninterpenetrated 2D network [Cd1.5(hsb-2)(bdc)1.5(H2O)2·H2O]n (HSB-W16). This partial dissolution-recrystallization process was investigated by integrating controlled experiments, 1H NMR spectra, and photographic tracking analysis. Furthermore, a novel strategy combining in situ multicomponent dye encapsulation and central metal-triggered structural transformation was developed for the fabrication of MOF materials with white-light emission. By adopting this strategy, different dye guest molecules were concurrently introduced into the HSB-W16 host matrix, leading to a range of white-light-emitting MOF composites. This work will enable detailed studies of solid-state transformations and demonstrate a promising application prospect for structural transformation.
Collapse
Affiliation(s)
- Liping Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Mengyi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jinling Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shuyu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yuehong Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
3
|
Yu J, Sun Y, Geng K, Huang J, Cui Y, Hou H. Third-Order Nonlinear Optical Modulation Behavior of Photoresponsive Bimetallic MOFs. Inorg Chem 2024; 63:6526-6536. [PMID: 38519424 DOI: 10.1021/acs.inorgchem.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Bimetallic metal-organic frameworks (MOFs) capable of sensing external stimuli will provide more possibilities for further regulating third-order nonlinear optical (NLO) properties. In this work, we synthesized bimetallic MOFs (ZnCu-MOF and ZnCd-MOF) through central metal exchange using a photoresponsive Zn-MOF as a precursor. Compared with Zn-MOF, both ZnCu-MOF and ZnCd-MOF exhibit significantly enhanced third-order NLO absorption properties. This is mainly attributed to the introduction of metal ions with different electron configurations that can adjust the bandgap of MOFs and enhance electron delocalization, thus promoting electron transfer. Interestingly, the bimetallic MOFs show a transition from reverse saturation absorption (RSA) to saturation absorption (SA) after exposure to ultraviolet irradiation, as they retain the properties of directional photogenerated electron transfer. Photoresponsive bimetallic MOFs not only have the effect of bimetallic modulation of electronic structures but also have the characteristics of photoinduced electron transfer, exhibiting diversified optical properties. These findings provide a novel method for the development of multifunctional NLO materials.
Collapse
Affiliation(s)
- Jiongjiong Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yupei Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangshuai Geng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yang Cui
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
4
|
Li K, Rajeshkumar T, Zhao Y, Wang T, Maron L, Zhu C. Temperature induced single-crystal to single-crystal transformation of uranium azide complexes. Chem Commun (Camb) 2024; 60:2966-2969. [PMID: 38376444 DOI: 10.1039/d4cc00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The monomeric and dimeric uranium azide complexes {[(CH3)2NCH2CH2NPiPr2]2U(N3)2} (2) and {[(CH3)2NCH2CH2NPiPr2]2U(N3)2}2 (3) were synthesized by treating complex 1 with NaN3 at 60 and -20 °C, respectively. A temperature-induced single-crystal to single-crystal transformation of 3 to 2 was observed. The reduction of either 2 or 3 with KC8 yields a uranium nitride complex {[(CH3)2NCH2CH2NPiPr2]4U2(μ-N)2} (4).
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Tianwei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
5
|
Mutlu S, Ortaç B, Ozbey DH, Durgun E, Savaskan Yılmaz S, Arsu N. Laser-Driven Rapid Synthesis of Metal-Organic Frameworks and Investigation of UV-NIR Optical Absorption, Luminescence, Photocatalytic Degradation, and Gas and Ion Adsorption Properties. Polymers (Basel) 2024; 16:217. [PMID: 38257016 PMCID: PMC10820686 DOI: 10.3390/polym16020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
In this study, we designed a platform based on a laser-driven approach for fast, efficient, and controllable MOF synthesis. The laser irradiation method was performed for the first time to synthesize Zn-based MOFs in record production time (approximately one hour) compared to all known MOF production methods with comparable morphology. In addition to well-known structural properties, we revealed that the obtained ZnMOFs have a novel optical response, including photoluminescence behavior in the visible range with nanosecond relaxation time, which is also supported by first-principles calculations. Additionally, photocatalytic degradation of methylene blue with ZnMOF was achieved, degrading the 10 ppm methylene blue (MB) solution 83% during 1 min of irradiation time. The application of laser technology can inspire the development of a novel and competent platform for a fast MOF fabrication process and extend the possible applications of MOFs to miniaturized optoelectronic and photonic devices.
Collapse
Affiliation(s)
- Saliha Mutlu
- Department of Chemistry, Karadeniz Technical University, Trabzon 61080, Turkey;
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Bülend Ortaç
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Dogukan Hazar Ozbey
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Engin Durgun
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Sevil Savaskan Yılmaz
- Department of Chemistry, Karadeniz Technical University, Trabzon 61080, Turkey;
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Nergis Arsu
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, Istanbul 34220, Turkey
| |
Collapse
|
6
|
Han S, Kim D, Lee S, Choi H, Moon SW, Sharma A, Seong J, Lim J, Jeong S, Baek SB, Kim YS, Kim CS, Min SK, Lah MS. Symmetry-Mismatched SBU Transformation in MOFs: Postsynthetic Metal Exchange from Zn to Fe and Its Effects on Gas Adsorption and Dye Selectivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48406-48415. [PMID: 37805990 DOI: 10.1021/acsami.3c10943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
This research explores the alteration of metal-organic frameworks (MOFs) using a method called postsynthetic metal exchange. We focus on the shift from a Zn-based MOF containing a [Zn4O(COO)6] secondary building unit (SBU) of octahedral site symmetry (ANT-1(Zn)) to a Fe-based one with a [Fe3IIIO(COO)6]+ SBU of trigonal prismatic site symmetry (ANT-1(Fe)). The symmetry-mismatched SBU transformation cleverly maintains the MOF's overall structure by adjusting the conformation of the flexible 1,3,5-benzenetribenzoate linker to alleviate the framework strain. The process triggers a decrease in the framework volume and pore size alongside a change in the framework's charge. These alterations influence the MOF's ability to adsorb gas and dye. During the transformation, core-shell MOFs (ANT-1(Zn@Fe)) are formed as intermediate products, demonstrating unique gas sorption traits and adjusted dye adsorption preferences due to the structural modifications at the core-shell interface. Heteronuclear clusters, located at the framework interfaces, enhance the heat of CO2 adsorption. Furthermore, they also influence the selectivity of the dye size. This research provides valuable insights into fabricating novel MOFs with unique properties by modifying the SBU of a MOF with flexible organic linkers from one site symmetry to another.
Collapse
Affiliation(s)
- Seungwan Han
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Dongwook Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Seonghwan Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Hyunkyung Choi
- Department of Physics, Kookmin University, Seoul 02707, Korea
| | - Sung Wook Moon
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Amitosh Sharma
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Junmo Seong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jaewoong Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Seok Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Seung Bin Baek
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Yung Sam Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Chul Sung Kim
- Department of Physics, Kookmin University, Seoul 02707, Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Myoung Soo Lah
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
7
|
Tao Z, Cui J, Tan Y, Zhou Z, Chen Z, Wang A, Zhu Y, Lai S, Yu M, Yang Y. Suppression of Vanadium Oxide Dissolution via Cation Metathesis within a Coordination Supramolecular Network for Durable Aqueous Zn-V 2 O 5 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301620. [PMID: 37093212 DOI: 10.1002/smll.202301620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Aqueous zinc metal batteries (ZMBs) are a promising sustainable technology for large-scale energy storage applications. However, the water is often associated with problematic parasitic reactions on both anode and cathode, leading to the low durability and reliability of ZMBs. Here, a multifunctional separator for the Zn-V2 O5 batteries by growing the coordination supramolecular network (CSN:Zn-MBA, MBA = 2-mercaptobenzoic acid) on the conventional non-woven fabrics (NWF) is developed. CSN tends to form a stronger coordination bond as a softer cation, enabling a thermodynamically preferred Zn2+ to VO2 + substitution in the network, leading to the formation of VO2 -MBA interface, that strongly obstructs the VO2 (OH)2 - penetration but simultaneously allows Zn2+ transfer. Moreover, Zn-MBA molecules can adsorb the OTF- and distribute the interfacial Zn2+ homogeneous, which facilitate a dendrite-free Zn deposition. The Zn-V2 O5 cells with Zn-MBA@NWF separator realize high capacity of 567 mAh g-1 at 0.2 A g-1 , and excellent cyclability over 2000 cycles with capacity retention of 82.2% at 5 A g-1 . This work combines the original advantages of the template and new function of metals via cation metathesis within a CSN, provides a new strategy for inhibiting vanadium oxide dissolution.
Collapse
Affiliation(s)
- Zengren Tao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiawei Cui
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanming Tan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zekun Zhou
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhao Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Anding Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfei Zhu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shimei Lai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Minghao Yu
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
| | - Yangyi Yang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
8
|
Fang H, Zheng B, Zhang ZH, Jin PB, Li HX, Zheng YZ, Xue DX. Desolvation-Degree-Induced Structural Dynamics in a Rigid Cerium-Organic Framework Exhibiting Tandem Purification of Ethylene from Acetylene and Ethane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44460-44469. [PMID: 36125797 DOI: 10.1021/acsami.2c13500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the industrial requirements for high production and high quality of ethylene, efficient purification of ethylene from acetylene and ethane is of prime importance but challenging. Dynamic metal-organic frameworks (MOFs) have demonstrated intriguing structural dynamics and diverse applications recently. Among them, although a few flexible ones have exhibited interesting ethylene purification capability, rigid ones were yet barely investigated for such purpose. In this regard, a cerium(III)-based MOF was solvothermally synthesized, which is rigid and assembled from rod molecular building blocks associated with coordinative N,N-dimethylformamide (DMF) molecules. After liberating different degrees of DMF ligands via heating under vacuum or acetone exchange, both partially desolvated compounds of Ce-MOF-1 and Ce-MOF-2 were concertedly isolated in a fashion of single-crystal to single-crystal transformation. Although both newly generated materials crystallize in the same space group, they exhibit dissimilar unit cell parameters and slightly distinct ultramicropore sizes and pore microenvironments, thanks to the discrepancy in the desolvation degree. Consequently, Ce-MOF-1 and Ce-MOF-2 individually demonstrate C2H2- and C2H6-selective adsorption behavior, resulting in the potential tandem separation of C2H4 from C2H2 and C2H6 mixtures. The above results were successfully supported by not only single gas adsorption isotherms but also grand canonical Monte Carlo (GCMC) calculation studies and dynamic breakthrough experiments. The present work may pave the way for rigid MOFs aiming at advancing applications via solid-state structural dynamics.
Collapse
Affiliation(s)
- Han Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Bin Zheng
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zong-Hui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Peng-Bo Jin
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, Shaanxi, China
| | - Hong-Xin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, Shaanxi, China
| | - Dong-Xu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
9
|
Self-assembly and near-infrared photothermal conversion research of molecular figure-of-eight. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Li GL, Zhang JY, Du GJ, Liu MN, Liu GZ. TWO COORDINATION POLYMERS INDUCED BY TRANSITION METAL Zn(II) AND Co(II) IONS BASED ON 3-NITROBENZENE-1,2- DICARBOXYLIC ACID AND 3,5-BIS(1- IMIDAZOLYL)PYRIDINE LIGANDS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622080145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Stable Nickel-Based Metal–Organic Framework Containing Thiophene/Diimidazole Units for Effective Near-Infrared Photothermal Conversion. Catalysts 2022. [DOI: 10.3390/catal12070777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herein, a new Ni-based metal–organic framework (MOF, 1) bearing highly structural stability is synthesized by the reaction of utilizing a rigid and functionalized linker, 2,6-bis(pyridin-4-yl)-1,7-dihydrobenzo[1,2-d:4,5-d′]diimidazole (BBI4PY), in combination with Ni(NO3)2·6H2O and dibenzo[b,d]thiophene-3,7-dicarboxylic acid 5,5-dioxide (L1) under solvothermal conditions. The crystal structure of complex 1 is determined by single-crystal X-ray diffraction and is demonstrated to be a two-dimensional layered structure. In addition, PXRD, IR, TGA and UV/Vis-NIR spectra are also tested carefully to explore the solid structure of this complex. Remarkably, although no significant accumulation effect could be observed between the two-dimensional layers, a stacking interaction between DMF solvent molecules and ligand L1 could be found, which might promote non-radiative transitions and trigger obvious near-infrared photothermal conversion. Under 660 nm laser (0.6 W cm−2) illumination, the temperature of complex 1 increased rapidly from room temperature to 45.2 °C, with good thermal stability and cycle durability. Its photothermal conversion efficiency could reach 10.75%. This work provides an efficient way for assessing the promise of materials in the field of photothermal therapy.
Collapse
|
12
|
Dang LL, Chen T, Zhang TT, Li TT, Song JL, Zhang KJ, Ma LF. Size-Induced Highly Selective Synthesis of Organometallic Rectangular Macrocycles and Heterometallic Cage Based on Half-Sandwich Rhodium Building Block. Molecules 2022; 27:3756. [PMID: 35744878 PMCID: PMC9230013 DOI: 10.3390/molecules27123756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
The controlled synthesis of organometallic supramolecular macrocycles cages remains interesting and challenging work in the field of supramolecular chemistry. Here, two tetranuclear rectangular macrocycles and an octuclear cage were designed and synthesized utilizing a rigid and functionalized pillar linker, 2,6-bis(pyridin-4-yl)-1,7-dihydrobenzo [1,2-d:4,5-d']diimidazole (BBI4PY) based on three half-sandwich rhodium building blocks bearing different sizes. X-ray crystallography in combination with 1H NMR spectroscopy elucidated that the two building blocks with shorter spacers only result in rectangular macrocycles. However, the building block of bulkier size to avoid the π-π stacking interactions between two ligands BBI4PY led to the formation of an octuclear cage complex. The latter cage contains two types of metal ions, namely Rh3+ and Cu2+, showing significant characteristics of heterogeneous metal-assembling compounds. In addition, the cage accommodates two free isopropyl ether solvent molecules, thus displaying host-guest behavior.
Collapse
Affiliation(s)
- Li-Long Dang
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (T.C.); (T.-T.Z.); (T.-T.L.); (J.-L.S.); (K.-J.Z.); (L.-F.M.)
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Tian Chen
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (T.C.); (T.-T.Z.); (T.-T.L.); (J.-L.S.); (K.-J.Z.); (L.-F.M.)
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ting-Ting Zhang
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (T.C.); (T.-T.Z.); (T.-T.L.); (J.-L.S.); (K.-J.Z.); (L.-F.M.)
| | - Ting-Ting Li
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (T.C.); (T.-T.Z.); (T.-T.L.); (J.-L.S.); (K.-J.Z.); (L.-F.M.)
| | - Jun-Liang Song
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (T.C.); (T.-T.Z.); (T.-T.L.); (J.-L.S.); (K.-J.Z.); (L.-F.M.)
| | - Ke-Jia Zhang
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (T.C.); (T.-T.Z.); (T.-T.L.); (J.-L.S.); (K.-J.Z.); (L.-F.M.)
| | - Lu-Fang Ma
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (T.C.); (T.-T.Z.); (T.-T.L.); (J.-L.S.); (K.-J.Z.); (L.-F.M.)
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Xin-Hong C. A Cd(II) coordination polymer with 5-ethoxy-isophthalate linker: synthesis, crystal structure, and fluorescent properties. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2068583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chang Xin-Hong
- Henan Key Laboratory of Function-Oriented Porous Materials and College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, P. R. China
| |
Collapse
|
14
|
Huang C, Lu G, Qin N, Shao Z, Zhang D, Soutis C, Zhang YY, Mi L, Hou H. Enhancement of Output Performance of Triboelectric Nanogenerator by Switchable Stimuli in Metal-Organic Frameworks for Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16424-16434. [PMID: 35377137 DOI: 10.1021/acsami.2c01251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Precise control of the structure of crystalline materials is an efficient strategy to manipulate the fundamental performance of solids. In metal-organic framework (MOF) materials, this control can be realized by reversible cation-exchange through chemically driven changes in the crystalline state. Herein, we reported that the reversible structural transformations between an anionic Zn-MOF (1) and a topologically equivalent bimetallic Zn/Co-MOF (2) were accomplished. Both MOFs powders and their hybrid composites were used as positive electrode materials to assemble triboelectric nanogenerators (TENGs). The results demonstrated that the output performance of the Zn/Co-MOF-TENG was effectively improved because the introduction of Co ions makes electron transfer easier. Moreover, the output performance of the TENGs based on MOF@PVDF (PVDF = polyvinylidene fluoride) composite films showed that the Zn/Co-MOF@PVDF-TENG possessed much higher output than these corresponding film-based and MOF-based TENGs. As a practical application, the superior output of Zn/Co-MOF@PVDF-TENG was used to light an ultraviolet lamp plate for the [2 + 2] photochemical cycloaddition of organometallic macrocycles.
Collapse
Affiliation(s)
- Chao Huang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Guizhen Lu
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Na Qin
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Zhichao Shao
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Dianbo Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Constantinos Soutis
- North West Composites Center, Schoolof Materials, The University of Manchester, Manchester M139PL, United Kingdom
| | - Ying-Ying Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Liwei Mi
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Hongwei Hou
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Jeong S, Seong J, Moon SW, Lim J, Baek SB, Min SK, Lah MS. Spatial distribution modulation of mixed building blocks in metal-organic frameworks. Nat Commun 2022; 13:1027. [PMID: 35210434 PMCID: PMC8873209 DOI: 10.1038/s41467-022-28679-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
The placement of mixed building blocks at precise locations in metal-organic frameworks is critical to creating pore environments suitable for advanced applications. Here we show that the spatial distribution of mixed building blocks in metal-organic frameworks can be modulated by exploiting the different temperature sensitivities of the diffusion coefficients and exchange rate constants of the building blocks. By tuning the reaction temperature of the forward linker exchange from one metal-organic framework to another isoreticular metal-organic framework, core-shell microstructural and uniform microstructural metal-organic frameworks are obtained. The strategy can be extended to the fabrication of inverted core-shell microstructures and multi-shell microstructures and applied for the modulation of the spatial distribution of framework metal ions during the post-synthetic metal exchange process of a Zn-based metal-organic framework to an isostructural Ni-based metal-organic framework.
Collapse
Affiliation(s)
- Seok Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Junmo Seong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Sung Wook Moon
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Jaewoong Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Seung Bin Baek
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea.
| | - Myoung Soo Lah
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea.
| |
Collapse
|
16
|
Chen J, Shao Z, Zhao Y, Xue X, Song H, Wu Z, Cui S, Zhang L, Huang C, Mi L, Hou H. Metal-Ion Coupling in Metal–Organic Framework Materials Regulating the Output Performance of a Triboelectric Nanogenerator. Inorg Chem 2022; 61:2490-2498. [PMID: 35067051 DOI: 10.1021/acs.inorgchem.1c03338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Junshuai Chen
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Zhichao Shao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Yujie Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaojing Xue
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongyue Song
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Zijie Wu
- North West Composites Center, School of Materials, University of Manchester, Manchester M139PL, U.K
| | - Siwen Cui
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Lin Zhang
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Chao Huang
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Liwei Mi
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
17
|
Yu RY, Zhang JW, Qu P, Liu DS, Wang R. Rational design of a rare Zn-MOF material based on mixed carboxylate-azolate ligands and its strong blue luminescence. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.2014523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rui-Ying Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning, P. R. China
| | - Jian-Wei Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, P. R. China
| | - Peng Qu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning, P. R. China
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, P. R. China
| | - Dao-Sheng Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning, P. R. China
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning, P. R. China
| |
Collapse
|
18
|
Wen T, Shao Z, Wang H, Zhao Y, Cui Y, Hou H. Enhancement of Proton Conductivity in Fe-Metal-Organic Frameworks by Postsynthetic Oxidation and High-Performance Hybrid Membranes with Low Acidity. Inorg Chem 2021; 60:18889-18898. [PMID: 34883019 DOI: 10.1021/acs.inorgchem.1c02671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The postsynthetic oxidation (PSO) of metal nodes in metal-organic frameworks (MOFs) has received widespread attention because PSO can significantly improve the performance of materials without changing the framework. This study investigates the influence of PSO on the proton conductivity of MOFs. The PSO product {[FeIII3L2(H2O)6]•3(OH)}n (2) is obtained by oxidizing {[FeII3L2(H2O)6]•3H2O}n (1) with Cu(NO3)2. At 98% RH and 70 °C, the proton conductivity of 2 is 66 times higher than that of 1, indicating that PSO can promote proton conduction. In the PSO process, metal ions shuttle in the MOF framework to functionalize the pores, and the change in the guest molecule forms more host-guest collaborative hydrogen bonds. All of these have made a significant contribution to proton conduction. Because 2 exhibits high proton conductivity (2.66 × 10-4 S·cm-1) at 98% RH and 80 °C, we doped 2 into a highly economical poly(vinylidene fluoride) (PVDF)/polyvinylpyrrolidone (PVP) substrate to make a hybrid membrane. The resulting hybrid membrane exhibits a high proton conductivity of 1.77 × 10-3 S·cm-1 at 98% RH and 80 °C, which is 4 times higher than the proton conductivity of the PVDF/PVP membrane and 6.6 times higher than that of 2.
Collapse
Affiliation(s)
- Tianyang Wen
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zhichao Shao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Hongfei Wang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yujie Zhao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yang Cui
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
19
|
Liu C, Chen WT. Preparation, structure and properties of a novel bimetallic erbium-mercury compound with upconversion photoluminescence. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1814339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Cheng Liu
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Ji’an Key Laboratory of Photoelectric Crystal Materials and Device, Jiangxi Province Key Laboratory of Coordination Chemistry, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji’an, Jiangxi, China
| | - Wen-Tong Chen
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Ji’an Key Laboratory of Photoelectric Crystal Materials and Device, Jiangxi Province Key Laboratory of Coordination Chemistry, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji’an, Jiangxi, China
- Department of Ecological and Resources Engineering, Fujian Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
20
|
Wang H, Wen T, Shao Z, Zhao Y, Cui Y, Gao K, Xu W, Hou H. High Proton Conductivity in Nafion/Ni-MOF Composite Membranes Promoted by Ligand Exchange under Ambient Conditions. Inorg Chem 2021; 60:10492-10501. [PMID: 34212727 DOI: 10.1021/acs.inorgchem.1c01107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metal-organic frameworks (MOFs) have appeared to be promising competitive candidates as crystalline porous materials for proton conduction. Explorations of the method of preparation of proton conductive MOFs and the proton transfer mechanism have enabled them to attract widespread attention, and tremendous efforts have been made to improve the proton conductivity of MOFs. On the basis of our previous work, we explicitly propose that ligand exchange can upgrade the proton conduction performance of MOFs. Using MOF-azo as the precursor, the proton conductivities of exchange products MOF-bpy and MOF-bpe increase by 3.5- and 2.8-fold, respectively. After the MOFs had been doped into the Nafion matrix to prepare composite membranes, the proton conduction performance of composite membranes filled with subproducts (2.6 × 10-2 and 1.95 × 10-2 S cm-1) is significantly better than that of a composite membrane filled with a parent product (1.12 × 10-2 S cm-1) under ambient conditions (without heating or humidifying). The ligand exchange strategy presented herein demonstrates great promise for the development of high-proton conductivity MOFs and MOF composites with expanded future applications.
Collapse
Affiliation(s)
- Hongfei Wang
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tianyang Wen
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zhichao Shao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Yujie Zhao
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yang Cui
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kuan Gao
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wenjuan Xu
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
21
|
Zhang JH, Chen WT. Photoluminescent and semiconductive properties of a novel praseodymium compound. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1916758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jin-Hai Zhang
- Food and Drug Inspection Center, Ji’an, Jiangxi, China
| | - Wen-Tong Chen
- Institute of Applied Chemistry, Ji’an Key Laboratory of Photoelectric Crystal Materials and Device, Jiangxi Province Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji’an, Jiangxi, P.R. China
- Department of Ecological and Resources Engineering, Fujian Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian, P.R. China
| |
Collapse
|
22
|
A novel water-stable luminescent metal complex exhibiting high sensitive and selective detection to Fe3+ and Al3+. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Hu C, Zhao Y, Han X, Song J, Ding J, Hou H. Facilely controllable synthesis of copper-benzothiadiazole complexes via solvothermal reactions: exploring the customized synthetic approach by experiments. Dalton Trans 2021; 50:1816-1823. [PMID: 33465220 DOI: 10.1039/d0dt03817b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is very challenging to transform small organic molecules into customized coordination polymer (CP) because the functionalities with desired properties are greatly influenced by several elements, including the assembly modes of the organic linkers and metal nodes, organic linker functionalization, and defects. Therefore, deep cognition for the molecular-level engineering of CP chemistry is very important. Herein, we obtained five new copper-benzothiadiazole complexes via a controllable synthesis approach: [CuII(L1)(CH3CN)]2 (C1), [CuIBr(L1)]n (C2), [CuI3Br3(L2)2]n (C3), [CuICl(L3)]2 (C4), and [CuIICl2(L3)2] (C5). In the exploration, we successfully modulated the structure of the organic linker and the valence state of the metal nodes as well as the assembly modes of the organic linkers and metal nodes through the facilely controllable solvothermal reaction. The results from our experiments also indicated that the fusing process was driven by a CuII/CuI catalytic cycle. In this pathway, oxygen is the final electron acceptor and the solvent DMSO acts as a co-oxidant. In C2 and C3, the ever-expanding macrocycles were constructed from CuX clusters and organic chromophore linkers, forming interesting 1D chain structures, while the supramolecular macrocycles were assembled through hydrogen bonding expanding to a 3D network of C5. Interestingly, C1-C4 exhibit chromophore-based fluorescence, but are not phosphorescence.
Collapse
Affiliation(s)
- Chen Hu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Henan 450001, China.
| | - Yingnan Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Henan 450001, China.
| | - Xiao Han
- College of Chemical Engineering & Material, Handan University, Hebei, 056005, China
| | - Jiaqi Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Henan 450001, China.
| | - Jie Ding
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Henan 450001, China.
| | - Hongwei Hou
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
24
|
Four new coordination complexes prepared for the degradation of methyl violent dye based on flexible dicarboxylate and different N-donor coligands. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Yuan F, Ma HX, Yuan CM, Zhou CS, Hu HM, Kumar A, Muddassir M. Syntheses of a series of lanthanide metal–organic frameworks for efficient UV-light-driven dye degradation: experiment and simulation. CrystEngComm 2021. [DOI: 10.1039/d0ce01245a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three Ln-MOFs show unique 3,8-connected 3D networks and have been used as photocatalysts for the degradation of organic dye methyl violet under UV light.
Collapse
Affiliation(s)
- Fei Yuan
- School of Chemical Engineering
- Northwest University
- China
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources
- College of Chemical Engineering and Modern Materials
| | - Hai-Xia Ma
- School of Chemical Engineering
- Northwest University
- China
| | - Chun-Mei Yuan
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources
- College of Chemical Engineering and Modern Materials
- Shangluo University
- Shangluo 726000
- China
| | - Chun-Sheng Zhou
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources
- College of Chemical Engineering and Modern Materials
- Shangluo University
- Shangluo 726000
- China
| | - Huai-Ming Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Abhinav Kumar
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow
- India
| | - Mohd Muddassir
- Department of Chemistry
- College of Sciences
- King Saud University
- Riyadh 11451
- Saudi Arabia
| |
Collapse
|
26
|
Zhang ML, Zhai ZM, Yang XG, Huang YD, Zheng YJ, Ma LF. Near-Infrared Phosphorescence Emission of Binuclear Mn(II) Based Metal-Organic Framework for Efficient Photoelectric Conversion. Front Chem 2020; 8:593948. [PMID: 33262972 PMCID: PMC7686568 DOI: 10.3389/fchem.2020.593948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/15/2020] [Indexed: 11/30/2022] Open
Abstract
The development of metal-organic framework (MOF) based room-temperature phosphorescence (RTP) materials has raised extensive concern owing to their widespread applications in the field of anti-counterfeiting, photovoltaics, photocatalytic reactions, and bio-imaging. Herein, one new binuclear Mn(II) based 3D MOF [Mn2(L)(BMIB)·(H2O)] (1) (H5L = 3,5-bis(3,5-dicarboxylphenxoy) benzoic acid, BMIB = tran-4-bis(2-methylimidazolyl)butylene) has been synthesized by a facile hydrothermal process. In 1, the protonated BMIB cations show infinite π-stacking arrangement, residing in the channels of the 3D network extended by L ligand and binuclear Mn(II) units. The orderly and uniform host-guest system at molecular level emits intense white light fluorescence and long-lived near infrared phosphorescence under ambient conditions. These photophysical processes were well-studied by density functional theory (DFT) calculations. Photoelectron measurements reveal high photoelectron response behavior and incident photon-to-current efficiency (IPCE).
Collapse
Affiliation(s)
- Mei-Li Zhang
- Laboratory of New Energy and New Function Materials, Department of Chemistry and Chemical Engineering, Yan'an University, Yan'an, China
| | - Zhi-Min Zhai
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Xiao-Gang Yang
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Ya-Dan Huang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Yan-Jin Zheng
- Laboratory of New Energy and New Function Materials, Department of Chemistry and Chemical Engineering, Yan'an University, Yan'an, China
| | - Lu-Fang Ma
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| |
Collapse
|
27
|
Chang XH, Ling XL, Lu XM, Yang XG, Li FF, Guo YM. Near-infrared phosphorescence emission of three-fold interpenetrated MOF based on 1,4-bis(imidazole-1-ylmethyl)benzene: Syntheses, structure and photoelectron performance. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Cai SL, Lu L, Shi C, Wang J, Sun YC. Effect of ligand on the assembly of two entangled coordination polymers: Structures and photocatalytic properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Napierała S, Wałęsa-Chorab M. On-substrate postsynthetic metal ion exchange as a tool for tuning electrochromic properties of materials. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Xu MM, Chen Q, Xie LH, Li JR. Exchange reactions in metal-organic frameworks: New advances. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213421] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Shi ZQ, Ji NN, Hu HL. Luminescent triphenylamine-based metal-organic frameworks: recent advances in nitroaromatics detection. Dalton Trans 2020; 49:12929-12939. [PMID: 32902551 DOI: 10.1039/d0dt02213f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Luminescent metal-organic frameworks (LMOFs), as one branch of MOFs, have attracted considerable attention in recent years due to their good crystallinity, structural diversity, tunable porosity and easily induced fluorescence emission. Importantly, their photoluminescence (PL) properties can be adjusted by altering metal ions or metal clusters and organic ligands in one hybrid system. Among the various sensing applications, using LMOFs as chemical sensors to detect the explosive and environment pollution causing nitroaromatic compounds (NACs) is an important topic. In this account, we describe the recent advancements in the field of NAC detection by LMOFs based on the triphenylamine (TPA) unit as the π-conjugated fluorophore.
Collapse
Affiliation(s)
- Zhi-Qiang Shi
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, P. R. China.
| | | | | |
Collapse
|
32
|
Tasaki-Handa Y, Tsuda S, Shibukawa M, Saito S. Transmetalation in a Ce(III)-phosphoester Crystalline Coordination Polymer with an Exceptionally High Selectivity for Yb(III) and Lu(III). Chem Asian J 2020; 15:2653-2659. [PMID: 32502320 DOI: 10.1002/asia.202000502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Indexed: 11/12/2022]
Abstract
A novel crystalline coordination polymer containing Ce3+ and bis(4-nitrophenyl) phosphate (L), CeL3 , was synthesized and its unique transmetalation selectivities toward Yb3+ and Lu3+ in the lanthanide series were evaluated. The relatively large difference in transmetalation selectivity between the neighboring Tm3+ and Yb3+ species is noteworthy because the reactivities of heavy lanthanides are generally considerably similar. The structural strain of the polymeric framework is likely responsible for this unusual trend. Powder X-ray diffraction analysis indicated that, in the cases of only Yb3+ and Lu3+ , large differences in their ionic sizes compared to that of Ce3+ in the parent framework may induce a structural strain after solid solution formation, while cleavage of the relatively weak Ce-O bond allows the formation of new Yb-O and Lu-O bonds with the incoming Yb3+ and Lu3+ , respectively. Structural phase transitions likely caused by the heterogeneous nucleation of the Yb- (or Lu-) type phase were also observed.
Collapse
Affiliation(s)
- Yuiko Tasaki-Handa
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Japan
| | - Shiori Tsuda
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Japan
| | - Masami Shibukawa
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Japan
| | - Shingo Saito
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Japan
| |
Collapse
|
33
|
A hydroxyl-functionalized 3D porous gadolinium-organic framework platform for drug delivery, imaging and gas separation. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
|
35
|
Zhang ML, Bai Y, Yang XG, Zheng YJ, Ren YX, Wang JJ, Han ML, Li FF, Ma LF. Dense π-stacking of flexible ligands fixed in interpenetrating Zn(ii) MOF exhibiting long-lasting phosphorescence and efficient carrier transport. Dalton Trans 2020; 49:9961-9964. [PMID: 32686810 DOI: 10.1039/d0dt01810d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-fold interpenetrating Zn(ii) MOF with the dense π-stacking of flexible ligands exhibit long-lived phosphorescence emission up to 91 ms at room temperature. Photoelectric measurements show efficient electro-hole separation based on the long lifetime of triplet state exciton.
Collapse
Affiliation(s)
- Mei-Li Zhang
- Department of Chemistry and Chemical Engineering, Yan'an University, Laboratory of New Energy & New Function Materials, Yan'an, Shaanxi 716000, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Oxalate-derived porous prismatic nickel/nickel oxide nanocomposites toward lithium-ion battery. J Colloid Interface Sci 2020; 580:614-622. [PMID: 32711209 DOI: 10.1016/j.jcis.2020.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
NiO is a highly appealing anode material for lithium-ion batteries (LIBs) owing to its relatively high Li storage capacity. However, its low electrical conductivity and large volume change during the battery cycling process limit its application. Here, we fabricate a series of porous Ni/NiO (M) nanocomposites through the direct pyrolysis of a nickel oxalate precursor and adjust the Ni(0) content by varying the pyrolysis temperature. The porous architecture is beneficial for alleviating the volume expansion/constriction during cycling. The Ni in the composites accelerates the electrochemical reaction kinetics and enhances the conductivity of the electrode materials. The M-2 electrode with a 17.9% Ni(0) content realizes a high reversible capacity (633.7 mA h g-1 after 100 cycles at 0.2 A g-1) and exhibits outstanding rate capability (307.6 mA h g-1 after 250 cycles at 1 A g-1). This work can not only supply an approach to adjust the content of an element with specific valence state, but also provide an inspiration for the fabrication of porous metal/metal oxide anode materials in LIBs.
Collapse
|
37
|
Wang Y, Li S, Wang L. Crystal structures and magnetic properties of two isomorphic nickel(II) and cobalt(II) coordination polymers-based nitrogen-heterocyclic tricarbolylate ligands. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00408-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Two high tunable proton-conducting cobalt(II) complexes derived from imidazole multi-carboxylate-based ligand. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Shao Z, Zhao Y, Xie Q, Wang H, Cui Y, Yang X, Hou H. Efficient Identification for Alcohol Homologues and Hyperthermy Based on Coordination Polymer Multiple Structural Transformations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24141-24148. [PMID: 32362113 DOI: 10.1021/acsami.0c05208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, coordination polymer materials are of high interest due to the potential applications for chemical sensing and luminescent materials. In this work, we designed a photofluorescence coordination polymer material based on a donor-metal-acceptor structure. The donor-metal-acceptor architecture showed unusual multiple environmental responsiveness accompanied by a great change of fluorescence behaviors. Generally, organic homologue molecules are not easily distinguished by coordination polymer sensors because they have similar molecular structures and interaction sites. However, using the feature of multiple structural transformations, the accurate identification for organic homologue molecules can be realized, especially in a short time to quickly identify MeOH in other alcohol homologues (even in mixed atmospheres with only 10% MeOH). The visualization transformation of fluorescence can also be realized by single crystal to single crystal thermal-induced coordination bond ON/OFF behavior. The reversible structure conversion strategy provides new ideas for the accurate identification of organic homolog molecules or external environmental stimuli.
Collapse
Affiliation(s)
- Zhichao Shao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yujie Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Qiong Xie
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongfei Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yang Cui
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaoqian Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
40
|
Wang H, Wu Q, Ding X, Shao Z, Xu W, Zhao Y, Xie Q, Meng X, Hou H. The 50-Fold Enhanced Proton Conductivity Brought by Aqueous-Phase Single-Crystal-to-Single-Crystal Central Metal Exchange. Inorg Chem 2020; 59:8361-8368. [DOI: 10.1021/acs.inorgchem.0c00766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hongfei Wang
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Qiong Wu
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xianyong Ding
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, P. R. China
| | - Zhichao Shao
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wenjuan Xu
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yujie Zhao
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Qiong Xie
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiangru Meng
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- The College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
41
|
Huang YD, Qin JH, Yang XG, Wang HR, Li FF, Ma LF. Two pyrene-based metal−organic frameworks constructed from 1,3,6,8-tetrakis(p-benzoic acid)pyrene: Syntheses, structures and photoelectron performances. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Wang J, Li N, Xu Y, Pang H. Two‐Dimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. Chemistry 2020; 26:6402-6422. [DOI: 10.1002/chem.202000294] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/04/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Ji Wang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Nan Li
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Yuxia Xu
- Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P. R. China
| |
Collapse
|
43
|
Singh Y, Patel R, Patel S, Jadeja R, Patel A, Patel N, Roy H, Bhagriya P, Singh R, Butcher R, Jasinski JP, Herrero S, Cortijo M. Supramolecular assemblies of new pseudohalide end-to-end bridged copper(II) complex and molecular structural variety of penta and hexa-coordinted metal(II) complexes with hydrazido-based ligand. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Liu JQ, Luo ZD, Pan Y, Kumar Singh A, Trivedi M, Kumar A. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213145] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Dong M, Lu L, Tan X, An B, Singh A, Alowais A, Alarifi A, Kumar A, Muddassir M. Syntheses and photocatalytic properties of two new d10- and d9-based 2D coordination polymers. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Chao M, Chen J, Wu X, Wang R, Wang P, Ding L, Young DJ, Zhang W. Unconventional Pyridyl Ligand Inclusion within a Flexible Metal‐Organic Framework Bearing an
N
,
N
′‐Diethylformamide (DEF)‐Solvated Cd
5
Cluster Secondary Building Unit. Chempluschem 2020; 85:503-509. [DOI: 10.1002/cplu.202000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 02/28/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Meng‐Yao Chao
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Jing Chen
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xiao‐Yu Wu
- Department of ChemistryXi'an Jiaotong-Liverpool University Suzhou 215123 China
| | - Rui‐Yao Wang
- Department of ChemistryXi'an Jiaotong-Liverpool University Suzhou 215123 China
| | - Pei‐Pei Wang
- Department of ChemistryXi'an Jiaotong-Liverpool University Suzhou 215123 China
| | - Lifeng Ding
- Department of ChemistryXi'an Jiaotong-Liverpool University Suzhou 215123 China
| | - David J. Young
- College of Engineering Information Technology & EnvironmentCharles Darwin University Darwin, Northern Territory 0909 Australia
| | - Wen‐Hua Zhang
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
47
|
Ha J, Lee JH, Moon HR. Alterations to secondary building units of metal–organic frameworks for the development of new functions. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01119f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Post-synthetic modification methods for the secondary building units in MOFs facilitate unique structures and properties that are impossible to access via direct syntheses, which can be classified as four categories.
Collapse
Affiliation(s)
- Junsu Ha
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Jae Hwa Lee
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|
48
|
Yuan F, Yu HS, Yuan CM, Zhou CS, Li F, Lu YJ, Ling XY, Wang J, Singh A, Kumar A. Structures and photocatalytic properties of two Mn(II)-based coordination polymers. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Dutta A, Singh A, Wang X, Kumar A, Liu J. Luminescent sensing of nitroaromatics by crystalline porous materials. CrystEngComm 2020. [DOI: 10.1039/d0ce01087a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Designing strategies for the syntheses of targeted luminescent MOFs, nanoparticle/MOF composites and COFs described and their application in sensing nitroaromatic compounds and explosives discussed.
Collapse
Affiliation(s)
- Archisman Dutta
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| | - Amita Singh
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| | - Xiaoxiong Wang
- School of Civil and Environmental Engineering
- Shenzhen Polytechnic
- Shenzhen
- China
| | - Abhinav Kumar
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan 523808
| |
Collapse
|
50
|
Yang XG, Lu XM, Zhai ZM, Qin JH, Chang XH, Han ML, Li FF, Ma LF. π-Type halogen bonding enhanced the long-lasting room temperature phosphorescence of Zn(ii) coordination polymers for photoelectron response applications. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00191k] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long-lasting phosphorescence emission was achieved via π-type halogen bonding in Zn(ii) based coordination polymers. The delocalized H-aggregates afforded large electron channels for efficient charge transport and high photoelectron response.
Collapse
Affiliation(s)
- Xiao-Gang Yang
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Henan Province Function-Oriented Porous Materials Key Laboratory
- Luoyang 471934
- P. R. China
| | - Xiao-Min Lu
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Henan Province Function-Oriented Porous Materials Key Laboratory
- Luoyang 471934
- P. R. China
| | - Zhi-Min Zhai
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Henan Province Function-Oriented Porous Materials Key Laboratory
- Luoyang 471934
- P. R. China
| | - Jian-Hua Qin
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Henan Province Function-Oriented Porous Materials Key Laboratory
- Luoyang 471934
- P. R. China
| | - Xin-Hong Chang
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Henan Province Function-Oriented Porous Materials Key Laboratory
- Luoyang 471934
- P. R. China
| | - Min-Le Han
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Henan Province Function-Oriented Porous Materials Key Laboratory
- Luoyang 471934
- P. R. China
| | - Fei-Fei Li
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- PR. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Henan Province Function-Oriented Porous Materials Key Laboratory
- Luoyang 471934
- P. R. China
| |
Collapse
|