1
|
Bharathidasan D, Maity C. Organelle-Specific Smart Supramolecular Materials for Bioimaging and Theranostics Application. Top Curr Chem (Cham) 2024; 383:1. [PMID: 39607460 DOI: 10.1007/s41061-024-00483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In cellular environments, certain synthetic molecules can form nanostructures via self-assembly, impacting molecular imaging, and biomedical applications. Control over the formation of these self-assembled nanostructures in subcellular organelle is challenging. By the action of stimuli, either present in the cellular environment or applied externally, in situ generation of molecular precursors can lead to accumulation and supramolecular nanostructure formation, resulting in efficient bioimaging. Here, we summarize smart fluorophore-based ordered nanostructure preparation at specific organelles for efficient bioimaging and therapeutic application towards cancer theranostics. We also present challenges and an outlook regarding intercellular self-assembly for theranostics application. Altogether, smart nanostructured materials with fluorescence read-outs at specific subcellular compartments would be beneficial in synthetic biology and precision therapeutics.
Collapse
Affiliation(s)
- Dineshkumar Bharathidasan
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India
| | - Chandan Maity
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
2
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Bacanlı M, Secerli J, Karayavuz B, Erdem O, Erdoğan H. Is a non-cytotoxic and non-genotoxic novel bioinspired dipeptide structure synthesis possible for theragnostic applications? Drug Chem Toxicol 2023; 46:1015-1023. [PMID: 36050831 DOI: 10.1080/01480545.2022.2118315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
The diagnosis and treatment of the diseases in a certain coordination is a subject that has been emphasized in recent years. Theragnostics approaches allow simultaneous diagnosis and treatment of chronic diseases such as cancer. An ideal theragnostic should be biocompatible and can be used safely in humans. Although several types of theragnostics have been developed, none of yet satisfied these criteria. Bioinspired materials with noble metal centers encapsulating therapeutic and imaging agents were shown to possess theragnostic activities. In this study, it was aimed to synthesize, characterize, and evaluate the cytotoxic and genotoxic effects of self-assembly of diphenylalanine (Phe-Phe) dipeptides presence of mercury (Hg2+) ions to be used for theragnostic. Cytotoxicity and genotoxicity studies were done in mouse fibroblast (NIH/3T3) cells by 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) and single cell gel electrophoresis (Comet) assays, respectively. It was found that cell viability decreased in a dose-dependent manner in 24-, 48-, and 72-h treatment. Also, Phe-Phe dipeptides did not cause any significant changes in DNA damage at the concentrations of 1, 2, and 5 mg/mL in 4- and 24-h exposures. In the 48-h exposure, Phe-Phe peptide exposure at concentrations of 2 and 5 mg/mL caused a significant increase in DNA damage and in the 72-h of exposure, a significant increase in DNA damage was observed at all studied concentrations. According to the results of the study, it can be said that Phe-Phe dipeptides presence of Hg2+ ions are biocompatible and can be used safely for theragnostic purposes.
Collapse
Affiliation(s)
- Merve Bacanlı
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| | - Jülide Secerli
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| | - Burcu Karayavuz
- Department of Pharmaceutical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| | - Onur Erdem
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| | - Hakan Erdoğan
- Department of Analytical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| |
Collapse
|
4
|
Teng P, Shao H, Huang B, Xie J, Cui S, Wang K, Cai J. Small Molecular Mimetics of Antimicrobial Peptides as a Promising Therapy To Combat Bacterial Resistance. J Med Chem 2023; 66:2211-2234. [PMID: 36739538 DOI: 10.1021/acs.jmedchem.2c00757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinically, antibiotics are widely used to treat infectious diseases; however, excessive drug abuse and overuse exacerbate the prevalence of drug-resistant bacterial pathogens, making the development of novel antibiotics extremely difficult. Antimicrobial peptide (AMP) is one of the most promising candidates for overcoming bacterial resistance owing to its unique structure and mechanism of action. This study examines the development of small molecular mimetics of AMPs over the past two decades. These mimetics can selectively disrupt membranes, which are the characteristic antibacterial mechanism of AMPs. In addition, the advantages and disadvantages of small AMP mimetics are discussed. The small molecular mimetics of AMPs are anticipated to garner interest and investment in discovering new antibiotics. This Perspective will assist in revitalizing the golden age of antibiotics in the current era of combating bacterial resistance.
Collapse
Affiliation(s)
- Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Haodong Shao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bo Huang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
5
|
Confalonieri F, Josifovska N, Boix-Lemonche G, Stene-Johansen I, Bragadottir R, Lumi X, Petrovski G. Vitreous Substitutes from Bench to the Operating Room in a Translational Approach: Review and Future Endeavors in Vitreoretinal Surgery. Int J Mol Sci 2023; 24:3342. [PMID: 36834754 PMCID: PMC9961686 DOI: 10.3390/ijms24043342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Vitreous substitutes are indispensable tools in vitreoretinal surgery. The two crucial functions of these substitutes are their ability to displace intravitreal fluid from the retinal surface and to allow the retina to adhere to the retinal pigment epithelium. Today, vitreoretinal surgeons can choose among a plethora of vitreous tamponades, and the tamponade of choice might be difficult to determine in the ever-expanding range of possibilities for a favorable outcome. The currently available vitreous substitutes have disadvantages that need to be addressed to improve the surgical outcome achievable today. Herein, the fundamental physical and chemical proprieties of all vitreous substitutes are reported, and their use and clinical applications are described alongside some surgical techniques of intra-operative manipulation. The major upcoming developments in vitreous substitutes are extensively discussed, keeping a translational perspective throughout. Conclusions on future perspectives are derived through an in-depth analysis of what is lacking today in terms of desired outcomes and biomaterials technology.
Collapse
Affiliation(s)
- Filippo Confalonieri
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Natasha Josifovska
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Gerard Boix-Lemonche
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Ingar Stene-Johansen
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
| | - Ragnheidur Bragadottir
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Xhevat Lumi
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
- Eye Hospital, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Goran Petrovski
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| |
Collapse
|
6
|
Xu J, Wang J, Ye J, Jiao J, Liu Z, Zhao C, Li B, Fu Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101101. [PMID: 34145984 PMCID: PMC8373122 DOI: 10.1002/advs.202101101] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Indexed: 05/07/2023]
Abstract
Metal-coordinated supramolecular nanoassemblies have recently attracted extensive attention as materials for cancer theranostics. Owing to their unique physicochemical properties, metal-coordinated supramolecular self-assemblies can bridge the boundary between traditional inorganic and organic materials. By tailoring the structural components of the metal ions and binding ligands, numerous multifunctional theranostic nanomedicines can be constructed. Metal-coordinated supramolecular nanoassemblies can modulate the tumor microenvironment (TME), thus facilitating the development of TME-responsive nanomedicines. More importantly, TME-responsive organic-inorganic hybrid nanomaterials can be constructed in vivo by exploiting the metal-coordinated self-assembly of a variety of functional ligands, which is a promising strategy for enhancing the tumor accumulation of theranostic molecules. In this review, recent advancements in the design and fabrication of metal-coordinated supramolecular nanomedicines for cancer theranostics are highlighted. These supramolecular compounds are classified according to the order in which the coordinated metal ions appear in the periodic table. Furthermore, the prospects and challenges of metal-coordinated supramolecular self-assemblies for both technical advances and clinical translation are discussed. In particular, the superiority of TME-responsive nanomedicines for in vivo coordinated self-assembly is elaborated, with an emphasis on strategies that enhance the accumulation of functional components in tumors for an ideal theranostic outcome.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jun Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jiao Jiao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Bin Li
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
7
|
The folding propensity of α/sulfono-γ-AA peptidic foldamers with both left- and right-handedness. Commun Chem 2021; 4:58. [PMID: 36697518 PMCID: PMC9814141 DOI: 10.1038/s42004-021-00496-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 03/19/2021] [Indexed: 01/28/2023] Open
Abstract
The discovery and application of new types of helical peptidic foldamers have been an attractive endeavor to enable the development of new materials, catalysts and biological molecules. To maximize their application potential through structure-based design, it is imperative to control their helical handedness based on their molecular scaffold. Herein we first demonstrate the generalizability of the solid-state right-handed helical propensity of the 413-helix of L-α/L-sulfono-γ-AA peptides that as short as 11-mer, using the high-resolution X-ray single crystallography. The atomic level folding conformation of the foldamers was also elucidated by 2D NMR and circular dichroism under various conditions. Subsequently, we show that the helical handedness of this class of foldamer is controlled by the chirality of their chiral side chains, as demonstrated by the left-handed 413-helix comprising 1:1 D-α/D-sulfono-γ-AA peptide. In addition, a heterochiral coiled-coil-like structure was also revealed for the first time, unambiguously supporting the impact of chirality on their helical handedness. Our findings enable the structure-based design of unique folding biopolymers and materials with the exclusive handedness or the racemic form of the foldamers in the future.
Collapse
|
8
|
Jin S, Jeena MT, Jana B, Moon M, Choi H, Lee E, Ryu JH. Spatiotemporal Self-Assembly of Peptides Dictates Cancer-Selective Toxicity. Biomacromolecules 2020; 21:4806-4813. [DOI: 10.1021/acs.biomac.0c01000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Seongeon Jin
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - M. T. Jeena
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minhyeok Moon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Huyeon Choi
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
9
|
Jeena MT, Jeong K, Go EM, Cho Y, Lee S, Jin S, Hwang SW, Jang JH, Kang CS, Bang WY, Lee E, Kwak SK, Kim S, Ryu JH. Heterochiral Assembly of Amphiphilic Peptides Inside the Mitochondria for Supramolecular Cancer Therapeutics. ACS NANO 2019; 13:11022-11033. [PMID: 31508938 DOI: 10.1021/acsnano.9b02522] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of peptides containing both l- and d-isomers often results in nanostructures with enhanced properties compared to their enantiomeric analogues, such as faster kinetics of formation, higher mechanical strength, and enzymatic stability. However, occurrence and consequences of the heterochiral assembly in the cellular microenvironment are unknown. In this study, we monitored heterochiral assembly of amphiphilic peptides inside the cell, specifically mitochondria of cancer cells, resulting in nanostructures with refined morphological and biological properties owing to the superior interaction between the backbones of opposite chirality. We have designed a mitochondria penetrating tripeptide containing a diphenyl alanine building unit, named as Mito-FF due to their mitochondria targeting ability. The short peptide amphiphile, Mito-FF co-assembled with its mirror pair, Mito-ff, induced superfibrils of around 100 nm in diameter and 0.5-1 μm in length, while enantiomers formed only narrow fibers of 10 nm in diameter. The co-administration of Mito-FF and Mito-ff in the cell induced drastic mitochondrial disruption both in vitro and in vivo. The experimental and theoretical analyses revealed that pyrene capping played a major role in inducing superfibril morphology upon the co-assembly of racemic peptides. This work shows the impact of chirality control over the peptide self-assembly inside the biological system, thus showing a potent strategy for fabricating promising peptide biomaterials by considering chirality as a design modality.
Collapse
Affiliation(s)
| | - Keunsoo Jeong
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | | | - Yuri Cho
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | - Seokyung Lee
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | | | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | - Joo Hee Jang
- Division of Applied RI , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | - Chi Soo Kang
- Division of Applied RI , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | - Woo-Young Bang
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | | | - Sehoon Kim
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | | |
Collapse
|
10
|
Cao M, Xing R, Chang R, Wang Y, Yan X. Peptide-coordination self-assembly for the precise design of theranostic nanodrugs. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Song Z, Chen X, You X, Huang K, Dhinakar A, Gu Z, Wu J. Self-assembly of peptide amphiphiles for drug delivery: the role of peptide primary and secondary structures. Biomater Sci 2018; 5:2369-2380. [PMID: 29051950 DOI: 10.1039/c7bm00730b] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptide amphiphiles (PAs), functionalized with alkyl chains, are capable of self-assembling into various nanostructures. Recently, PAs have been considered as ideal drug carriers due to their good biocompatibility, specific biological functions, and hypotoxicity to normal cells and tissues. Meanwhile, the nanocarriers formed by PAs are able to achieve controlled drug release and enhanced cell uptake in response to the stimulus of the physiological environment or specific biological factors in the location of the lesion. However, the underlying detailed drug delivery mechanism, especially from the aspect of primary and secondary structures of PAs, has not been systematically summarized or discussed. Focusing on the relationship between the primary and secondary structures of PAs and stimuli-responsive drug delivery applications, this review highlights the recent advances, challenges, and opportunities of PA-based functional drug nanocarriers, and their potential pharmaceutical applications are discussed.
Collapse
Affiliation(s)
- Zhenhua Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang Y, Wang X, Deng F, Zheng N, Liang Y, Zhang H, He B, Dai W, Wang X, Zhang Q. The effect of linkers on the self-assembling and anti-tumor efficacy of disulfide-linked doxorubicin drug-drug conjugate nanoparticles. J Control Release 2018; 279:136-146. [PMID: 29655991 DOI: 10.1016/j.jconrel.2018.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Drug-drug conjugate nanoparticles (DDC NPs) is a potential method for overcoming poor solubility and nonspecific action in cancer therapy, which is based on its high drug loading efficiency and passive tumor-target properties. Our laboratory has prepared DOX-SS-DOX NPs based on disulfide-linked doxorubicin (DOX) drug-drug conjugate, which showed well physical stability and similar anti-tumor efficacy as liposomes. However, how structures of DDCs influence the self-assembling and anti-tumor efficacy is still seldom clarified and needs further investigation. Here, we discussed the role of linker types, length and linkage site in the NPs self-assembling and anti-tumor efficacy. A series of DOX prodrugs were prepared and all the prodrugs could self-assemble into NPs except DOX-SS-DOX (2), indicating the linker length played an important role during self-assembling process. The linkage sites and types of linker exhibited great influence on in vitro cytotoxicity and in vivo anti-tumor efficacy, particularly, modification on C-14 hydroxyl was more efficient for DOX release than on amino group. Besides, disulfide-bond was not cleaved and DOX-SH release did not occur in the metabolism process. The function of disulfide-bond was to enhance the release of DOX in the hydrolysis process. These findings is meaningful for effective prodrug NPs design for therapeutics.
Collapse
Affiliation(s)
- Yaoqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Feiyang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Nan Zheng
- National Drug Clinical Trial Center, Key laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yanqin Liang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
Tsuzuki T, Kabumoto M, Arakawa H, Ikeda M. The effect of carbohydrate structures on the hydrogelation ability and morphology of self-assembled structures of peptide-carbohydrate conjugates in water. Org Biomol Chem 2018; 15:4595-4600. [PMID: 28497834 DOI: 10.1039/c7ob00816c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We describe the construction of peptide-carbohydrate conjugates, namely glycopeptides, capable of self-assembling in water. We found that disaccharide structures (epimer or glycosidic-bond geometry) appended to the glycopeptides have a noticeable effect on the hydrogel formation ability as well as the morphology of the self-assembled structures. The soft materials consisting of self-assembled structures with carbohydrates on their surface and various types of morphologies might be useful as matrices to investigate the function of carbohydrates in biological events.
Collapse
Affiliation(s)
- Tomoya Tsuzuki
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | | | | | | |
Collapse
|
14
|
Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 2017; 267:100-118. [PMID: 28958854 PMCID: PMC5723209 DOI: 10.1016/j.jconrel.2017.09.026] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Paclitaxel (PTX) is one of the most successful drugs ever used in cancer chemotherapy, acting against a variety of cancer types. Formulating PTX with Cremophor EL and ethanol (Taxol®) realized its clinical potential, but the formulation falls short of expectations due to side effects such as peripheral neuropathy, hypotension, and hypersensitivity. Abraxane®, the albumin bound PTX, represents a superior replacement of Taxol® that mitigates the side effects associated with Cremophor EL. While Abraxane® is now considered a gold standard in chemotherapy, its 21% response rate leaves much room for further improvement. The quest for safer and more effective cancer treatments has led to the development of a plethora of innovative PTX formulations, many of which are currently undergoing clinical trials. In this context, we review recent development of PTX drug delivery systems and analyze the design principles underpinning each delivery strategy. We chose several representative examples to highlight the opportunities and challenges of polymeric systems, lipid-based formulations, as well as prodrug strategies.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michael Porter
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Alexandros Konstantopoulos
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States; Institute for NanoBiotechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
15
|
Abstract
Covalent modification of therapeutic compounds is a clinically proven strategy to devise prodrugs with enhanced treatment efficacies. This prodrug strategy relies on the modified drugs that possess advantageous pharmacokinetic properties and administration routes over their parent drug. Self-assembling prodrugs represent an emerging class of therapeutic agents capable of spontaneously associating into well-defined supramolecular nanostructures in aqueous solutions. The self-assembly of prodrugs expands the functional space of conventional prodrug design, affording a possible pathway to more effective therapies as the assembled nanostructure possesses distinct physicochemical properties and interaction potentials that can be tailored to specific administration routes and disease treatment. In this review, we will discuss the various types of self-assembling prodrugs in development, providing an overview of the methods used to control their structure and function and, ultimately, our perspective on their current and future potential.
Collapse
Affiliation(s)
- Andrew G Cheetham
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
| | | | | | | |
Collapse
|
16
|
Su H, Wang Y, Anderson CF, Koo JM, Wang H, Cui H. Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1998-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Vigier-Carrière C, Wagner D, Chaumont A, Durr B, Lupattelli P, Lambour C, Schmutz M, Hemmerlé J, Senger B, Schaaf P, Boulmedais F, Jierry L. Control of Surface-Localized, Enzyme-Assisted Self-Assembly of Peptides through Catalyzed Oligomerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8267-8276. [PMID: 28749683 DOI: 10.1021/acs.langmuir.7b01532] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Localized self-assembly allowing both spatial and temporal control over the assembly process is essential in many biological systems. This can be achieved through localized enzyme-assisted self-assembly (LEASA), also called enzyme-instructed self-assembly, where enzymes present on a substrate catalyze a reaction that transforms noninteracting species into self-assembling ones. Very few LEASA systems have been reported so far, and the control of the self-assembly process through the surface properties represents one essential step toward their use, for example, in artificial cell mimicry. Here, we describe a new type of LEASA system based on α-chymotrypsin adsorbed on a surface, which catalyzes the production of (KL)nOEt oligopeptides from a KLOEt (K: lysine; L: leucine; OEt ethyl ester) solution. When a critical concentration of the formed oligopeptides is reached near the surface, they self-assemble into β-sheets resulting in a fibrillar network localized at the interface that can extend over several micrometers. One significant feature of this process is the existence of a lag time before the self-assembly process starts. We investigate, in particular, the effect of the α-chymotrypsin surface density and KLOEt concentration on the self-assembly kinetics. We find that the lag time can be finely tuned through the surface density in α-chymotrypsin and KLOEt concentration. For a given surface enzyme concentration, a critical KLOEt concentration exists below which no self-assembly takes place. This concentration increases when the surface density in enzyme decreases.
Collapse
Affiliation(s)
- Cécile Vigier-Carrière
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 23 rue du Loess, F-67034 Strasbourg Cedex, France
| | - Déborah Wagner
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 23 rue du Loess, F-67034 Strasbourg Cedex, France
| | - Alain Chaumont
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000, Strasbourg, France
| | - Baptiste Durr
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 23 rue du Loess, F-67034 Strasbourg Cedex, France
| | - Paolo Lupattelli
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 23 rue du Loess, F-67034 Strasbourg Cedex, France
- Dipartimento di Scienze, Università degli Studi della Basilicata , via dell'Ateneo Lucano, 85100 Potenza, Italy
| | - Christophe Lambour
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 23 rue du Loess, F-67034 Strasbourg Cedex, France
| | - Marc Schmutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 23 rue du Loess, F-67034 Strasbourg Cedex, France
| | - Joseph Hemmerlé
- INSERM, Unité 1121 "Biomaterials and Bioengineering", 11 rue Humann, F-67085 Strasbourg Cedex, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), and Fédération des Matériaux et Nanoscience d'Alsace (FMNA), 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| | - Bernard Senger
- INSERM, Unité 1121 "Biomaterials and Bioengineering", 11 rue Humann, F-67085 Strasbourg Cedex, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), and Fédération des Matériaux et Nanoscience d'Alsace (FMNA), 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| | - Pierre Schaaf
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 23 rue du Loess, F-67034 Strasbourg Cedex, France
- INSERM, Unité 1121 "Biomaterials and Bioengineering", 11 rue Humann, F-67085 Strasbourg Cedex, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), and Fédération des Matériaux et Nanoscience d'Alsace (FMNA), 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study , 5 allée du Général Rouvillois, F-67083 Strasbourg, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 23 rue du Loess, F-67034 Strasbourg Cedex, France
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 23 rue du Loess, F-67034 Strasbourg Cedex, France
| |
Collapse
|
18
|
Hatip Koc M, Cinar Ciftci G, Baday S, Castelletto V, Hamley IW, Guler MO. Hierarchical Self-Assembly of Histidine-Functionalized Peptide Amphiphiles into Supramolecular Chiral Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7947-7956. [PMID: 28753315 DOI: 10.1021/acs.langmuir.7b01266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Controlling the hierarchical organization of self-assembling peptide amphiphiles into supramolecular nanostructures opens up the possibility of developing biocompatible functional supramolecular materials for various applications. In this study, we show that the hierarchical self-assembly of histidine- (His-) functionalized PAs containing d- or l-amino acids can be controlled by both solution pH and molecular chirality of the building blocks. An increase in solution pH resulted in the structural transition of the His-functionalized chiral PA assemblies from nanosheets to completely closed nanotubes through an enhanced hydrogen-bonding capacity and π-π stacking of imidazole ring. The effects of the stereochemistry and amino acid sequence of the PA backbone on the supramolecular organization were also analyzed by CD, TEM, SAXS, and molecular dynamics simulations. In addition, an investigation of chiral mixtures revealed the differences between the hydrogen-bonding capacities and noncovalent interactions of PAs with d- and l-amino acids.
Collapse
Affiliation(s)
- Meryem Hatip Koc
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, 06800 Turkey
| | - Goksu Cinar Ciftci
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, 06800 Turkey
| | - Sefer Baday
- Applied Informatics Department, Informatics Institute, Istanbul Technical University , Istanbul, 34469 Turkey
| | - Valeria Castelletto
- Department of Chemistry, University of Reading , Whiteknights, Reading RG6 6AD, U.K
| | - Ian W Hamley
- Department of Chemistry, University of Reading , Whiteknights, Reading RG6 6AD, U.K
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, 06800 Turkey
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637 United States
| |
Collapse
|
19
|
Cheetham AG, Lin YA, Lin R, Cui H. Molecular design and synthesis of self-assembling camptothecin drug amphiphiles. Acta Pharmacol Sin 2017; 38:874-884. [PMID: 28260797 PMCID: PMC5520181 DOI: 10.1038/aps.2016.151] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
The conjugation of small molecular hydrophobic anticancer drugs onto a short peptide with overall hydrophilicity to create self-assembling drug amphiphiles offers a new prodrug strategy, producing well-defined, discrete nanostructures with a high and quantitative drug loading. Here we show the detailed synthesis procedure and how the molecular structure can influence the synthesis of the self-assembling prodrugs and the physicochemical properties of their assemblies. A series of camptothecin-based drug amphiphiles were synthesized via combined solid- and solution-phase synthetic techniques, and the physicochemical properties of their self-assembled nanostructures were probed using a number of imaging and spectroscopic techniques. We found that the number of incorporated drug molecules strongly influences the rate at which the drug amphiphiles are formed, exerting a steric hindrance toward any additional drugs to be conjugated and necessitating extended reaction time. The choice of peptide sequence was found to affect the solubility of the conjugates and, by extension, the critical aggregation concentration and contour length of the filamentous nanostructures formed. In the design of self-assembling drug amphiphiles, the number of conjugated drug molecules and the choice of peptide sequence have significant effects on the nanostructures formed. These observations may allow the fine-tuning of the physicochemical properties for specific drug delivery applications, ie systemic vs local delivery.
Collapse
Affiliation(s)
- Andrew G Cheetham
- Department of Chemical and Biomolecular Chemistry and Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
| | - Yi-an Lin
- Department of Chemical and Biomolecular Chemistry and Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Chemistry and Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Chemistry and Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
20
|
Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544801 DOI: 10.1002/wnan.1479] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
Malignant brain tumor, including the most common type glioblastoma, are histologically heterogeneous and invasive tumors known as the most devastating neoplasms with high morbidity and mortality. Despite multimodal treatment including surgery, radiotherapy, chemotherapy, and immunotherapy, the disease inevitably recurs and is fatal. This lack of curative options has motivated researchers to explore new treatment strategies and to develop new drug delivery systems (DDSs); however, the unique anatomical, physiological, and pathological features of brain tumors greatly limit the effectiveness of conventional chemotherapy. In this context, we review the recent progress in the development of nanoparticle-based DDSs aiming to address the key challenges in transporting sufficient amount of therapeutic agents into the brain tumor areas while minimizing the potential side effects. We first provide an overview of the standard treatments currently used in the clinic for the management of brain cancers, discussing the effectiveness and limitations of each therapy. We then provide an in-depth review of nanotherapeutic systems that are intended to bypass the blood-brain barrier, overcome multidrug resistance, infiltrate larger tumorous tissue areas, and/or release therapeutic agents in a controlled manner. WIREs Nanomed Nanobiotechnol 2018, 10:e1479. doi: 10.1002/wnan.1479 This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Rami Walid Chakroun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Li Y, Wang F, Cui H. Peptide-Based Supramolecular Hydrogels for Delivery of Biologics. Bioeng Transl Med 2016; 1:306-322. [PMID: 28989975 PMCID: PMC5629974 DOI: 10.1002/btm2.10041] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
The demand for therapeutic biologics has rapidly grown over recent decades, creating a dramatic shift in the pharmaceutical industry from small molecule drugs to biological macromolecular therapeutics. As a result of their large size and innate instability, the systemic, topical, and local delivery of biologic drugs remains a highly challenging task. Although there exist many types of delivery vehicles, peptides and peptide conjugates have received continuously increasing interest as molecular blocks to create a great diversity of supramolecular nanostructures and hydrogels for the effective delivery of biologics, due to their inherent biocompatibility, tunable biodegradability, and responsiveness to various biological stimuli. In this context, we discuss the design principles of supramolecular hydrogels using small molecule peptides and peptide conjugates as molecular building units, and review the recent effort in using these materials for protein delivery and gene delivery.
Collapse
Affiliation(s)
- Yi Li
- Dept. of Chemical and Biomolecular EngineeringThe Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Institute for NanoBioTechnology, The Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
| | - Feihu Wang
- Dept. of Chemical and Biomolecular EngineeringThe Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Institute for NanoBioTechnology, The Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
| | - Honggang Cui
- Dept. of Chemical and Biomolecular EngineeringThe Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Institute for NanoBioTechnology, The Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Dept. of Oncology and Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMD21205
- Center for NanomedicineThe Wilmer Eye Institute, The Johns Hopkins University School of Medicine400 North BroadwayBaltimoreMD21231
| |
Collapse
|