1
|
Hagiwara H, Sonoda K. Impact of flexible hexyl chain ordering in a mononuclear spin crossover iron(III) complex. Dalton Trans 2024; 53:5851-5860. [PMID: 38477362 DOI: 10.1039/d4dt00425f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
A novel FeIII complex [Fe(Hex-tnal)2]BPh4 (1) with a tridentate N2O ligand having an n-hexyl chain, Hex-Htnal (=1-((((1-hexyl-1H-1,2,3-triazol-4-yl)methyl)imino)methyl)naphthalen-2-ol), is reported. Temperature-dependent magnetic susceptibility measurements revealed that 1 exhibits a two-step spin crossover (SCO) transition in the 400-10 K temperature range, including an unusual gradual χMT change above RT (300-345 K) and a hysteretic χMT jump in a narrow temperature range of 345-357 K. These behaviors were also characterized by differential scanning calorimetry. Variable-temperature single-crystal X-ray diffraction studies revealed that the order-disorder transition and conformational change of the hexyl chains and the symmetry change associated with the re-entrant structural phase transition, namely triclinic P1̄ (100-275 K) ↔ monoclinic C2/c (296-340 K) ↔ triclinic P1̄ (360 K), are coupled to variations in intermolecular interactions and the N4O2 coordination environment, resulting in the occurrence of the unusual two-step SCO transition of 1. This study demonstrates that the flexible motion of alkyl substituents in the supramolecular lattice influences the occurrence of anomalous magnetic switching properties.
Collapse
Affiliation(s)
- Hiroaki Hagiwara
- Department of Chemistry, Faculty of Education, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | - Kento Sonoda
- Department of Chemistry, Faculty of Education, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| |
Collapse
|
2
|
Wegeberg C, Häussinger D, Kupfer S, Wenger OS. Controlling the Photophysical Properties of a Series of Isostructural d 6 Complexes Based on Cr 0, Mn I, and Fe II. J Am Chem Soc 2024; 146:4605-4619. [PMID: 38334415 PMCID: PMC10885143 DOI: 10.1021/jacs.3c11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Development of first-row transition metal complexes with similar luminescence and photoredox properties as widely used RuII polypyridines is attractive because metals from the first transition series are comparatively abundant and inexpensive. The weaker ligand field experienced by the valence d-electrons of first-row transition metals challenges the installation of the same types of metal-to-ligand charge transfer (MLCT) excited states as in precious metal complexes, due to rapid population of energetically lower-lying metal-centered (MC) states. In a family of isostructural tris(diisocyanide) complexes of the 3d6 metals Cr0, MnI, and FeII, the increasing effective nuclear charge and ligand field strength allow us to control the energetic order between the 3MLCT and 3MC states, whereas pyrene decoration of the isocyanide ligand framework provides control over intraligand (ILPyr) states. The chromium(0) complex shows red 3MLCT phosphorescence because all other excited states are higher in energy. In the manganese(I) complex, a microsecond-lived dark 3ILPyr state, reminiscent of the types of electronic states encountered in many polyaromatic hydrocarbon compounds, is the lowest and becomes photoactive. In the iron(II) complex, the lowest MLCT state has shifted to so much higher energy that 1ILPyr fluorescence occurs, in parallel to other excited-state deactivation pathways. Our combined synthetic-spectroscopic-theoretical study provides unprecedented insights into how effective nuclear charge, ligand field strength, and ligand π-conjugation affect the energetic order between MLCT and ligand-based excited states, and under what circumstances these individual states become luminescent and exploitable in photochemistry. Such insights are the key to further developments of luminescent and photoredox-active first-row transition metal complexes.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Kulmaczewski R, Halcrow MA. Iron(II) complexes of 2,6-bis(imidazo[1,2- a]pyridin-2-yl)pyridine and related ligands with annelated distal heterocyclic donors. Dalton Trans 2023; 52:14928-14940. [PMID: 37799008 DOI: 10.1039/d3dt02747c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Following a published synthesis of 2,6-bis(imidazo[1,2-a]pyridin-2-yl)pyridine (L1), treatment of α,α'-dibromo-2,6-diacetylpyridine with 2 equiv. 2-aminopyrimidine or 2-aminoquinoline in refluxing acetonitrile respectively gives 2,6-bis(imidazo[1,2-a]pyrimidin-2-yl)pyridine (L2) and 2,6-bis(imidazo[1,2-a]quinolin-2-yl)pyridine (L3). Solvated crystals of [Fe(L1)2][BF4]2 (1[BF4]2) and [Fe(L2)2][BF4]2 (2[BF4]2) are mostly high-spin, although one solvate of 1[BF4]2 undergoes thermal spin-crossover on cooling. The iron coordination geometry is consistently distorted in crystals of 2[BF4]2 which may reflect the influence of intramolecular, inter-ligand N⋯π interactions on the molecular conformation. Only 1 : 1 Fe : L3 complexes were observed in solution, or isolated in the solid state; a crystal structure of [FeBr(py)2L3]Br·0.5H2O (py = pyridine) is presented. A solvate crystal structure of high-spin [Fe(L4)2][BF4]2 (L4 = 2,6-di{quinolin-2-yl}pyridine; 4[BF4]2) is also described, which exhibits a highly distorted six-coordinate geometry with a helical ligand conformation. The iron(II) complexes are high-spin in solution at room temperature, but 1[BF4]2 and 2[BF4]2 undergo thermal spin-crossover equilibria on cooling. All the compounds exhibit a ligand-based emission in solution at room temperature. Gas phase DFT calculations mostly reproduce the spin state properties of the complexes, but show small anomalies attributed to intramolecular, inter-ligand dispersion interactions in the sterically crowded molecules.
Collapse
Affiliation(s)
- Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT.
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT.
| |
Collapse
|
4
|
Joshi S, Roy Chowdhury S, Mishra S. Spin-state energetics and magnetic anisotropy in penta-coordinated Fe(III) complexes with different axial and equatorial ligand environments. Phys Chem Chem Phys 2023. [PMID: 37367302 DOI: 10.1039/d3cp02182c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The penta-coordinated trigonal-bi-pyramidal (TBP) Fe(III) complex (PMe2Ph)2FeCl3 shows a reduced magnetic anisotropy in its intermediate-spin (IS) state as compared to its methyl-analog (PMe3)2Fe(III)Cl3. In this work, the ligand environment in (PMe2Ph)2FeCl3 is systematically altered by replacing the axial -P with -N and -As, the equatorial -Cl with other halides, and the axial methyl group with an acetyl group. This has resulted in a series of Fe(III) TBP complexes modelled in their IS and high-spin (HS) states. Lighter ligands -N and -F stabilize the complex in the HS state, while the magnetically anisotropic IS state is stabilized by -P and -As at the axial site, and -Cl, -Br, and -I at the equatorial site. Larger magnetic anisotropies appear for complexes with nearly degenerate ground electronic states that are well separated from the higher excited states. This requirement, largely controlled by the d-orbital splitting pattern due to the changing ligand field, is achieved with a certain combination of axial and equatorial ligands, such as -P and -Br, -As and -Br, and -As and -I. In most cases, the acetyl group at the axial site enhances the magnetic anisotropy compared to its methyl counterpart. In contrast, the presence of -I at the equatorial site compromises the uniaxial type of anisotropy of the Fe(III) complex leading to an enhanced rate of quantum tunneling of magnetization.
Collapse
Affiliation(s)
- Shalini Joshi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | | | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
5
|
Cerezo J, Gao S, Armaroli N, Ingrosso F, Prampolini G, Santoro F, Ventura B, Pastore M. Non-Phenomenological Description of the Time-Resolved Emission in Solution with Quantum-Classical Vibronic Approaches-Application to Coumarin C153 in Methanol. Molecules 2023; 28:molecules28093910. [PMID: 37175320 PMCID: PMC10180259 DOI: 10.3390/molecules28093910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
We report a joint experimental and theoretical work on the steady-state spectroscopy and time-resolved emission of the coumarin C153 dye in methanol. The lowest energy excited state of this molecule is characterized by an intramolecular charge transfer thus leading to remarkable shifts of the time-resolved emission spectra, dictated by the methanol reorganization dynamics. We selected this system as a prototypical test case for the first application of a novel computational protocol aimed at the prediction of transient emission spectral shapes, including both vibronic and solvent effects, without applying any phenomenological broadening. It combines a recently developed quantum-classical approach, the adiabatic molecular dynamics generalized vertical Hessian method (Ad-MD|gVH), with nonequilibrium molecular dynamics simulations. For the steady-state spectra we show that the Ad-MD|gVH approach is able to reproduce quite accurately the spectral shapes and the Stokes shift, while a ∼0.15 eV error is found on the prediction of the solvent shift going from gas phase to methanol. The spectral shape of the time-resolved emission signals is, overall, well reproduced, although the simulated spectra are slightly too broad and asymmetric at low energies with respect to experiments. As far as the spectral shift is concerned, the calculated spectra from 4 ps to 100 ps are in excellent agreement with experiments, correctly predicting the end of the solvent reorganization after about 20 ps. On the other hand, before 4 ps solvent dynamics is predicted to be too fast in the simulations and, in the sub-ps timescale, the uncertainty due to the experimental time resolution (300 fs) makes the comparison less straightforward. Finally, analysis of the reorganization of the first solvation shell surrounding the excited solute, based on atomic radial distribution functions and orientational correlations, indicates a fast solvent response (≈100 fs) characterized by the strengthening of the carbonyl-methanol hydrogen bond interactions, followed by the solvent reorientation, occurring on the ps timescale, to maximize local dipolar interactions.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Sheng Gao
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Nicola Armaroli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Francesca Ingrosso
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| | - Giacomo Prampolini
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Barbara Ventura
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| |
Collapse
|
6
|
Bhargav Kumar Y, Kumar N, Narahari Sastry G. First-principles calculations on the micro-solvation of 3d-transition metal ions: solvation versus splitting water. Theor Chem Acc 2023. [DOI: 10.1007/s00214-023-02974-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
7
|
Sinha N, Wenger OS. Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d 6 Complexes with Cr 0, Mn I, Fe II, and Co III. J Am Chem Soc 2023; 145:4903-4920. [PMID: 36808978 PMCID: PMC9999427 DOI: 10.1021/jacs.2c13432] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Many coordination complexes and organometallic compounds with the 4d6 and 5d6 valence electron configurations have outstanding photophysical and photochemical properties, which stem from metal-to-ligand charge transfer (MLCT) excited states. This substance class makes extensive use of the most precious and least abundant metal elements, and consequently there has been a long-standing interest in first-row transition metal compounds with photoactive MLCT states. Semiprecious copper(I) with its completely filled 3d subshell is a relatively straightforward and well explored case, but in 3d6 complexes the partially filled d-orbitals lead to energetically low-lying metal-centered (MC) states that can cause undesirably fast MLCT excited state deactivation. Herein, we discuss recent advances made with isoelectronic Cr0, MnI, FeII, and CoIII compounds, for which long-lived MLCT states have become accessible over the past five years. Furthermore, we discuss possible future developments in the search for new first-row transition metal complexes with partially filled 3d subshells and photoactive MLCT states for next-generation applications in photophysics and photochemistry.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Zobel JP, Kruse A, Baig O, Lochbrunner S, Bokarev SI, Kühn O, González L, Bokareva OS. Can range-separated functionals be optimally tuned to predict spectra and excited state dynamics in photoactive iron complexes? Chem Sci 2023; 14:1491-1502. [PMID: 36794199 PMCID: PMC9906774 DOI: 10.1039/d2sc05839a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Density functional theory is an efficient computational tool to investigate photophysical and photochemical processes in transition metal complexes, giving invaluable assistance in interpreting spectroscopic and catalytic experiments. Optimally tuned range-separated functionals are particularly promising, as they were created to address some of the fundamental deficiencies present in approximate exchange-correlation functionals. In this paper, we scrutinize the selection of optimally tuned parameters and its influence on the excited state dynamics, using the example of the iron complex [Fe(cpmp)2]2+ with push-pull ligands. Various tuning strategies are contemplated based on pure self-consistent DFT protocols, as well as on the comparison with experimental spectra and multireference CASPT2 results. The two most promising sets of optimal parameters are then employed to carry out nonadiabatic surface-hopping dynamics simulations. Intriguingly, we find that the two sets lead to very different relaxation pathways and timescales. While the set of optimal parameters from one of the self-consistent DFT protocols predicts the formation of long-lived metal-to-ligand charge transfer triplet states, the set in better agreement with CASPT2 calculations leads to deactivation in the manifold of metal-centered states, in better agreement with the experimental reference data. These results showcase the complexity of iron-complex excited state landscapes and the difficulty of obtaining an unambiguous parametrization of long-range corrected functionals without experimental input.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 191090 ViennaAustria
| | - Ayla Kruse
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-24 18059 Rostock Germany .,Department of Life, Light and Matter, University of Rostock 18051 Rostock Germany
| | - Omar Baig
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19 1090 Vienna Austria
| | - Stefan Lochbrunner
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-24 18059 Rostock Germany .,Department of Life, Light and Matter, University of Rostock 18051 Rostock Germany
| | - Sergey I. Bokarev
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-2418059 RostockGermany,Chemistry Department, Technical University of Munich, Lichtenbergstr. 4Garching 85748Germany
| | - Oliver Kühn
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-24 18059 Rostock Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19 1090 Vienna Austria
| | - Olga S. Bokareva
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-2418059 RostockGermany,Institute of Physics, University of KasselHeinrich-Plett-Straße 4034132 KasselGermany
| |
Collapse
|
9
|
Curtin GM, Jakubikova E. Extended π-Conjugated Ligands Tune Excited-State Energies of Iron(II) Polypyridine Dyes. Inorg Chem 2022; 61:18850-18860. [DOI: 10.1021/acs.inorgchem.2c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Gregory M. Curtin
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
A series of new Fe(II) coordination polymers based-on [Hg(XCN)3]− or [Hg(XCN)4]2− (X = S, Se) building blocks: Synthesis, crystal structure and magnetic property. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Moll J, Naumann R, Sorge L, Förster C, Gessner N, Burkhardt L, Ugur N, Nuernberger P, Seidel W, Ramanan C, Bauer M, Heinze K. Pseudo-Octahedral Iron(II) Complexes with Near-Degenerate Charge Transfer and Ligand Field States at the Franck-Condon Geometry. Chemistry 2022; 28:e202201858. [PMID: 35862259 DOI: 10.1002/chem.202201858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/07/2023]
Abstract
Increasing the metal-to-ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo- and heteroleptic complexes [Fe(cpmp)2 ]2+ (12+ ) and [Fe(cpmp)(ddpd)]2+ (22+ ) with the tridentate ligands 6,2''-carboxypyridyl-2,2'-methylamine-pyridyl-pyridine (cpmp) and N,N'-dimethyl-N,N'-di-pyridin-2-ylpyridine-2,6-diamine (ddpd) two or one dipyridyl ketone moieties provide low energy π* acceptor orbitals. A good metal-ligand orbital overlap to increase the ligand field splitting is achieved by optimizing the octahedricity through CO and NMe units between the coordinating pyridines which enable the formation of six-membered chelate rings. The push-pull ligand cpmp provides intra-ligand and ligand-to-ligand charge transfer (ILCT, LL'CT) excited states in addition to MLCT excited states. Ground and excited state properties of 12+ and 22+ were accessed by X-ray diffraction analyses, resonance Raman spectroscopy, (spectro)electrochemistry, EPR spectroscopy, X-ray emission spectroscopy, static and time-resolved IR and UV/Vis/NIR absorption spectroscopy as well as quantum chemical calculations.
Collapse
Affiliation(s)
- Johannes Moll
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Lukas Sorge
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Niklas Gessner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lukas Burkhardt
- Department of Chemistry, University of Paderborn, Warburger Str. 100, 33098, Paderborn, Germany
| | - Naz Ugur
- Max-Planck-Institute for Polymer Research, Mainz, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Wolfram Seidel
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Charusheela Ramanan
- Max-Planck-Institute for Polymer Research, Mainz, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Matthias Bauer
- Department of Chemistry, University of Paderborn, Warburger Str. 100, 33098, Paderborn, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
12
|
Missana A, Hauser A, Lawson Daku LM. Environmental Control of the Magnetic Behavior of Transition Metal Complexes: Density Functional Theory Study of Zeolite Y Embedded Complexes [M(bpy) 3] 2+@Y (M = Fe 2+, Co 2+). J Phys Chem A 2022; 126:6221-6235. [PMID: 36067495 DOI: 10.1021/acs.jpca.2c05070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using the supramolecular approach developed for the study of the guest-host interactions in the zeolite Y encapsulated [Fe(bpy)3]2+ compound: [Fe(bpy)3]2+@Y (bpy = 2,2'-bipyridine) [Vargas et al., J. Chem. Theory Comput. 2009, 5, 97-115], we apply density functional theory (DFT) to the study of the influence of zeolite Y encapsulation on the structural and energetic properties of [Co(bpy)3]2+ in the low-spin (LS) and high-spin (HS) states, while revisiting [Fe(bpy)3]2+@Y. Although the accurate prediction of the HS-LS energy difference ΔEHLel remains challenging for current DFT methods, they give accurate estimates of its variation Δ(ΔEHLel) in a series of complexes of a given transition metal ion. Therefore, denoting [M(bpy)3]2+@YSM as the supramolecular model of the inclusion compounds, the values of ΔEHLel for the bpy complexes in the gas phase and in the supercage of zeolite Y were determined by combining the DFT estimates of Δ(ΔEHLel) in the series {[M(NCH)6]2+, [M(bpy)3]2+, and [M(bpy)3]2+@YSM}, with accurate CCSD(T) estimates of ΔEHLel in the benchmark complexes [M(NCH)6]2+ (M = Fe, Co) [Lawson Daku et al., J. Chem. Theory Comput., 2012, 8, 4216-4231]. Generalized gradient approximations as well as global and range-separated hybrids were employed. In order to better account for the key role of dispersion, they were also augmented with the semiempirical D2, D3BJ, and D3BJM dispersion corrections when available. The use of the D3BJ and D3BJM corrections led to similar results, and this is only with the use of the D2 scheme that (i) the free and encapsulated [Fe(bpy)3]2+ are correctly predicted as LS species and that (ii) the encapsulation of both complexes translates into a destabilization of their HS state with respect to their LS state. The increase of the HS-LS energy difference is smaller for [Co(bpy)3]2+ than [Fe(bpy)3]2+ because the HS-LS molecular volume difference ΔVHL in [Co(bpy)3]2+ is ∼50% smaller than in [Fe(bpy)3]2+. Periodic DFT calculations performed on crystalline [M(bpy)3]2+@Y show that the employed [M(bpy)3]2+@YSM supramolecular model allows the influence of encapsulation on the geometry and the spin-state energetics of [M(bpy)3]2+ (M = Fe, Co) to be quantitatively captured.
Collapse
Affiliation(s)
- Andrea Missana
- Université de Genève, 30 quai Ernest-Ansermet, CH-1211Genève 4, Switzerland
| | - Andreas Hauser
- Université de Genève, 30 quai Ernest-Ansermet, CH-1211Genève 4, Switzerland
| | | |
Collapse
|
13
|
Meng Q, Chen J, Ma J, Zhang X, Chen J. Adiabatic models for the quantum dynamics of surface scattering with lattice effects. Phys Chem Chem Phys 2022; 24:16415-16436. [PMID: 35766107 DOI: 10.1039/d2cp01560a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, we review models for the lattice effects in quantum dynamics calculations on surface scattering, which is important to modeling heterogeneous catalysis for achieving an interpretation of experimental measurements. Unlike dynamics models for reactions in the gas phase, those for heterogeneous reactions have to include the effects of the surface. For manageable computational costs in calculations, the effects of static surface (SS) are firstly modeled as this is simply and easily implemented. Then, the SS model has to be improved to include the effects of the flexible surface, that is the lattice effects. To do this, various surface models have been designed where the coordinates of the surface atoms are introduced in the Hamiltonian operator, especially those of the top surface atom. Based on this model Hamiltonian operator, extensive multi-dimension quantum dynamics calculations can be performed to recover the lattice effects. Here, we first review an overview of the techniques in constructing the Hamiltonian operator, which is a sum of the kinetic energy operator (KEO) and potential energy surface (PES). Since the PES containing the coordinates of the surface atoms in a cell is still expensive, the SS model is often accepted. We consider a mathematical model, called the coupled harmonic oscillator (CHO) model, to introduce the concepts of adiabatic and diabatic representations for separating the molecule and surface. Under the adiabatic model, we further introduce the expansion model where the potential function is Taylor expanded around the optimized geometry of the surface. By an expansion model truncated at the first and second order, various coupling surface models between the molecule and surface are derived. Moreover, by further and deeply understanding the adiabatic representation, an effective Hamiltonian operator is obtained by optimizing the total wave function in factorized form. By this factorized form of wave function and effective Hamiltonian operator, the geometry phase of the surface wave function is theoretically found. This theoretical prediction may be measured by carefully designing experiments. Finally, discussions on the adiabatic representation, the PES construction, and possibility of the classical-dynamics solutions are given. Based on these discussions, a simple outlook on the dynamics of photocatalytics is finally given.
Collapse
Affiliation(s)
- Qingyong Meng
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Junbo Chen
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China. .,Xi'an Modern Chemistry Research Institute, China North Industries Group Corp., Ltd., East Zhangba Road 168, 710065 Xi'an, China
| | - Jianxing Ma
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Xingyu Zhang
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao Road West 155, 350002 Fuzhou, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Optoelectronic Industry Base at High-tech Zone, 350108 Fuzhou, China
| |
Collapse
|
14
|
Drosou M, Mitsopoulou CA, Pantazis DA. Reconciling Local Coupled Cluster with Multireference Approaches for Transition Metal Spin-State Energetics. J Chem Theory Comput 2022; 18:3538-3548. [PMID: 35582788 PMCID: PMC9202354 DOI: 10.1021/acs.jctc.2c00265] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Spin-state energetics
of transition metal complexes remain one
of the most challenging targets for electronic structure methods.
Among single-reference wave function approaches, local correlation
approximations to coupled cluster theory, most notably the domain-based
local pair natural orbital (DLPNO) approach, hold the promise of bringing
the accuracy of coupled cluster theory with single, double, and perturbative
triple excitations, CCSD(T), to molecular systems of realistic size
with acceptable computational cost. However, recent studies on spin-state
energetics of iron-containing systems raised doubts about the ability
of the DLPNO approach to adequately and systematically approximate
energetics obtained by the reference-quality complete active space
second-order perturbation theory with coupled-cluster semicore correlation,
CASPT2/CC. Here, we revisit this problem using a diverse set of iron
complexes and examine several aspects of the application of the DLPNO
approach. We show that DLPNO-CCSD(T) can accurately reproduce both
CASPT2/CC and canonical CCSD(T) results if two basic principles are
followed. These include the consistent use of the improved iterative
(T1) versus the semicanonical perturbative triple corrections
and, most importantly, a simple two-point extrapolation to the PNO
space limit. The latter practically eliminates errors arising from
the default truncation of electron-pair correlation spaces and should
be viewed as standard practice in applications of the method to transition
metal spin-state energetics. Our results show that reference-quality
results can be readily achieved with DLPNO-CCSD(T) if these principles
are followed. This is important also in view of the applicability
of the method to larger single-reference systems and multinuclear
clusters, whose treatment of dynamic correlation would be challenging
for multireference-based approaches.
Collapse
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Christiana A Mitsopoulou
- Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Allen AEA, Tkatchenko A. Machine learning of material properties: Predictive and interpretable multilinear models. SCIENCE ADVANCES 2022; 8:eabm7185. [PMID: 35522750 PMCID: PMC9075804 DOI: 10.1126/sciadv.abm7185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Machine learning models can provide fast and accurate predictions of material properties but often lack transparency. Interpretability techniques can be used with black box solutions, or alternatively, models can be created that are directly interpretable. We revisit material datasets used in several works and demonstrate that simple linear combinations of nonlinear basis functions can be created, which have comparable accuracy to the kernel and neural network approaches originally used. Linear solutions can accurately predict the bandgap and formation energy of transparent conducting oxides, the spin states for transition metal complexes, and the formation energy for elpasolite structures. We demonstrate how linear solutions can provide interpretable predictive models and highlight the new insights that can be found when a model can be directly understood from its coefficients and functional form. Furthermore, we discuss how to recognize when intrinsically interpretable solutions may be the best route to interpretability.
Collapse
|
16
|
Finney BA, Chowdhury SR, Kirkvold C, Vlaisavljevich B. CASPT2 molecular geometries of Fe(II) spin-crossover complexes. Phys Chem Chem Phys 2022; 24:1390-1398. [PMID: 34981806 DOI: 10.1039/d1cp04885f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using fully internally contracted (FIC)-CASPT2 analytical gradients, geometry optimizations of spin-crossover complexes are reported. This approach is tested on a series of Fe(II) complexes with different sizes, ranging from 13 to 61 atoms. A combination of active space and basis set choices are employed to investigate their role in determining reliable molecular geometries. The reported strategy demonstrates that a wave function-based level of theory can be used to optimize the geometries of metal complexes in reasonable times and enables one to treat the molecular geometry and electronic structure of the complexes using the same level of theory. For a series of smaller Fe(II) SCO complexes, strong field ligands in the LS state result in geometries with the largest differences between DFT and CASPT2; however, good agreement overall is observed between DFT and CASPT2. For the larger complexes, moderate sized basis sets yield geometries that compare well with DFT and available experimental data. We recommend using the (10e,12o) active space since convergence to a minimum structure was more efficient than with truncated active spaces despite having similar Fe-ligand bond distances.
Collapse
Affiliation(s)
- Brian A Finney
- University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA.
| | - Sabyasachi Roy Chowdhury
- University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA.
| | - Clara Kirkvold
- University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA.
| | - Bess Vlaisavljevich
- University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA.
| |
Collapse
|
17
|
Exploitation of Structure‐Property Relationships towards Multi‐Dimensional Applications of a Paddle‐Wheel Cu(II) Compound. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Shahid N, Burrows KE, Pask CM, Cespedes O, Howard MJ, McGowan PC, Halcrow MA. Heteroleptic iron( ii) complexes of chiral 2,6-bis(oxazolin-2-yl)-pyridine (PyBox) and 2,6-bis(thiazolin-2-yl)pyridine ligands – the interplay of two different ligands on the metal ion spin sate. Dalton Trans 2022; 51:4262-4274. [DOI: 10.1039/d2dt00393g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The spin-crossover properties of [Fe(LR)L][ClO4]2 (LR = a chiral PyBox {L1R} or ThioPyBox {L2R} derivative) show subtle differences depending on the tridentate ‘L’ co-ligand.
Collapse
Affiliation(s)
- Namrah Shahid
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| | - Kay E. Burrows
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| | | | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, WH Bragg Building, Leeds, UK LS2 9JT
| | - Mark J. Howard
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| | - Patrick C. McGowan
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| | - Malcolm A. Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT
| |
Collapse
|
19
|
Magra K, Francés‐Monerris A, Cebrián C, Monari A, Haacke S, Gros PC. Bidentate Pyridyl‐NHC Ligands: Synthesis, Ground and Excited State Properties of Their Iron(II) Complexes and the Role of the fac/mer Isomerism. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kévin Magra
- Université de Lorraine, CNRS, L2CM 57000 Metz France
| | | | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT 54000 Nancy France
- Université de de Paris and CNRS, Itodys 75006 Paris France
| | - Stefan Haacke
- Université de Strasbourg, CNRS, IPCMS 67000 Strasbourg France
| | | |
Collapse
|
20
|
Vidal D, Cirera J, Ribas-Arino J. Accurate calculation of spin-state energy gaps in Fe(III) spin-crossover systems using density functional methods. Dalton Trans 2021; 50:17635-17642. [PMID: 34806100 DOI: 10.1039/d1dt03335b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fe(III) complexes are receiving ever-increasing attention as spin crossover (SCO) systems because they are usually air stable, as opposed to Fe(II) complexes, which are prone to oxidation. Here, we present the first systematic study exclusively devoted to assess the accuracy of several exchange-correlation functionals when it comes to predicting the energy gap between the high-spin (S = 5/2) and the low-spin (S = 1/2) states of Fe(III) complexes. Using a dataset of 24 different Fe(III) hexacoordinated complexes, it is demonstrated that the B3LYP* functional is an excellent choice not only for predicting spin-state energy gaps for Fe(III) complexes undergoing spin-transitions but also for discriminating Fe(III) complexes that are either low- or high-spin in the whole range of temperatures. Our benchmark study has led to the identification of a very versatile Fe(III) compound whose SCO properties can be engineered upon changing a single axial ligand. Overall, this work demonstrates that B3LYP* is a reliable functional for screening new spin-crossover systems with tailored properties.
Collapse
Affiliation(s)
- Daniel Vidal
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. .,Departament de Ciència de Materials i Química Física and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Jordi Cirera
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Jordi Ribas-Arino
- Departament de Ciència de Materials i Química Física and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
21
|
Wegeberg C, Wenger OS. Luminescent First-Row Transition Metal Complexes. JACS AU 2021; 1:1860-1876. [PMID: 34841405 PMCID: PMC8611671 DOI: 10.1021/jacsau.1c00353] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/25/2023]
Abstract
Precious and rare elements have traditionally dominated inorganic photophysics and photochemistry, but now we are witnessing a paradigm shift toward cheaper and more abundant metals. Even though emissive complexes based on selected first-row transition metals have long been known, recent conceptual breakthroughs revealed that a much broader range of elements in different oxidation states are useable for this purpose. Coordination compounds of V, Cr, Mn, Fe, Co, Ni, and Cu now show electronically excited states with unexpected reactivity and photoluminescence behavior. Aside from providing a compact survey of the recent conceptual key advances in this dynamic field, our Perspective identifies the main design strategies that enabled the discovery of fundamentally new types of 3d-metal-based luminophores and photosensitizers operating in solution at room temperature.
Collapse
|
22
|
Kumar N, Kumar YB, Sarma H, Sastry GN. Fate of Sc-Ion Interaction With Water: A Computational Study to Address Splitting Water Versus Solvating Sc Ion. Front Chem 2021; 9:738852. [PMID: 34733820 PMCID: PMC8558820 DOI: 10.3389/fchem.2021.738852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
An exhaustive study of Sc-ion interaction with water molecules in all its possible oxidation and spin states has been carried out to delineate the relative propensity of Sc ions toward solvation and water splitting. Potential energy surface analysis of the Sc-ion reaction with water molecules, topological analysis of bonds, and the effect of sequential solvation up to 6 water molecules have been examined. Calculated values showed good agreement with the available experimental results. Close-shell systems such as singlet mono- and tricationic Sc ions prefer to split the water molecules. In contrast, the open-shell systems such as triplet mono- and doublet dicationic Sc ions prefer to get solvated than split the water molecule. Topological analysis of electron density predicted the Sc+/2+–water bond as a noncovalent bond while Sc3+–OH2, Sc2+–OH, and Sc+–H bonds as partially covalent in nature. Energy decomposition analysis revealed that Sc ion–water interactions are driven by electrostatic energy followed by polarization energy. The current study reveals that transition metal catalysis can be one of the most effective tools to employ in water splitting, by properly tuning the electrons, spin, and ligands around the catalytic center.
Collapse
Affiliation(s)
- Nandan Kumar
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Y Bhargav Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - Himakshi Sarma
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - G Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| |
Collapse
|
23
|
Kwon HY, Ashley DC, Jakubikova E. Halogenation affects driving forces, reorganization energies and "rocking" motions in strained [Fe(tpy) 2] 2+ complexes. Dalton Trans 2021; 50:14566-14575. [PMID: 34586133 DOI: 10.1039/d1dt02314d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlling the energetics of spin crossover (SCO) in Fe(II)-polypyridine complexes is critical for designing new multifunctional materials or tuning the excited-state lifetimes of iron-based photosensitizers. It is well established that the Fe-N "breathing" mode is important for intersystem crossing from the singlet to the quintet state, but this does not preclude other, less obvious, structural distortions from affecting SCO. Previous work has shown that halogenation at the 6 and 6'' positions of tpy (tpy = 2,2';6',2''-terpyridine) in [Fe(tpy)2]2+ dramatically increased the lifetime of the excited MLCT state and also had a large impact on the ground state spin-state energetics. To gain insight into the origins of these effects, we used density functional theory calculations to explore how halogenation impacts spin-state energetics and molecular structure in this system. Based on previous work we focused on the ligand "rocking" motion associated with SCO in [Fe(tpy)2]2+ by constructing one-dimensional potential energy surfaces (PESs) along the tpy rocking angle for various spin states. It was found that halogenation has a clear and predictable impact on ligand rocking and spin-state energetics. The rocking is correlated to numerous other geometrical distortions, all of which likely affect the reorganization energies for spin-state changes. We have quantified trends in reorganization energy and also driving force for various spin-state changes and used them to interpret the experimentally measured excited-state lifetimes.
Collapse
Affiliation(s)
- Hyuk-Yong Kwon
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, USA.
| | - Daniel C Ashley
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, USA.
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, USA.
| |
Collapse
|
24
|
Taylor MG, Nandy A, Lu CC, Kulik HJ. Deciphering Cryptic Behavior in Bimetallic Transition-Metal Complexes with Machine Learning. J Phys Chem Lett 2021; 12:9812-9820. [PMID: 34597514 DOI: 10.1021/acs.jpclett.1c02852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate an alternative, data-driven approach to uncovering structure-property relationships for the rational design of heterobimetallic transition-metal complexes that exhibit metal-metal bonding. We tailor graph-based representations of the metal-local environment for these complexes for use in multiple linear regression and kernel ridge regression (KRR) models. We curate a set of 28 experimentally characterized complexes to develop a multiple linear regression model for oxidation potentials. We achieve good accuracy (mean absolute error of 0.25 V) and preserve transferability to unseen experimental data with a new ligand structure. We also train a KRR model on a subset of 330 structurally characterized heterobimetallics to predict the degree of metal-metal bonding. This KRR model predicts relative metal-metal bond lengths in the test set to within 5%, and analysis of key features reveals the fundamental atomic contributions (e.g., the valence electron configuration) that most strongly influence the behavior of these complexes. Our work provides guidance for rational bimetallic design, suggesting that properties, including the formal shortness ratio, should be transferable from one period to another.
Collapse
Affiliation(s)
- Michael G Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Connie C Lu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Capel Berdiell I, Davies DJ, Woodworth J, Kulmaczewski R, Cespedes O, Halcrow MA. Structures and Spin States of Iron(II) Complexes of Isomeric 2,6-Di(1,2,3-triazolyl)pyridine Ligands. Inorg Chem 2021; 60:14988-15000. [PMID: 34547208 DOI: 10.1021/acs.inorgchem.1c02404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron(II) complex salts of 2,6-di(1,2,3-triazol-1-yl)pyridine (L1) are unexpectedly unstable in undried solvent. This is explained by the isolation of [Fe(L1)4(H2O)2][ClO4]2 and [Fe(NCS)2(L1)2(H2O)2]·L1, containing L1 bound as a monodentate ligand rather than in the expected tridentate fashion. These complexes associate into 44 grid structures through O-H···N hydrogen bonding; a solvate of a related 44 coordination framework, catena-[Cu(μ-L1)2(H2O)2][BF4]2, is also presented. The isomeric ligands 2,6-di(1,2,3-triazol-2-yl)pyridine (L2) and 2,6-di(1H-1,2,3-triazol-4-yl)pyridine (L3) bind to iron(II) in a more typical tridentate fashion. Solvates of [Fe(L3)2][ClO4]2 are low-spin and diamagnetic in the solid state and in solution, while [Fe(L2)2][ClO4]2 and [Co(L3)2][BF4]2 are fully high-spin. Treatment of L3 with methyl iodide affords 2,6-di(2-methyl-1,2,3-triazol-4-yl)pyridine (L4) and 2-(1-methyl-1,2,3-triazol-4-yl)-6-(2-methyl-1,2,3-triazol-4-yl)pyridine (L5). While salts of [Fe(L5)2]2+ are low-spin in the solid state, [Fe(L4)2][ClO4]2·H2O is high-spin, and [Fe(L4)2][ClO4]2·3MeNO2 exhibits a hysteretic spin transition to 50% completeness at T1/2 = 128 K (ΔT1/2 = 6 K). This transition proceeds via a symmetry-breaking phase transition to an unusual low-temperature phase containing three unique cation sites with high-spin, low-spin, and 1:1 mixed-spin populations. The unusual distribution of the spin states in the low-temperature phase reflects "spin-state frustration" of the mixed-spin cation site by an equal number of high-spin and low-spin nearest neighbors. Gas-phase density functional theory calculations reproduce the spin-state preferences of these and some related complexes. These highlight the interplay between the σ-basicity and π-acidity of the heterocyclic donors in this ligand type, which have opposing influences on the molecular ligand field. The Brønsted basicities of L1-L3 are very sensitive to the linkage isomerism of their triazolyl donors, which explains why their iron complex spin states show more variation than the better-known iron(II)/2,6-dipyrazolylpyridine system.
Collapse
Affiliation(s)
- Izar Capel Berdiell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Daniel J Davies
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Jack Woodworth
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, E. C. Stoner Building, Leeds LS2 9JT, U.K
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| |
Collapse
|
26
|
Shahid N, Burrows KE, Howard MJ, Pask CM, Cespedes O, McGowan PC, Halcrow MA. Spin-States of Diastereomeric Iron(II) Complexes of 2,6-Bis(thiazolin-2-yl)pyridine (ThioPyBox) Ligands and a Comparison with the Corresponding PyBox Derivatives. Inorg Chem 2021; 60:14336-14348. [PMID: 34472842 DOI: 10.1021/acs.inorgchem.1c01988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This report investigates homoleptic iron(II) complexes of thiazolinyl analogues of chiral PyBox tridentate ligands: 2,6-bis(4-phenyl-4,5-dihydrothiazol-2-yl)pyridine (L1Ph), 2,6-bis(4-isopropyl-4,5-dihydrothiazol-2-yl)pyridine (L1iPr), and 2,6-bis(4-tert-butyl-4,5-dihydrothiazol-2-yl)pyridine (L1t-Bu). Crystallographic data imply the larger and more flexible thiazolinyl rings reduce steric clashes between the R substituents in homochiral [Fe((R)-L1R)2]2+ or [Fe((S)-L1R)2]2+ (R = Ph, iPr, or t-Bu), compared to their PyBox (L2R) analogues. Conversely, the larger heterocyclic S atoms are in close contact with the R substituents in heterochiral [Fe((R)-L1Ph)((S)-L1Ph)]2+, giving it a more sterically hindered ligand environment than that in [Fe((R)-L2Ph)((S)-L2Ph)]2+ (L2Ph = 2,6-bis(4-phenyl-4,5-dihydrooxazol-2-yl)pyridine). Preformed [Fe((R)-L1Ph)((S)-L1Ph)]2+ and [Fe((R)-L1iPr)((S)-L1iPr)]2+ do not racemize by ligand redistribution in CD3CN solution, but homochiral [Fe(L1iPr)2]2+ and [Fe(L1t-Bu)2]2+ both undergo partial ligand displacement in that solvent. Homochiral [Fe(L1Ph)2]2+ and [Fe(L1iPr)2]2+ exhibit spin-crossover equilibria in CD3CN, centered at 344 ± 6 K and 277 ± 1 K respectively, while their heterochiral congeners are essentially low-spin within the liquid range of the solvent. These data imply that the diastereomers of [Fe(L1Ph)2]2+ and [Fe(L1iPr)2]2+ show a greater difference in their spin-state behaviors than was previous found for [Fe(L2Ph)2]2+. Gas-phase DFT calculations (B86PW91/def2-SVP) of the [Fe(L1R)2]2+ and [Fe(L2R)2]2+ complexes reproduce most of the observed trends, but they overstabilize the high-spin state of SCO-active [Fe(L1iPr)2]2+ by ca. 1.5 kcal mol-1. This might reflect the influence of intramolecular dispersion interactions on the spin states of these compounds. Attempts to model this with the dispersion-corrected functionals B97-D2 or PBE-D3 were less successful than our original protocol, confirming that the spin states of sterically hindered molecules are a challenging computational problem.
Collapse
Affiliation(s)
- Namrah Shahid
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Kay E Burrows
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Mark J Howard
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Christopher M Pask
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, E. C. Stoner Building, Leeds LS2 9JT, United Kingdom
| | - Patrick C McGowan
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
27
|
Gaffney KJ. Capturing photochemical and photophysical transformations in iron complexes with ultrafast X-ray spectroscopy and scattering. Chem Sci 2021; 12:8010-8025. [PMID: 34194691 PMCID: PMC8208315 DOI: 10.1039/d1sc01864g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Light-driven chemical transformations provide a compelling approach to understanding chemical reactivity with the potential to use this understanding to advance solar energy and catalysis applications. Capturing the non-equilibrium trajectories of electronic excited states with precision, particularly for transition metal complexes, would provide a foundation for advancing both of these objectives. Of particular importance for 3d metal compounds is characterizing the population dynamics of charge-transfer (CT) and metal-centered (MC) electronic excited states and understanding how the inner coordination sphere structural dynamics mediate the interaction between these states. Recent advances in ultrafast X-ray laser science has enabled the electronic excited state dynamics in 3d metal complexes to be followed with unprecedented detail. This review will focus on simultaneous X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS) studies of iron coordination and organometallic complexes. These simultaneous XES-XSS studies have provided detailed insight into the mechanism of light-induced spin crossover in iron coordination compounds, the interaction of CT and MC excited states in iron carbene photosensitizers, and the mechanism of Fe-S bond dissociation in cytochrome c.
Collapse
Affiliation(s)
- Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| |
Collapse
|
28
|
Ghobadi TGU, Ghobadi A, Demirtas M, Buyuktemiz M, Ozvural KN, Yildiz EA, Erdem E, Yaglioglu HG, Durgun E, Dede Y, Ozbay E, Karadas F. Building an Iron Chromophore Incorporating Prussian Blue Analogue for Photoelectrochemical Water Oxidation. Chemistry 2021; 27:8966-8976. [PMID: 33929068 DOI: 10.1002/chem.202100654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 11/06/2022]
Abstract
The replacement of traditional ruthenium-based photosensitizers with low-cost and abundant iron analogs is a key step for the advancement of scalable and sustainable dye-sensitized water splitting cells. In this proof-of-concept study, a pyridinium ligand coordinated pentacyanoferrate(II) chromophore is used to construct a cyanide-based CoFe extended bulk framework, in which the iron photosensitizer units are connected to cobalt water oxidation catalytic sites through cyanide linkers. The iron-sensitized photoanode exhibits exceptional stability for at least 5 h at pH 7 and features its photosensitizing ability with an incident photon-to-current conversion capacity up to 500 nm with nanosecond scale excited state lifetime. Ultrafast transient absorption and computational studies reveal that iron and cobalt sites mutually support each other for charge separation via short bridging cyanide groups and for injection to the semiconductor in our proof-of-concept photoelectrochemical device. The reorganization of the excited states due to the mixing of electronic states of metal-based orbitals subsequently tailor the electron transfer cascade during the photoelectrochemical process. This breakthrough in chromophore-catalyst assemblies will spark interest in dye-sensitization with robust bulk systems for photoconversion applications.
Collapse
Affiliation(s)
- T Gamze Ulusoy Ghobadi
- UNAM - National Nanotechnology Research Center Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Amir Ghobadi
- Department of Electrical and Electronics Engineering and NANOTAM - Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Merve Demirtas
- UNAM - National Nanotechnology Research Center Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Muhammed Buyuktemiz
- Department of Chemistry, Faculty of Science, Gazi University Teknikokullar, 06500, Ankara, Turkey
| | - Kubra N Ozvural
- Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey
| | - Emre Erdem
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - H Gul Yaglioglu
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey
| | - Engin Durgun
- UNAM - National Nanotechnology Research Center Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Yavuz Dede
- Department of Chemistry, Faculty of Science, Gazi University Teknikokullar, 06500, Ankara, Turkey
| | - Ekmel Ozbay
- UNAM - National Nanotechnology Research Center Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.,Department of Electrical and Electronics Engineering and NANOTAM - Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.,Department of Physics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Ferdi Karadas
- UNAM - National Nanotechnology Research Center Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.,Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| |
Collapse
|
29
|
Vittardi SB, Magar RT, Schrage BR, Ziegler CJ, Jakubikova E, Rack JJ. Evidence for a lowest energy 3MLCT excited state in [Fe(tpy)(CN) 3] . Chem Commun (Camb) 2021; 57:4658-4661. [PMID: 33977987 DOI: 10.1039/d1cc01090e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transient absorption data of [FeII(tpy)(CN)3]- reveals spectroscopic signatures indicative of 3MLCT with a ∼10 ps kinetic component. These data are supported by DFT and TD-DFT calculations, which show that excited state ordering is responsive to the number of cyanide ligands on the complex.
Collapse
Affiliation(s)
- Sebastian B Vittardi
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Rajani Thapa Magar
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Briana R Schrage
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Elena Jakubikova
- Knight Chemical Laboratory, Department of Chemistry, University of Akron, Akron, OH, USA.
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
30
|
King DS, Gagliardi L. A Ranked-Orbital Approach to Select Active Spaces for High-Throughput Multireference Computation. J Chem Theory Comput 2021; 17:2817-2831. [PMID: 33860669 DOI: 10.1021/acs.jctc.1c00037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The past decade has seen a great increase in the application of high-throughput computation to a variety of important problems in chemistry. However, one area which has been resistant to the high-throughput approach is multireference wave function methods, in large part due to the technicalities of setting up these calculations and in particular the not always intuitive challenge of active space selection. As we look toward a future of applying high-throughput computation to all areas of chemistry, it is important to prepare these methods for large-scale automation. Here, we propose a ranked-orbital approach to select active spaces with the goal of standardizing multireference methods for high-throughput computation. This method allows for the meaningful comparison of different active space selection schemes and orbital localizations, and we demonstrate the utility of this approach across 1120 multireference calculations for the excitation energies of small molecules. Our results reveal that it is helpful to distinguish the method used to generate orbitals from the method of ranking orbitals in terms of importance for the active space. Additionally, we propose our own orbital ranking scheme that estimates the importance of an orbital for the active space through a pair-interaction framework from orbital energies and features of the Hartree-Fock exchange matrix. We call this new scheme the "approximate pair coefficient" (APC) method and we show that it performs quite well for the test systems presented.
Collapse
Affiliation(s)
- Daniel S King
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
31
|
Castillo CE, Gamba I, Vicens L, Clémancey M, Latour JM, Costas M, Basallote MG. Spin State Tunes Oxygen Atom Transfer towards Fe IV O Formation in Fe II Complexes. Chemistry 2021; 27:4946-4954. [PMID: 33350013 DOI: 10.1002/chem.202004921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 11/08/2022]
Abstract
Oxoiron(IV) complexes bearing tetradentate ligands have been extensively studied as models for the active oxidants in non-heme iron-dependent enzymes. These species are commonly generated by oxidation of their ferrous precursors. The mechanisms of these reactions have seldom been investigated. In this work, the reaction kinetics of complexes [FeII (CH3 CN)2 L](SbF6 )2 ([1](SbF6 )2 and [2](SbF6 )2 ) and [FeII (CF3 SO3 )2 L] ([1](OTf)2 and [2](OTf)2 (1, L=Me,H Pytacn; 2, L=nP,H Pytacn; R,R' Pytacn=1-[(6-R'-2-pyridyl)methyl]-4,7- di-R-1,4,7-triazacyclononane) with Bu4 NIO4 to form the corresponding [FeIV (O)(CH3 CN)L]2+ (3, L=Me,H Pytacn; 4, L=nP,H Pytacn) species was studied in acetonitrile/acetone at low temperatures. The reactions occur in a single kinetic step with activation parameters independent of the nature of the anion and similar to those obtained for the substitution reaction with Cl- as entering ligand, which indicates that formation of [FeIV (O)(CH3 CN)L]2+ is kinetically controlled by substitution in the starting complex to form [FeII (IO4 )(CH3 CN)L]+ intermediates that are converted rapidly to oxo complexes 3 and 4. The kinetics of the reaction is strongly dependent on the spin state of the starting complex. A detailed analysis of the magnetic susceptibility and kinetic data for the triflate complexes reveals that the experimental values of the activation parameters for both complexes are the result of partial compensation of the contributions from the thermodynamic parameters for the spin-crossover equilibrium and the activation parameters for substitution. The observation of these opposite and compensating effects by modifying the steric hindrance at the ligand illustrates so far unconsidered factors governing the mechanism of oxygen atom transfer leading to high-valent iron oxo species.
Collapse
Affiliation(s)
- Carmen E Castillo
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, y Química Inorgánica, Facultad de Ciencias, Instituto de Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, Cádiz, 11510, Spain
| | - Ilaria Gamba
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071, Catalonia, Spain
| | - Laia Vicens
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071, Catalonia, Spain
| | - Martin Clémancey
- CEA, CNRS, IRIG, DIESE, LCBM, Université Grenoble Alpes, pmb, 38000, Grenoble, France
| | - Jean-Marc Latour
- CEA, CNRS, IRIG, DIESE, LCBM, Université Grenoble Alpes, pmb, 38000, Grenoble, France
| | - Miquel Costas
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, 17071, Catalonia, Spain
| | - Manuel G Basallote
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, y Química Inorgánica, Facultad de Ciencias, Instituto de Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, Cádiz, 11510, Spain
| |
Collapse
|
32
|
Farcaş AA, Bende A. Theoretical modeling of the singlet-triplet spin transition in different Ni(II)-diketo-pyrphyrin-based metal-ligand octahedral complexes. Phys Chem Chem Phys 2021; 23:4784-4795. [PMID: 33599640 DOI: 10.1039/d0cp05366j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural stability, charge transfer effects and strength of the spin-orbit couplings in different Ni(ii)-ligand complexes have been studied at the DFT (B3LYP and CAM-B3LYP) and coupled cluster (DLPNO-CCSD(T)) levels of theory. Accordingly, two different, porphyrin- and diketo-pyrphyrin-based four-coordination macrocycles as planar ligands as well as pyridine (or pyrrole) and mesylate anion molecular groups as vertical ligands were considered in order to build metal-organic complexes with octahedral coordination configurations. For each molecular system, the identification of equilibrium geometries and the intersystem crossing (the minimum energy crossing) points between the potential energy surfaces of the singlet and triplet spin states is followed by computing the spin-orbit couplings between the two spin states. Structures, based on the diketo-pyrphyrin macrocycle as the planar ligand, show stronger six-coordination metal-organic complexes due to the extra electrostatic interaction between the positively charged central metal cation and the negatively charged vertical ligands. The results also show that the magnitude of the spin-orbit coupling is influenced by the atomic positions of deprotonations of the ligands, and implicitly the direction of the charge transfer between the ligand and the central metal ion.
Collapse
Affiliation(s)
- Alex-Adrian Farcaş
- Faculty of Physics, "Babeş-Bolyai" University, Mihail Kogalniceanu Street No. 1, Ro-400084 Cluj-Napoca, Romania
| | - Attila Bende
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania.
| |
Collapse
|
33
|
Bilger JB, Kerzig C, Larsen CB, Wenger OS. A Photorobust Mo(0) Complex Mimicking [Os(2,2'-bipyridine) 3] 2+ and Its Application in Red-to-Blue Upconversion. J Am Chem Soc 2021; 143:1651-1663. [PMID: 33434435 DOI: 10.1021/jacs.0c12805] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osmium(II) polypyridines are a well-known class of complexes with luminescent metal-to-ligand charge-transfer (MLCT) excited states that are currently experiencing a revival due to their application potential in organic photoredox catalysis, triplet-triplet annihilation upconversion, and phototherapy. At the same time, there is increased interest in the development of photoactive complexes made from Earth-abundant rather than precious metals. Against this background, we present a homoleptic Mo(0) complex with a new diisocyanide ligand exhibiting different bite angles and a greater extent of π-conjugation than previously reported related chelates. This new design leads to deep red emission, which is unprecedented for homoleptic arylisocyanide complexes of group 6 metals. With a 3MLCT lifetime of 56 ns, an emission band maximum at 720 nm, and a photoluminescence quantum yield of 1.5% in deaerated toluene at room temperature, the photophysical properties are reminiscent of the prototypical [Os(2,2'-bipyridine)3]2+ complex. Under 635 nm irradiation with a cw-laser, the new Mo(0) complex sensitizes triplet-triplet annihilation upconversion of 9,10-diphenylanthracene (DPA), resulting in delayed blue fluorescence with an anti-Stokes shift of 0.93 eV. The photorobustness of the Mo(0) complex and the upconversion quantum yield are high enough to generate a flux of upconverted light that can serve as a sufficiently potent irradiation source for a blue-light-driven photoisomerization reaction. These findings are relevant in the greater contexts of designing new luminophores and photosensitizers for use in red-light-driven photocatalysis, photochemical upconversion, light-harvesting, and phototherapy.
Collapse
Affiliation(s)
- Jakob B Bilger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christopher B Larsen
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
34
|
Abstract
Coordination compounds, characterized by fascinating and tunable electronic properties, are capable of binding easily to proteins, polymers, wires and DNA. Upon irradiation, these molecular systems develop functions finding applications in solar cells, photocatalysis, luminescent and conformational probes, electron transfer triggers and diagnostic or therapeutic tools. The control of these functions is activated by the light wavelength, the metal/ligand cooperation and the environment within the first picoseconds (ps). After a brief summary of the theoretical background, this perspective reviews case studies, from 1st row to 3rd row transition metal complexes, that illustrate how spin-orbit, vibronic coupling and quantum effects drive the photophysics of this class of molecules at the early stage of the photoinduced elementary processes within the fs-ps time scale range.
Collapse
Affiliation(s)
- Chantal Daniel
- Laboratoire de Chimie Quantique, Université de Strasbourg, CNRS UMR7177, Institut Le Bel, 4 Rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
35
|
Dixon IM, Rat S, Sournia-Saquet A, Molnár G, Salmon L, Bousseksou A. On the Spin-State Dependence of Redox Potentials of Spin Crossover Complexes. Inorg Chem 2020; 59:18402-18406. [PMID: 33284611 DOI: 10.1021/acs.inorgchem.0c03043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Resistance switching properties of nanoscale junctions of spin crossover molecules have received recently much interest. In many cases, this property has been traced back to the variation of molecular orbital energies upon spin transition. However, one can also expect a substantial reorganization of the molecular structure due to charge localization, which calls for a better understanding of the relationship between the redox potential and the spin state of the molecule. To investigate this issue, we carried out a detailed density functional theory and variable temperature cyclic voltammetry investigation of the benchmark compound [Fe(HB(1,2,4-triazol-1-yl)3)2] in solution. We show that, for a correct thermodynamical picture, it is necessary to take into account the charge transfer-induced electronic and structural reorganization as well as spin equilibria in the oxidized and reduced species.
Collapse
Affiliation(s)
- Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS/Université Toulouse 3-Paul Sabatier, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse, France
| | - Sylvain Rat
- Laboratoire de Chimie de Coordination, UPR 8241, CNRS and Université de Toulouse, UPS, INP, 205 route de Narbonne, 31077 Toulouse, France
| | - Alix Sournia-Saquet
- Laboratoire de Chimie de Coordination, UPR 8241, CNRS and Université de Toulouse, UPS, INP, 205 route de Narbonne, 31077 Toulouse, France
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination, UPR 8241, CNRS and Université de Toulouse, UPS, INP, 205 route de Narbonne, 31077 Toulouse, France
| | - Lionel Salmon
- Laboratoire de Chimie de Coordination, UPR 8241, CNRS and Université de Toulouse, UPS, INP, 205 route de Narbonne, 31077 Toulouse, France
| | - Azzedine Bousseksou
- Laboratoire de Chimie de Coordination, UPR 8241, CNRS and Université de Toulouse, UPS, INP, 205 route de Narbonne, 31077 Toulouse, France
| |
Collapse
|
36
|
Sárosiné Szemes D, Keszthelyi T, Papp M, Varga L, Vankó G. Quantum-chemistry-aided ligand engineering for potential molecular switches: changing barriers to tune excited state lifetimes. Chem Commun (Camb) 2020; 56:11831-11834. [PMID: 33021253 DOI: 10.1039/d0cc04467a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substitution of terpyridine at the 4' position with electron withdrawing and donating groups is used to tune the quintet lifetime of its iron(ii) complex. DFT calculations suggest that the energy barrier between the quintet and singlet states can be altered significantly upon substitution, inducing a large variation of the lifetime of the photoexcited quintet state. This prediction was experimentally verified by transient optical absorption spectroscopy and good agreement with the trend expected from the calculations was found. This demonstrates that the potential energy landscape can indeed be rationally tailored by relevant modifications based on DFT predictions. This result should pave the way to advancing efficient theory-based ligand engineering of functional molecules to a wide range of applications.
Collapse
|
37
|
Liu F, Duan C, Kulik HJ. Rapid Detection of Strong Correlation with Machine Learning for Transition-Metal Complex High-Throughput Screening. J Phys Chem Lett 2020; 11:8067-8076. [PMID: 32864977 DOI: 10.1021/acs.jpclett.0c02288] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite its widespread use in chemical discovery, approximate density functional theory (DFT) is poorly suited to many targets, such as those containing open-shell, 3d transition metals that can be expected to have strong multireference (MR) character. For discovery workflows to be predictive, we need automated, low-cost methods that can distinguish the regions of chemical space where DFT should be applied from those where it should not. We curate more than 4800 open-shell transition-metal complexes up to hundreds of atoms in size from prior high-throughput DFT studies and evaluate affordable, finite-temperature DFT fractional occupation number (FON)-based MR diagnostics. We show that intuitive measures of strong correlation (i.e., the HOMO-LUMO gap) are not predictive of MR character as judged by FON-based diagnostics. Analysis of independently trained machine learning (ML) models to predict HOMO-LUMO gaps and FON-based diagnostics reveals differences in the metal and ligand sensitivity of the two quantities. We use our trained ML models to rapidly evaluate MR character over a space of ∼187000 theoretical complexes, identifying large-scale trends in spin-state-dependent MR character and finding small HOMO-LUMO gap complexes while ensuring low MR character.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Zhang D, Truhlar DG. Spin Splitting Energy of Transition Metals: A New, More Affordable Wave Function Benchmark Method and Its Use to Test Density Functional Theory. J Chem Theory Comput 2020; 16:4416-4428. [PMID: 32525690 DOI: 10.1021/acs.jctc.0c00518] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurately predicting the spin splitting energy of chemical species is important for understanding their reactivity and magnetic properties, but it is very challenging, especially for molecules containing transition metals. One impediment to progress is the scarcity of accurate benchmark data. Here we report a set of calculations designed to yield reliable benchmarks for simple transition-metal complexes that can be used to test density functional methods that are affordable for large systems of more practical interest. Various wave function methods are tested against experiment for Fe2+, Fe3+, and Co3+, including CASSCF, CASPT2, CASPT3, MRCISD, MRCISD+Q, ACPF, AQCC, CCSD(T), and CASPT2/CCSD(T) and also a new method called CASPT2.5, which is performed by taking the average of the CASPT2 and CASPT3 energies. We find that MRCISD+Q, ACPF, and AQCC require smaller active spaces for good accuracy than are required by CASPT2 and CASPT3, and this aspect may be important for calculations on larger molecules; here we find that CASPT2.5 extrapolated to a complete basis set is the most suitable method-in terms of computational cost and in terms of accuracy on monatomic systems-and therefore we chose this method for molecular benchmarks. Then Kohn-Sham density functional calculations with 60 exchange-correlation functionals are tested for FeF2, FeCl2, and CoF2. We find that MN15-L, M06-SX, and revM06 have very good agreement with CASPT2.5 benchmarks in terms of both the spin splitting energy and the optimized geometry for each spin state. In addition, we recommend def2-TZVP as the most suitable basis set to perform density functional calculations for molecular spin splitting energies; extra polarization functions in the basis set do not help to increase the accuracy of the spin splitting energy in KS calculations.
Collapse
Affiliation(s)
- Dayou Zhang
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
39
|
Flöser B, Guo Y, Riplinger C, Tuczek F, Neese F. Detailed Pair Natural Orbital-Based Coupled Cluster Studies of Spin Crossover Energetics. J Chem Theory Comput 2020; 16:2224-2235. [PMID: 32196337 PMCID: PMC7310951 DOI: 10.1021/acs.jctc.9b01109] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 11/28/2022]
Abstract
In this work, a detailed study of spin-state splittings in three spin crossover model compounds with DLPNO-CCSD(T) is presented. The performance in comparison to canonical CCSD(T) is assessed in detail. It was found that spin-state splittings with chemical accuracy, compared to the canonical results, are achieved when the full iterative triples (T1) scheme and TightPNO settings are applied and relativistic effects are taken into account. Having established the level of accuracy that can be reached relative to the canonical results, we have undertaken a detailed basis set study in the second part of the study. The slow convergence of the results of correlated calculations with respect to basis set extension is particularly acute for spin-state splittings for reasons discussed in detail in this Article. In fact, for some of the studied systems, 5Z basis sets are necessary in order to come close to the basis set limit that is estimated here by basis set extrapolation. Finally, the results of the present work are compared to available literature. In general, acceptable agreement with previous CCSD(T) results is found, although notable deviations stemming from differences in methodology and basis sets are noted. It is noted that the published CASPT2 numbers are far away from the extrapolated CCSD(T) numbers. In addition, dynamic quantum Monte Carlo results differ by several tens of kcal/mol from the CCSD(T) numbers. A comparison to DFT results produced with a range of popular density functionals shows the expected scattering of results and showcases the difficulty of applying DFT to spin-state energies.
Collapse
Affiliation(s)
- Benedikt
M. Flöser
- Institute
for Inorganic Chemistry, University of Kiel, Otto-Hahn-Platz 10, 24118 Kiel, Germany
| | - Yang Guo
- Max-Planck-Institute
for Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim a.d. Ruhr, Germany
| | | | - Felix Tuczek
- Institute
for Inorganic Chemistry, University of Kiel, Otto-Hahn-Platz 10, 24118 Kiel, Germany
| | - Frank Neese
- Max-Planck-Institute
for Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
40
|
Photophysics and Photochemistry of Iron Carbene Complexes for Solar Energy Conversion and Photocatalysis. Catalysts 2020. [DOI: 10.3390/catal10030315] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Earth-abundant first row transition metal complexes are important for the development of large-scale photocatalytic and solar energy conversion applications. Coordination compounds based on iron are especially interesting, as iron is the most common transition metal element in the Earth’s crust. Unfortunately, iron-polypyridyl and related traditional iron-based complexes generally suffer from poor excited state properties, including short excited-state lifetimes, that make them unsuitable for most light-driven applications. Iron carbene complexes have emerged in the last decade as a new class of coordination compounds with significantly improved photophysical and photochemical properties, that make them attractive candidates for a range of light-driven applications. Specific aspects of the photophysics and photochemistry of these iron carbenes discussed here include long-lived excited state lifetimes of charge transfer excited states, capabilities to act as photosensitizers in solar energy conversion applications like dye-sensitized solar cells, as well as recent demonstrations of promising progress towards driving photoredox and photocatalytic processes. Complementary advances towards photofunctional systems with both Fe(II) complexes featuring metal-to-ligand charge transfer excited states, and Fe(III) complexes displaying ligand-to-metal charge transfer excited states are discussed. Finally, we outline emerging opportunities to utilize the improved photochemical properties of iron carbenes and related complexes for photovoltaic, photoelectrochemical and photocatalytic applications.
Collapse
|
41
|
Nandy A, Chu DBK, Harper DR, Duan C, Arunachalam N, Cytter Y, Kulik HJ. Large-scale comparison of 3d and 4d transition metal complexes illuminates the reduced effect of exchange on second-row spin-state energetics. Phys Chem Chem Phys 2020; 22:19326-19341. [DOI: 10.1039/d0cp02977g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The origin of distinct 3d vs. 4d transition metal complex sensitivity to exchange is explored over a large data set.
Collapse
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Daniel B. K. Chu
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Daniel R. Harper
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Chenru Duan
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Naveen Arunachalam
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Yael Cytter
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Heather J. Kulik
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
42
|
Theoretical study of the Fe(btr)2(NCS)2 spin-crossover complex with reparameterized density functionals. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Freitag L, Ma Y, Baiardi A, Knecht S, Reiher M. Approximate Analytical Gradients and Nonadiabatic Couplings for the State-Average Density Matrix Renormalization Group Self-Consistent-Field Method. J Chem Theory Comput 2019; 15:6724-6737. [PMID: 31670947 DOI: 10.1021/acs.jctc.9b00969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present an approximate scheme for analytical gradients and nonadiabatic couplings for calculating state-average density matrix renormalization group self-consistent-field wave function. Our formalism follows closely the state-average complete active space self-consistent-field (SA-CASSCF) ansatz, which employs a Lagrangian, and the corresponding Lagrange multipliers are obtained from a solution of the coupled-perturbed CASSCF (CP-CASSCF) equations. We introduce a definition of the matrix product state (MPS) Lagrange multipliers based on a single-site tensor in a mixed-canonical form of the MPS, such that a sweep procedure is avoided in the solution of the CP-CASSCF equations. We apply our implementation to the optimization of a conical intersection in 1,2-dioxetanone, where we are able to fully reproduce the SA-CASSCF result up to arbitrary accuracy.
Collapse
Affiliation(s)
- Leon Freitag
- Laboratorium für Physikalische Chemie , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Yingjin Ma
- Computer Network Information Center , Chinese Academy of Sciences , Beijing 100190 , China.,Center of Scientific Computing Applications & Research, Chinese Academy of Sciences , Beijing 100190 , China
| | - Alberto Baiardi
- Laboratorium für Physikalische Chemie , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Stefan Knecht
- Laboratorium für Physikalische Chemie , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische Chemie , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| |
Collapse
|
44
|
Braun JD, Lozada IB, Kolodziej C, Burda C, Newman KME, van Lierop J, Davis RL, Herbert DE. Iron(II) coordination complexes with panchromatic absorption and nanosecond charge-transfer excited state lifetimes. Nat Chem 2019; 11:1144-1150. [PMID: 31740761 DOI: 10.1038/s41557-019-0357-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 09/23/2019] [Indexed: 11/09/2022]
Abstract
Replacing current benchmark rare-element photosensitizers with ones based on abundant and low-cost metals such as iron would help facilitate the large-scale implementation of solar energy conversion. To do so, the ability to extend the lifetimes of photogenerated excited states of iron complexes is critical. Here, we present a sensitizer design in which iron(II) centres are supported by frameworks containing benzannulated phenanthridine and quinoline heterocycles paired with amido donors. These complexes exhibit panchromatic absorption and nanosecond charge-transfer excited state lifetimes, enabled by the combination of vacant, energetically accessible heterocycle-based acceptor orbitals and occupied molecular orbitals destabilized by strong mixing between amido nitrogen atoms and iron. This finding shows how ligand design can extend metal-to-ligand charge-transfer-type excited state lifetimes of iron(II) complexes into the nanosecond regime and expand the range of potential applications for iron-based photosensitizers.
Collapse
Affiliation(s)
- Jason D Braun
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Issiah B Lozada
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Charles Kolodziej
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Kelly M E Newman
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.,Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rebecca L Davis
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David E Herbert
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada. .,Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
45
|
Herr P, Glaser F, Büldt LA, Larsen CB, Wenger OS. Long-Lived, Strongly Emissive, and Highly Reducing Excited States in Mo(0) Complexes with Chelating Isocyanides. J Am Chem Soc 2019; 141:14394-14402. [PMID: 31464429 DOI: 10.1021/jacs.9b07373] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Newly discovered tris(diisocyanide)molybdenum(0) complexes are Earth-abundant isoelectronic analogues of the well-known class of [Ru(α-diimine)3]2+ compounds with long-lived 3MLCT (metal-to-ligand charge transfer) excited states that lead to rich photophysics and photochemistry. Depending on ligand design, luminescence quantum yields up to 0.20 and microsecond excited state lifetimes are achieved in solution at room temperature, both significantly better than those for [Ru(2,2'-bipyridine)3]2+. The excited Mo(0) complexes can induce chemical reactions that are thermodynamically too demanding for common precious metal-based photosensitizers, including the widely employed fac-[Ir(2-phenylpyridine)3] complex, as demonstrated on a series of light-driven aryl-aryl coupling reactions. The most robust Mo(0) complex exhibits stable photoluminescence and remains photoactive after continuous irradiation exceeding 2 months. Our comprehensive optical spectroscopic and photochemical study shows that Mo(0) complexes with diisocyanide chelate ligands constitute a new family of luminophores and photosensitizers, which is complementary to precious metal-based 4d6 and 5d6 complexes and represents an alternative to nonemissive Fe(II) compounds. This is relevant in the greater context of sustainable photophysics and photochemistry, as well as for possible applications in lighting, sensing, and catalysis.
Collapse
Affiliation(s)
- Patrick Herr
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Felix Glaser
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Laura A Büldt
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Christopher B Larsen
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| |
Collapse
|
46
|
Kulik HJ. Making machine learning a useful tool in the accelerated discovery of transition metal complexes. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1439] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Heather J. Kulik
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| |
Collapse
|
47
|
Tsaturyan AA, Budnyk AP, Ramalingan C. DFT Study of the CNS Ligand Effect on the Geometry, Spin-State, and Absorption Spectrum in Ruthenium, Iron, and Cobalt Quaterpyridine Complexes. ACS OMEGA 2019; 4:10991-11003. [PMID: 31460197 PMCID: PMC6647971 DOI: 10.1021/acsomega.9b00921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Geometry parameters, total energy of the system in different spin states, harmonic vibrational frequencies, and absorption spectra were computed for a range of mononuclear quaterpyridine Ru(II), Fe(III/II), and Co(III/II) complexes with two axial ambidentate CNS ligands by using density functional theory (DFT) and time-dependent DFT calculations. Both structural and electronic properties were found to be correlating with the type of the binding atom in the CNS ligand (isomerization differs by 4-13 kcal·mol-1). The N-bonding of CNS ligands is energetically favored. It was also found that the low spin (LS) state is the ground state for both Ru(II) and Co(III) complexes regardless of the CNS arrangement. The other complexes are the high-spin (HS) ground-state ones with the only exception of the S-bonded CNS isomer of the Fe(III) complex. The dependencies of energy differences between the HS and LS states versus C demonstrated stabilization of the HS state with an increasing amount of the exact exchange admixture (C) for iron and cobalt complexes. An opposite behavior was observed for ruthenium complexes. The best match in harmonic vibrational frequencies between the experimental and calculated values has been reached at C = 0.15 for all the complexes. The absorption profile of the Fe(II) complex with the alternatively bonded CNS ligands strongly depends on the angle between them. The light-harvesting efficiency of the Fe(II) complexes is very similar (∼0.4) and sufficiently close to that of the Ru(II) complexes. The iron-based coordination compounds are considered as a prospective dye for dye-sensitized solar cells. The results of calculations were completed with experimental reference data, thus providing a systematic compendium for practical use.
Collapse
Affiliation(s)
- Arshak A. Tsaturyan
- Institute
of Physical and Organic Chemistry, Southern
Federal University, Stachki
Av. 194/2, 344090 Rostov-on-Don, Russian Federation
| | - Andriy P. Budnyk
- Southern
Scientific Center, Russian Academy of Sciences, 41 Chehova str, 344006 Rostov-on-Don, Russian
Federation
| | - Chennan Ramalingan
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126 Tamil Nadu, India
| |
Collapse
|
48
|
Britz A, Gawelda W, Assefa TA, Jamula LL, Yarranton JT, Galler A, Khakhulin D, Diez M, Harder M, Doumy G, March AM, Bajnóczi É, Németh Z, Pápai M, Rozsályi E, Sárosiné Szemes D, Cho H, Mukherjee S, Liu C, Kim TK, Schoenlein RW, Southworth SH, Young L, Jakubikova E, Huse N, Vankó G, Bressler C, McCusker JK. Using Ultrafast X-ray Spectroscopy To Address Questions in Ligand-Field Theory: The Excited State Spin and Structure of [Fe(dcpp)2]2+. Inorg Chem 2019; 58:9341-9350. [DOI: 10.1021/acs.inorgchem.9b01063] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Alexander Britz
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Tadesse A. Assefa
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Laser Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Lindsey L. Jamula
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jonathan T. Yarranton
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | | | - Dmitry Khakhulin
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Diez
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Manuel Harder
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anne Marie March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Éva Bajnóczi
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - Mátyás Pápai
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
- Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Emese Rozsályi
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | | | - Hana Cho
- Center for Analytical Chemistry, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Sriparna Mukherjee
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Chang Liu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tae Kyu Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Robert W. Schoenlein
- Ultrafast X-ray Science Laboratory, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Stephen H. Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nils Huse
- Center for Free-Electron Laser Science, University of Hamburg, 22607 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - Christian Bressler
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - James K. McCusker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
49
|
Francés‐Monerris A, Gros PC, Assfeld X, Monari A, Pastore M. Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Philippe C. Gros
- Laboratoire Lorrain de Chimie Moléculaire (L2CM)Université de Lorraine, CNRS 54000 Nancy France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| |
Collapse
|
50
|
Stein CJ, Reiher M. autoCAS: A Program for Fully Automated Multiconfigurational Calculations. J Comput Chem 2019; 40:2216-2226. [DOI: 10.1002/jcc.25869] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher J. Stein
- ETH Zürich, Laboratorium für Physikalische Chemie Vladimir‐Prelog‐Weg 2, 8093 Zürich Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie Vladimir‐Prelog‐Weg 2, 8093 Zürich Switzerland
| |
Collapse
|