1
|
Pérez-Romero A, Cano-Muñoz M, López-Chamorro C, Conejero-Lara F, Palacios O, Dobado JA, Galindo MA. Selective Formation of Pd-DNA Hybrids Using Tailored Palladium-Mediated Base Pairs: Towards Heteroleptic Pd-DNA Systems. Angew Chem Int Ed Engl 2024; 63:e202400261. [PMID: 38246884 DOI: 10.1002/anie.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
The formation of highly organized metal-DNA structures has significant implications in bioinorganic chemistry, molecular biology and material science due to their unique properties and potential applications. In this study, we report on the conversion of single-stranded polydeoxycytidine (dC15 ) into a Pd-DNA supramolecular structure using the [Pd(Aqa)] complex (Aqa=8-amino-4-hydroxyquinoline-2-carboxylic acid) through a self-assembly process. The resulting Pd-DNA assembly closely resembles a natural double helix, with continuous [Pd(Aqa)(C)] (C=cytosine) units serving as palladium-mediated base pairs, forming interbase hydrogen bonds and intrastrand stacking interactions. Notably, the design of the [Pd(Aqa)] complex favours the interaction with cytosine, distinguishing it from our previously reported [Pd(Cheld)] complex (Cheld=chelidamic acid). This finding opens possibilities for creating heteroleptic Pd-DNA hybrids where different complexes specifically bind to nucleobases. We confirmed the Pd-DNA supramolecular structural assembly and selective binding of the complexes using NMR spectroscopy, circular dichroism, mass spectrometry, isothermal titration calorimetry, and DFT calculations.
Collapse
Affiliation(s)
- Antonio Pérez-Romero
- Departamento de Química Inorgánica., Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente., Facultad de Ciencias., Universidad de Granada, Avda Fuentenueva s/n, 18071, Granada, Spain
| | - Mario Cano-Muñoz
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente., Facultad de Ciencias., Universidad de Granada, Avda Fuentenueva s/n, 18071, Granada, Spain
| | - Carmen López-Chamorro
- Departamento de Química Inorgánica., Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente., Facultad de Ciencias., Universidad de Granada, Avda Fuentenueva s/n, 18071, Granada, Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente., Facultad de Ciencias., Universidad de Granada, Avda Fuentenueva s/n, 18071, Granada, Spain
| | - Oscar Palacios
- Departament de Química, Facultat de Ciències., Universitat Autònoma de Barcelona., Campus Ballaterra s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - José A Dobado
- Grupo de Modelización y Diseño Molecular, Departamento de Química Orgánica., Facultad de Ciencias., Universidad de Granada., Avda Fuentenueva s/n, 18071, Granada, Spain
| | - Miguel A Galindo
- Departamento de Química Inorgánica., Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente., Facultad de Ciencias., Universidad de Granada, Avda Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
2
|
Zong L, Kan L, Yuan C, He Y, Zhang W, Qiao X, Zhang X, Liu M, Shi G, Pang X. Chiral Confined Unimolecular Micelles for Controlled In Situ Fabrication of Optically Active Hybrid Nanostructures. J Phys Chem Lett 2023; 14:10361-10368. [PMID: 37948649 DOI: 10.1021/acs.jpclett.3c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Functional nanomaterials made by chiral induction have attracted extensive attention because of their intriguing characteristics and potential applications. However, the precise and controllable fabrication of chiral nanomaterials still remains challenging but is highly desired. In this study, chiral unimolecular micelles with different molecular weights and chiroptical activities were prepared by photoinduced atom transfer radical polymerization (photoATRP). Through nanoconfined growth, the chiral plasmonic nanoparticle assemblies with predesigned size and morphology were prepared using chiral unimolecular micelles as nanoreactors. The controllability over chiral assemblies and the size effect on chiroptical properties were also investigated. Furthermore, chiral complexes with absorption asymmetry and circularly polarized luminescence (glum = 4.25 × 10-4) were easily constructed via mixing of organic fluorescent molecules and chiral templates based on intermolecular hydrogen bonds. Such results indicated that our unimolecular-micelle-based templates enable the controllable preparation of both inorganic and organic chiral nanostructures with tailored dimensions, sizes, compositions, and optical activities.
Collapse
Affiliation(s)
- Lingxin Zong
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Longwang Kan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chenrong Yuan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Materials Engineering; Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, China
| | - Xiaomeng Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Hong T, Zhou W, Tan S, Cai Z. A cooperation tale of biomolecules and nanomaterials in nanoscale chiral sensing and separation. NANOSCALE HORIZONS 2023; 8:1485-1508. [PMID: 37656443 DOI: 10.1039/d3nh00133d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The cooperative relationship between biomolecules and nanomaterials makes up a beautiful tale about nanoscale chiral sensing and separation. Biomolecules are considered a fabulous chirality 'donor' to develop chiral sensors and separation systems. Nature has endowed biomolecules with mysterious chirality. Various nanomaterials with specific physicochemical attributes can realize the transmission and amplification of this chirality. We focus on highlighting the advantages of combining biomolecules and nanomaterials in nanoscale chirality. To enhance the sensors' detection sensitivity, novel cooperation approaches between nanomaterials and biomolecules have attracted tremendous attention. Moreover, innovative biomolecule-based nanocomposites possess great importance in developing chiral separation systems with improved assay performance. This review describes the formation of a network based on nanomaterials and biomolecules mainly including DNA, proteins, peptides, amino acids, and polysaccharides. We hope this tale will record the perpetual relation between biomolecules and nanomaterials in nanoscale chirality.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, Jiangsu 213100, China
| |
Collapse
|
4
|
García Coll J, Ulrich S. Nucleic-Acid-Templated Synthesis of Smart Polymer Vectors for Gene Delivery. Chembiochem 2023; 24:e202300333. [PMID: 37401911 DOI: 10.1002/cbic.202300333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Nucleic acids are information-rich and readily available biomolecules, which can be used to template the polymerization of synthetic macromolecules. Here, we highlight the control over the size, composition, and sequence one can nowadays obtain by using this methodology. We also highlight how templated processes exploiting dynamic covalent polymerization can, in return, result in therapeutic nucleic acids fabricating their own dynamic delivery vector - a biomimicking concept that can provide original solutions for gene therapies.
Collapse
Affiliation(s)
- José García Coll
- IBMM, Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| |
Collapse
|
5
|
Dutta D, Sharma P, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Baishya T, Bhattacharyya MK. Supramolecular assemblies involving unconventional non-covalent contacts in pyrazole-based coordination compounds of Co(II) and Cu(II) pyridinedicarboxylates: Antiproliferative evaluation and theoretical studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Ferrer M, Gallen A, Martínez M, Rocamora M, Puttreddy R, Rissanen K. Homo- and heterometallic chiral dynamic architectures from allyl-palladium(II) building blocks. Dalton Trans 2022; 51:5913-5928. [PMID: 35348142 DOI: 10.1039/d1dt03706d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New chiral tetranuclear square-like homo- and heterometallamacrocycles containing allyl-palladium and either {Pd(P-P)*} or {Pt(P-P)*} optically pure moieties (P-P* = (2S,3S)-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphanyl)butane ((S,S)-DIOP) and (2S,4S)-2,4-bis(diphenylphosphanyl)pentane ((S,S)-BDPP)) have been obtained by the self-assembly of [Pd(η3-2-Me-C3H4)(4-PPh2py)2]+ and [M(P-P)*(H2O)2]2+ building blocks in a 1 : 1 molar ratio. The supramolecular assemblies thus prepared [{Pd(η3-2-Me-C3H4)}2(4-PPh2py)4{M(P-P)*}2](CF3SO3)6 (M = Pd, Pt) have been fully characterised by multinuclear NMR spectroscopy and MS spectrometry. The structures display remarkable differences on their dynamic behaviour in solution that depend on the lability and thermodynamic strength of M-py bonds. The structural characteristics of the new metallamacrocyles obtained have also been unambiguously established by XRD analysis. The architectures have been assayed as catalytic precursors in the asymmetric allylic alkylation reaction.
Collapse
Affiliation(s)
- Montserrat Ferrer
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| | - Albert Gallen
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain.
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mercè Rocamora
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, E-08028, Barcelona, Spain.
| | - Rakesh Puttreddy
- Department of Chemistry, University of Jyväskylä, POB 35, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä, POB 35, 40014 Jyväskylä, Finland
| |
Collapse
|
7
|
Hendrikse SIS, Contreras-Montoya R, Ellis AV, Thordarson P, Steed JW. Biofunctionality with a twist: the importance of molecular organisation, handedness and configuration in synthetic biomaterial design. Chem Soc Rev 2021; 51:28-42. [PMID: 34846055 DOI: 10.1039/d1cs00896j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The building blocks of life - nucleotides, amino acids and saccharides - give rise to a large variety of components and make up the hierarchical structures found in Nature. Driven by chirality and non-covalent interactions, helical and highly organised structures are formed and the way in which they fold correlates with specific recognition and hence function. A great amount of effort is being put into mimicking these highly specialised biosystems as biomaterials for biomedical applications, ranging from drug discovery to regenerative medicine. However, as well as lacking the complexity found in Nature, their bio-activity is sometimes low and hierarchical ordering is missing or underdeveloped. Moreover, small differences in folding in natural biomolecules (e.g., caused by mutations) can have a catastrophic effect on the function they perform. In order to develop biomaterials that are more efficient in interacting with biomolecules, such as proteins, DNA and cells, we speculate that incorporating order and handedness into biomaterial design is necessary. In this review, we first focus on order and handedness found in Nature in peptides, nucleotides and saccharides, followed by selected examples of synthetic biomimetic systems based on these components that aim to capture some aspects of these ordered features. Computational simulations are very helpful in predicting atomic orientation and molecular organisation, and can provide invaluable information on how to further improve on biomaterial designs. In the last part of the review, a critical perspective is provided along with considerations that can be implemented in next-generation biomaterial designs.
Collapse
Affiliation(s)
- Simone I S Hendrikse
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia. .,School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Pall Thordarson
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | |
Collapse
|
8
|
Yan C, Chang Y, Gao H, Zhang Q, Peng S, Wang D, Zhou X, Shao Y. G-quadruplex apurinic site-programmed chiral cyanine assemblies for specifically recognizing guanosine and guanine. Analyst 2021; 146:5866-5872. [PMID: 34570847 DOI: 10.1039/d1an01110c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA-tuned dye assemblies have received considerable attention toward developing various devices. Owing to easy conformation implementation, G-quadruplexes (G4s) have been extensively used as initiators to grow dye assemblies with controllable chiralities. However, programmed chirality regulation of dye assemblies for a given G4 sequence has not been realized in a straightforward manner. In this work, we replaced a middle guanine in the G-tracts of a human telomeric G4 with an apurinic site (AP site) to meet the programmed dye assemblies. Although all of the AP site replacements altered the G4 conformation from the hybrid to the antiparallel folding, the handedness of pinacyanol (PIN) assemblies grown on the AP site-containing G4 was programmably regulated. The G4 with the AP site at the 5'-most G-tract grew right-handed assemblies, while that with the AP site at the 3'-most G-tract grew left-handed assemblies. The handedness of assemblies almost totally mirrored each other within 450-700 nm. Interestingly, we found that the AP site provided a specific binding site for guanosine and guanine, and this binding event sensitively broke the chiral assemblies. Thus, dye assembly-based sensors can be easily established based on the chiral responses with a high selectivity and sensitivity. Our work first demonstrates the AP site programmed chirality regulation of G4-grown dye assemblies and will find wide application in chiral devices.
Collapse
Affiliation(s)
- Chenxiao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Yun Chang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Qingqing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| |
Collapse
|
9
|
Coste M, Kotras C, Bessin Y, Gervais V, Dellemme D, Leclercq M, Fossépré M, Richeter S, Clément S, Surin M, Ulrich S. Synthesis, Self‐Assembly, and Nucleic Acid Recognition of an Acylhydrazone‐Conjugated Cationic Tetraphenylethene Ligand. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maëva Coste
- IBMM Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Clément Kotras
- ICGM Institut Charles Gerhardt Montpellier UMR 5253 Université de Montpellier CNRS, ENSCM Montpellier France
- Laboratory for Chemistry of Novel Materials Center of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons-UMONS 7000 Mons Belgium
| | - Yannick Bessin
- IBMM Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Virginie Gervais
- CNRS Institut de Pharmacologie et de Biologie Structurale (IPBS) Université de Toulouse, UPS 205 route de Narbonne 31077 Toulouse France
| | - David Dellemme
- Laboratory for Chemistry of Novel Materials Center of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons-UMONS 7000 Mons Belgium
| | - Maxime Leclercq
- Laboratory for Chemistry of Novel Materials Center of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons-UMONS 7000 Mons Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials Center of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons-UMONS 7000 Mons Belgium
| | - Sébastien Richeter
- ICGM Institut Charles Gerhardt Montpellier UMR 5253 Université de Montpellier CNRS, ENSCM Montpellier France
| | - Sébastien Clément
- ICGM Institut Charles Gerhardt Montpellier UMR 5253 Université de Montpellier CNRS, ENSCM Montpellier France
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials Center of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons-UMONS 7000 Mons Belgium
| | | |
Collapse
|
10
|
Peterhans L, Nicolaidou E, Diamantis P, Alloa E, Leclerc M, Surin M, Clément S, Rothlisberger U, Banerji N, Hayes SC. Structural and Photophysical Templating of Conjugated Polyelectrolytes with Single-Stranded DNA. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:7347-7362. [PMID: 33122875 PMCID: PMC7587141 DOI: 10.1021/acs.chemmater.0c02251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/06/2020] [Indexed: 06/11/2023]
Abstract
A promising approach to influence and control the photophysical properties of conjugated polymers is directing their molecular conformation by templating. We explore here the templating effect of single-stranded DNA oligomers (ssDNAs) on cationic polythiophenes with the goal to uncover the intermolecular interactions that direct the polymer backbone conformation. We have comprehensively characterized the optical behavior and structure of the polythiophenes in conformationally distinct complexes depending on the sequence of nucleic bases and addressed the effect on the ultrafast excited-state relaxation. This, in combination with molecular dynamics simulations, allowed us a detailed atomistic-level understanding of the structure-property correlations. We find that electrostatic and other noncovalent interactions direct the assembly with the polymer, and we identify that optimal templating is achieved with (ideally 10-20) consecutive cytosine bases through numerous π-stacking interactions with the thiophene rings and side groups of the polymer, leading to a rigid assembly with ssDNA, with highly ordered chains and unique optical signatures. Our insights are an important step forward in an effective approach to structural templating and optoelectronic control of conjugated polymers and organic materials in general.
Collapse
Affiliation(s)
- Lisa Peterhans
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Eliana Nicolaidou
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Polydefkis Diamantis
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Elisa Alloa
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Mario Leclerc
- Department
of Chemistry, Université Laval, G1K 7P4 Quebec
City, Quebec, Canada
| | - Mathieu Surin
- Laboratory
for Chemistry of Novel Materials, Center for Innovation in Materials
and Polymers, University of Mons −
UMONS, 20 Place du Parc, B-7000 Mons, Belgium
| | - Sébastien Clément
- Institut
Charles Gerhardt Montpellier, ICGM, UMR 5253 CNRS, Université de Montpellier, Place Eugène Bataillon, F-34095 Montpellier, Cedex
05, France
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Natalie Banerji
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Sophia C. Hayes
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| |
Collapse
|
11
|
Surin M, Ulrich S. From Interaction to Function in DNA-Templated Supramolecular Self-Assemblies. ChemistryOpen 2020; 9:480-498. [PMID: 32328404 PMCID: PMC7175023 DOI: 10.1002/open.202000013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
DNA-templated self-assembly represents a rich and growing subset of supramolecular chemistry where functional self-assemblies are programmed in a versatile manner using nucleic acids as readily-available and readily-tunable templates. In this review, we summarize the different DNA recognition modes and the basic supramolecular interactions at play in this context. We discuss the recent results that report the DNA-templated self-assembly of small molecules into complex yet precise nanoarrays, going from 1D to 3D architectures. Finally, we show their emerging functions as photonic/electronic nanowires, sensors, gene delivery vectors, and supramolecular catalysts, and their growing applications in a wide range of area from materials to biological sciences.
Collapse
Affiliation(s)
- Mathieu Surin
- Laboratory for Chemistry of Novel MaterialsCenter of Innovation and Research in Materials and Polymers (CIRMAP)University of Mons-UMONS7000MonsBelgium
| | | |
Collapse
|
12
|
Zhao X, Zang SQ, Chen X. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem Soc Rev 2020; 49:2481-2503. [DOI: 10.1039/d0cs00093k] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chirality is ubiquitous in nature and plays mysterious and essential roles in maintaining key biological and physiological processes.
Collapse
Affiliation(s)
- Xueli Zhao
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
13
|
Fossépré M, Trévisan ME, Cyriaque V, Wattiez R, Beljonne D, Richeter S, Clément S, Surin M. Detection of the Enzymatic Cleavage of DNA through Supramolecular Chiral Induction to a Cationic Polythiophene. ACS APPLIED BIO MATERIALS 2019; 2:2125-2136. [DOI: 10.1021/acsabm.9b00123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), 20 Place du Parc, Mons B-7000, Belgium
| | - Marie E. Trévisan
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), 20 Place du Parc, Mons B-7000, Belgium
| | - Valentine Cyriaque
- Proteomics and Microbiology Lab, Research Institute for Biosciences, University of Mons (UMONS), Avenue du Champs de Mars 6, Mons 7000, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab, Research Institute for Biosciences, University of Mons (UMONS), Avenue du Champs de Mars 6, Mons 7000, Belgium
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), 20 Place du Parc, Mons B-7000, Belgium
| | - Sébastien Richeter
- Institut Charles Gerhardt ICGM, UMR 5253 CNRS-ENSCM-UM, Université de Montpellier, CC1701 Place Eugène Bataillon, Montpellier Cedex 05F-34095, France
| | - Sébastien Clément
- Institut Charles Gerhardt ICGM, UMR 5253 CNRS-ENSCM-UM, Université de Montpellier, CC1701 Place Eugène Bataillon, Montpellier Cedex 05F-34095, France
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), 20 Place du Parc, Mons B-7000, Belgium
| |
Collapse
|
14
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
15
|
Kownacki M, Langenegger SM, Liu SX, Häner R. Integrating DNA Photonic Wires into Light-Harvesting Supramolecular Polymers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mariusz Kownacki
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
16
|
Kownacki M, Langenegger SM, Liu SX, Häner R. Integrating DNA Photonic Wires into Light-Harvesting Supramolecular Polymers. Angew Chem Int Ed Engl 2018; 58:751-755. [DOI: 10.1002/anie.201809914] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Mariusz Kownacki
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
17
|
Ishutkina MV, Berry AR, Hussain R, Khelevina OG, Siligardi G, Stulz E. Self-Assembled Porphyrazine Nucleosides on DNA Templates: Highly Fluorescent Chromophore Arrays and Sizing Forensic Tandem Repeat Sequences. European J Org Chem 2018; 2018:5054-5059. [PMID: 30333712 PMCID: PMC6174987 DOI: 10.1002/ejoc.201800683] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 12/15/2022]
Abstract
The formation of chromophore arrays using a DNA templating approach leads to the creation of supramolecular assemblies, where the optical properties of the overall system can be fine-tuned to a large extent. In particular, porphyrin derivatives have been shown to be versatile building blocks; mostly covalent chemistry was used for embedding the units into DNA strands. Self-assembly of porphyrin modified nucleosides, on the other hand, has not been investigated as a simplified approach. We report on the synthesis of a magnesium(II) tetraaza porphine (MgTAP) coupled to deoxyuridine, and array formation on DNA templates which contain well-defined oligo(dA) segments showing strong fluorescence enhancement which is significantly larger than that with a Zn-porphyrin. The use of the deep-eutectic solvent glycholine is essential for successful assembly formation. The system allows for sizing of short tandem repeat markers with multiple adenosines, thus the concept could be adaptable to in vitro forensic DNA profiling with a suitable set of different chromophores on all nucleosides.
Collapse
Affiliation(s)
- Mariia V. Ishutkina
- Department of Organic ChemistryIvanovo State University of Chemistry and TechnologySheremetev Av. 7RF‐153000IvanovoRussia
| | - Alice R. Berry
- School of Chemistry & Institute for Life SciencesUniversity of SouthamptonHighfieldSO17 1BJSouthamptonUK
| | - Rohanah Hussain
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0DEOxfordshireUK
| | - Olga G. Khelevina
- Department of Organic ChemistryIvanovo State University of Chemistry and TechnologySheremetev Av. 7RF‐153000IvanovoRussia
| | - Giuliano Siligardi
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0DEOxfordshireUK
| | - Eugen Stulz
- School of Chemistry & Institute for Life SciencesUniversity of SouthamptonHighfieldSO17 1BJSouthamptonUK
| |
Collapse
|
18
|
Bösch CD, Jevric J, Bürki N, Probst M, Langenegger SM, Häner R. Supramolecular Assembly of DNA-Phenanthrene Conjugates into Vesicles with Light-Harvesting Properties. Bioconjug Chem 2018; 29:1505-1509. [DOI: 10.1021/acs.bioconjchem.8b00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Caroline D. Bösch
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jovana Jevric
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Nutcha Bürki
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Markus Probst
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
19
|
Photomodulation of DNA-Templated Supramolecular Assemblies. Chemistry 2017; 24:706-714. [DOI: 10.1002/chem.201704538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Indexed: 12/22/2022]
|