1
|
Li C, Pang Y, Xu Y, Lu M, Tu L, Li Q, Sharma A, Guo Z, Li X, Sun Y. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem Soc Rev 2023. [PMID: 37334831 DOI: 10.1039/d3cs00227f] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal agents have made incredible strides in preclinical research and clinical applications in recent years, but their short emission/absorption wavelengths continue to be a barrier to their distribution, therapeutic action, visual tracking, and efficacy evaluation. Nowadays, the near-infrared window (NIR, 650-1700 nm) provides a more accurate imaging and treatment option. Thus, there has been ongoing research focusing on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. The design, characteristics, bioimaging, and therapy of NIR metal agents are covered in this overview of papers and reports published to date. To start with, we focus on describing the structure, design strategies, and photophysical properties of metal agents from the NIR-I (650-1000 nm) to NIR-II (1000-1700 nm) region, in order of molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs). Next, the biomedical applications brought by these superior photophysical and chemical properties for more accurate imaging and therapy are discussed. Finally, we explore the challenges and prospects of each type of NIR metal agent for future biomedical research and clinical translation.
Collapse
Affiliation(s)
- Chonglu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yida Pang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Mengjiao Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Wei X, Cui WB, Qin GY, Zhang XE, Sun FY, Li H, Guo JF, Ren AM. Theoretical Investigation of Ru(II) Complexes with Long Lifetime and a Large Two-Photon Absorption Cross-Section in Photodynamic Therapy. J Med Chem 2023; 66:4167-4178. [PMID: 36884221 DOI: 10.1021/acs.jmedchem.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Two-photon photodynamic therapy (TP-PDT), as a new method for cancer, has shown unique advantages in tumors. A low two-photon absorption cross-section (δ) in the biologic spectral window and a short triplet state lifetime are the important issues faced by the current photosensitizers (PSs) in TP-PDT. In this paper, the photophysical properties of a series of Ru(II) complexes were studied by density functional theory and time-dependent density functional theory methods. The electronic structure, one- and two-photon absorption properties, type I/II mechanisms, triplet state lifetime, and solvation free energy were calculated. The results showed that the substitution of methoxyls by pyrene groups greatly improved the lifetime of the complex. Furthermore, the addition of acetylenyl groups subtly enhanced δ. Overall, complex 3b possess a large δ(1376 GM), a long lifetime (136 μs), and better solvation free energy. It is hoped that it can provide valuable theoretical guidance for the design and synthesis of efficient two-photon PSs in the experiment.
Collapse
Affiliation(s)
- Xue Wei
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Wei-Bo Cui
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Gui-Ya Qin
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Xiu-E Zhang
- School of Physics, Northeast Normal University, Changchun 130024, P. R. China
| | - Feng-Yi Sun
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, P. R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun 130061, P. R. China
| |
Collapse
|
3
|
Su H, Hu L, Zhu S, Lu J, Hu J, Liu R, Zhu H. Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Transition metal complexes (TMCs) with strong and long-lived excited state absorption (ESA) usually exhibit high-performance optical power limiting (OPL) response. Several techniques, such as transmission vs. incident fluence curves and Z-scan have been widely used to assess the OPL performance of typical TMCs. The OPL performance of TMCs is highly molecular structure-dependent. Special emphasis is placed on the structure-OPL response relationships of Pt(II), Ir(III), Ru(II), and other metal complexes. This review concludes with perspectives on the current status of OPL field, as well as opportunities that lie just beyond its frontier.
Collapse
Affiliation(s)
- Huan Su
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Lai Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Senqiang Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Jiapeng Lu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Jinyang Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Rui Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Hongjun Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| |
Collapse
|
4
|
Youf R, Nasir A, Müller M, Thétiot F, Haute T, Ghanem R, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Ruthenium(II) Polypyridyl Complexes for Antimicrobial Photodynamic Therapy: Prospects for Application in Cystic Fibrosis Lung Airways. Pharmaceutics 2022; 14:pharmaceutics14081664. [PMID: 36015290 PMCID: PMC9412327 DOI: 10.3390/pharmaceutics14081664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) depends on a variety of parameters notably related to the photosensitizers used, the pathogens to target and the environment to operate. In a previous study using a series of Ruthenium(II) polypyridyl ([Ru(II)]) complexes, we reported the importance of the chemical structure on both their photo-physical/physico-chemical properties and their efficacy for aPDT. By employing standard in vitro conditions, effective [Ru(II)]-mediated aPDT was demonstrated against planktonic cultures of Pseudomonas aeruginosa and Staphylococcus aureus strains notably isolated from the airways of Cystic Fibrosis (CF) patients. CF lung disease is characterized with many pathophysiological disorders that can compromise the effectiveness of antimicrobials. Taking this into account, the present study is an extension of our previous work, with the aim of further investigating [Ru(II)]-mediated aPDT under in vitro experimental settings approaching the conditions of infected airways in CF patients. Thus, we herein studied the isolated influence of a series of parameters (including increased osmotic strength, acidic pH, lower oxygen availability, artificial sputum medium and biofilm formation) on the properties of two selected [Ru(II)] complexes. Furthermore, these compounds were used to evaluate the possibility to photoinactivate P. aeruginosa while preserving an underlying epithelium of human bronchial epithelial cells. Altogether, our results provide substantial evidence for the relevance of [Ru(II)]-based aPDT in CF lung airways. Besides optimized nano-complexes, this study also highlights the various needs for translating such a challenging perspective into clinical practice.
Collapse
Affiliation(s)
- Raphaëlle Youf
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Adeel Nasir
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Tanguy Haute
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Rosy Ghanem
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- Correspondence:
| |
Collapse
|
5
|
McKenzie LK, Flamme M, Felder PS, Karges J, Bonhomme F, Gandioso A, Malosse C, Gasser G, Hollenstein M. A ruthenium-oligonucleotide bioconjugated photosensitizing aptamer for cancer cell specific photodynamic therapy. RSC Chem Biol 2022; 3:85-95. [PMID: 35128412 PMCID: PMC8729177 DOI: 10.1039/d1cb00146a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
Ruthenium complexes have emerged as a promising class of compounds for use as photosensitizers (PSs) in photodynamic therapy (PDT) due to their attractive photophysical properties and relative ease of chemical alteration. While promising, they generally are not inherently targeting to disease sites and may therefore be prone to side effects and require higher doses. Aptamers are short oligonucleotides that bind specific targets with high affinity. One such aptamer is AS1411, a nucleolin targeting, G-quadruplex forming, DNA aptamer. Here we present the first example of direct conjugation of a Ru(ii) polypyridyl complex-based PS to an aptamer and an assessment of its in vitro cancer cell specific photosensitization including discussion of the challenges faced.
Collapse
Affiliation(s)
- Luke K McKenzie
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523 28 rue du Docteur Roux 75724 Paris Cedex 15 France https://research.pasteur.fr/en/team/bioorganic-chemistry-of-nucleic-acids/ +33 1 44 38 94 66
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523 28 rue du Docteur Roux 75724 Paris Cedex 15 France https://research.pasteur.fr/en/team/bioorganic-chemistry-of-nucleic-acids/ +33 1 44 38 94 66
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
- Université de Paris 12 rue de l'École de Médecine 75006 Paris France
| | - Patrick S Felder
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Frederic Bonhomme
- Institut Pasteur, Department of Structural Biology and Chemistry, Unité de Chimie Biologique Epigénétique, UMR CNRS 3523 28 rue du Docteur Roux 75724 Paris Cedex 15 France
| | - Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Christian Malosse
- Institut Pasteur, Mass Spectrometry for Biology Unit 28 rue du Docteur Roux 75724 Paris Cedex 15 France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523 28 rue du Docteur Roux 75724 Paris Cedex 15 France https://research.pasteur.fr/en/team/bioorganic-chemistry-of-nucleic-acids/ +33 1 44 38 94 66
| |
Collapse
|
6
|
Chevreux S, Four M, Lemercier G. Paramagnetic Oxygen as Contrast Agent for a Potential PDT Treatment MRI Monitoring. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sylviane Chevreux
- Université de Reims Champagne-Ardenne ICMR UMR CNRS 7312 BP 1039 FR-51687 Reims cedex 2 France
- Chimie ParisTech PSL University UMR CNRS 8247 Institut de Recherche de Chimie Paris FR-75005 Paris France
| | - Mickaël Four
- Université de Reims Champagne-Ardenne ICMR UMR CNRS 7312 BP 1039 FR-51687 Reims cedex 2 France
| | - Gilles Lemercier
- Université de Reims Champagne-Ardenne ICMR UMR CNRS 7312 BP 1039 FR-51687 Reims cedex 2 France
| |
Collapse
|
7
|
Lin M, Zou S, Liao X, Chen Y, Luo D, Ji L, Chao H. Ruthenium(II) complexes as bioorthogonal two-photon photosensitizers for tumour-specific photodynamic therapy against triple-negative breast cancer cells. Chem Commun (Camb) 2021; 57:4408-4411. [PMID: 33949487 DOI: 10.1039/d1cc00661d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we developed the first Ru(ii) complex-based bioorthogonal two-photon photosensitizers. Through bioorthogonal labelling, they realize effective tumour-specific photodynamic therapy against triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Mingwei Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Shanshan Zou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Diqing Luo
- Department of Dermatology, The Eastern Division of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
8
|
|
9
|
Khlifi S, Taupier G, Amela-Cortes M, Dumait N, Freslon S, Cordier S, Molard Y. Expanding the Toolbox of Octahedral Molybdenum Clusters and Nanocomposites Made Thereof: Evidence of Two-Photon Absorption Induced NIR Emission and Singlet Oxygen Production. Inorg Chem 2021; 60:5446-5451. [DOI: 10.1021/acs.inorgchem.1c00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumaya Khlifi
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| | - Gregory Taupier
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| | - Maria Amela-Cortes
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| | - Noée Dumait
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| | - Stéphane Freslon
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| | - Stéphane Cordier
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| | - Yann Molard
- Université de Rennes, CNRS, INSA, ISCR - UMR 6226, ScanMAT − UMS 2001, F-35000 Rennes, France
| |
Collapse
|
10
|
Ricciardi L, La Deda M. Recent advances in cancer photo-theranostics: the synergistic combination of transition metal complexes and gold nanostructures. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04329-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractIn this mini review, we highlight advances in the last five years in light-activated cancer theranostics by using hybrid systems consisting of transition metal complexes (TMCs) and plasmonic gold nanostructures (AuNPs). TMCs are molecules with attractive properties and high potential in biomedical application. Due to their antiproliferative abilities, platinum-based compounds are currently first-choice drugs for the treatment of several solid tumors. Moreover, ruthenium, iridium and platinum complexes are well-known for their ability to photogenerate singlet oxygen, a highly cytotoxic reactive species with a key role in photodynamic therapy. Their potential is further extended by the unique photophysical properties, which make TMCs particularly suitable for bioimaging. Recently, gold nanoparticles (AuNPs) have been widely investigated as one of the leading nanomaterials in cancer theranostics. AuNPs—being an inert and highly biocompatible material—represent excellent drug delivery systems, overcoming most of the side effects associated with the systemic administration of anticancer drugs. Furthermore, due to the thermoplasmonic properties, AuNPs proved to be efficient nano-sources of heat for photothermal therapy application. Therefore, the hybrid combination TMC/AuNPs could represent a synergistic merger of multiple functionalities for combinatorial cancer therapy strategies. Herein, we report the most recent examples of TMC/AuNPs systems in in-vitro in-vivo cancer tharanostics application whose effects are triggered by light-exposure in the Vis–NIR region, leading to a spatial and temporal control of the TMC/AuNPs activation for light-mediated precision therapeutics.
Collapse
|
11
|
Xiong K, Zhou Y, Lin X, Kou J, Lin M, Guan R, Chen Y, Ji L, Chao H. Cyclometalated Iridium(III) Complexes as Mitochondria-targeting Photosensitizers against Cisplatin-resistant Cells †. Photochem Photobiol 2021; 98:85-91. [PMID: 33617666 DOI: 10.1111/php.13404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/01/2022]
Abstract
Four iridium (III) complexes Ir1-Ir4 were synthesized and characterized. Possessing high singlet oxygen production ability and specific mitochondria-localization, Ir1 was developed as a mitochondria-targeting photosensitizer. Ir1 exhibited strong phototoxicity against cancer cell line A549 and its corresponding cisplatin-resistant one A549R. In contrast, Ir1 showed low cytotoxicity toward normal cell HLF. This selectivity resulted from the different uptake amount. With 405 nm irradiation, Ir1 induced mitochondria-mediated cell death in A549R cells, achieving the overcome of drug-resistant.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Ying Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Xinlin Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Junfeng Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Mingwei Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Xiao L, Meng F, Xiao R, Wang H, Tian X. Bis (tridentate) divalent first-row transition metal ion (Zn, Mn, Fe, Ni, Co) complexes: Crystal structure, nonlinear optical property, and magnetic resonance imaging. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Molard Y, Taupier G, Paofai S, Cordier S. Evidencing ((n-C4H9)4N)2[W6I14] red–NIR emission and singlet oxygen generation by two photon absorption. Chem Commun (Camb) 2021; 57:4003-4006. [DOI: 10.1039/d1cc00751c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two photon absorption induced NIR emission has been observed for the first time for octahedral transition metal clusters.
Collapse
Affiliation(s)
- Yann Molard
- Université de Rennes
- CNRS
- ISCR – UMR 6226
- ScanMAT – UMS 2001
- Rennes F-35000
| | - Gregory Taupier
- Université de Rennes
- CNRS
- ISCR – UMR 6226
- ScanMAT – UMS 2001
- Rennes F-35000
| | - Serge Paofai
- Université de Rennes
- CNRS
- ISCR – UMR 6226
- ScanMAT – UMS 2001
- Rennes F-35000
| | - Stéphane Cordier
- Université de Rennes
- CNRS
- ISCR – UMR 6226
- ScanMAT – UMS 2001
- Rennes F-35000
| |
Collapse
|
14
|
Rousset E, Mongin O, Moreau J, Lawson-Daku LM, Beley M, Gros PC, Chevreux S, Blanchard-Desce M, Lemercier G. Molecular engineering for optical properties of 5-substituted-1,10-phenanthroline-based Ru(II) complexes. Dalton Trans 2021; 50:10119-10132. [PMID: 34105562 DOI: 10.1039/d1dt00886b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of homo- and heteroleptic Ru(ii) complexes [Ru(phen)3-n(phen-X)n](PF6)2 (n = 0-3, X = CN, epoxy, H, NH2) were prepared and characterized. The influence of electron-withdrawing or electron-releasing substituents of the 1,10-phenanthroline ligands on the photo-physical properties was evaluated. It reveals fundamental interests in the fine tuning of redox potentials and photo-physical characteristics, depending both on the nature of the substitution of the ligand, and on the symmetry of the related homo- or heteroleptic complex. These complexes exhibit linear absorption and two-photon absorption (2PA) cross-sections over a broad range of wavelength (700-900 nm) due to absorption in the intra-ligand charge transfer (ILCT) and the metal-to-ligand charge transfer (MLCT) bands. These 2PA properties were more particularly investigated in the 700-1000 spectral range for a family of complexes bearing electro-donating ligands (phen-NH2).
Collapse
Affiliation(s)
- Elodie Rousset
- Université de Reims Champagne-Ardenne, ICMR UMR CNRS n° 7312 BP 1039-51687, Reims cedex 2, France.
| | - Olivier Mongin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Juliette Moreau
- Université de Reims Champagne-Ardenne, ICMR UMR CNRS n° 7312 BP 1039-51687, Reims cedex 2, France.
| | - Latévi Max Lawson-Daku
- Dépt. de Chimie Physique, Université de Genève, 30, quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| | - Marc Beley
- Université de Lorraine, CNRS, L2CM, Nancy, F54000, France
| | | | - Sylviane Chevreux
- Université de Reims Champagne-Ardenne, ICMR UMR CNRS n° 7312 BP 1039-51687, Reims cedex 2, France. and Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Mireille Blanchard-Desce
- Université Bordeaux, ISM, Centre National de la Recherche Scientifique, UMR 5255, F-33400 Talence, France
| | - Gilles Lemercier
- Université de Reims Champagne-Ardenne, ICMR UMR CNRS n° 7312 BP 1039-51687, Reims cedex 2, France.
| |
Collapse
|
15
|
Durand N, Mhanna R, Savel P, Akdas-Kiliç H, Malval JP, Soppera O, Fillaut JL. Unexpected disruption of the dimensionality-driven two-photon absorption enhancement within a multipolar polypyridyl ruthenium complex series. Chem Commun (Camb) 2020; 56:12801-12804. [PMID: 32966398 DOI: 10.1039/d0cc05025c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The dimensionality-driven two-photon absorption (2PA) enhancement effect is investigated in a series of functionalized bipyridyl Ru-complexes. Our design strategy leads to very high 2PA responses up to ∼1500 GM. However, we highlight that the 2PA performance vs. dimensionality correlation reaches an unexpected limit stemming from 'anti-cooperative' interchromophoric couplings.
Collapse
Affiliation(s)
- Nicolas Durand
- Université Rennes, Institut des Sciences Chimiques de Rennes CNRS UMR 6226, Rennes F-35000, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Smitten KL, Scattergood PA, Kiker C, Thomas JA, Elliott PIP. Triazole-based osmium(ii) complexes displaying red/near-IR luminescence: antimicrobial activity and super-resolution imaging. Chem Sci 2020; 11:8928-8935. [PMID: 34123147 PMCID: PMC8163367 DOI: 10.1039/d0sc03563g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular uptake, luminescence imaging and antimicrobial activity against clinically relevant methicillin-resistant S. aureus (MRSA) bacteria are reported. The osmium(ii) complexes [Os(N^N)3]2+ (N^N = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (1 2+); 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (2 2+); 1-benzyl-4-(pyrazin-2-yl)-1,2,3-triazole (3 2+)) were prepared and isolated as the chloride salts of their meridional and facial isomers. The complexes display prominent spin-forbidden ground state to triplet metal-to-ligand charge transfer (3MLCT) state absorption bands enabling excitation as low as 600 nm for fac/mer-3 2+ and observation of emission in aqueous solution in the deep-red/near-IR regions of the spectrum. Cellular uptake studies within MRSA cells show antimicrobial activity for 1 2+ and 2 2+ with greater toxicity for the meridional isomers in each case and mer-1 2+ showing the greatest potency (32 μg mL-1 in defined minimal media). Super-resolution imaging experiments demonstrate binding of mer- and fac-1 2+ to bacterial DNA with high Pearson's colocalisation coefficients (up to 0.95 using DAPI). Phototoxicity studies showed the complexes exhibited a higher antimicrobial activity upon irradiation with light.
Collapse
Affiliation(s)
- Kirsty L Smitten
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Paul A Scattergood
- Department of Chemistry & Centre for Functional Materials, University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Charlotte Kiker
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Paul I P Elliott
- Department of Chemistry & Centre for Functional Materials, University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| |
Collapse
|
17
|
Soupart A, Alary F, Heully JL, Elliott PI, Dixon IM. Recent progress in ligand photorelease reaction mechanisms: Theoretical insights focusing on Ru(II) 3MC states. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213184] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Quintana C, Cifuentes MP, Humphrey MG. Transition metal complex/gold nanoparticle hybrid materials. Chem Soc Rev 2020; 49:2316-2341. [PMID: 32149284 DOI: 10.1039/c9cs00651f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) are of considerable interest for diverse applications in areas such as medicine, catalysis, and sensing. AuNPs are generally surface-stabilized by organic matrices and coatings, and while the resultant organic compound (OC)/AuNP hybrids have been explored extensively, they are not suitable for certain applications (e.g. those necessitating reversible redox behaviour and/or long excited-state lifetimes), and they often suffer from low photo- and/or thermal stability. Transition metal complex (TMC)/AuNP hybrids have recently come to the fore as they circumvent some of the aforementioned shortcomings with OC/AuNP hybrids. This review summarizes progress thus far in the nascent field of TMC/AuNP hybrids. The structure and composition of extant TMC/AuNP hybrids are briefly reviewed and the range of TMCs employed in the shell of the hybrids are summarized, the one-phase, two-phase, and post-nanoparticle-synthesis synthetic methods to TMC/AuNP hybrids are discussed and contrasted, highlighting the advantages of variants of the last-mentioned procedure, and the utility of the various characterization techniques is discussed, emphasizing the need to employ multiple techniques in concert. Applications of TMC/AuNP hybrids in luminescence, electrochemical, and electro-optical sensing are described and critiqued, and their uses and potential in imaging, photo-dynamic therapy, nonlinear optics, and catalysis are assessed.
Collapse
Affiliation(s)
- Cristóbal Quintana
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia.
| | | | | |
Collapse
|
19
|
Wu S, Su F, Magee HY, Meldrum DR, Tian Y. cRGD functionalized 2,1,3-benzothiadiazole (BTD)-containing two-photon absorbing red-emitter-conjugated amphiphilic poly(ethylene glycol)-block-poly( ε-caprolactone) for targeted bioimaging. RSC Adv 2019; 9:34235-34243. [PMID: 31798837 PMCID: PMC6886675 DOI: 10.1039/c9ra06694b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A two-photon absorbing (2PA) red emitter group was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers, and further grafted with cyclo(Arg-Gly-Asp) (cRGD) peptide to form micelle 1. Micelle 1 with cRGD targeting groups were used for targeted bioimaging. For comparison, micelle 2 without the cRGD targeting groups were also prepared and investigated. The micelles were characterized using dynamic light scattering (DLS), showing average diameters of around 77 nm. The cRGD targeting group is known to bind specifically with αvβ3 integrin in cancer cells. In this study, αvβ3 integrin overexpressed human glioblastoma U87MG cell line and αvβ3 integrin deficient human cervical cancer HeLa cell line were chosen. Results showed that the cRGD targeting group enhanced the cellular uptake efficiency of the micelles significantly in αvβ3 integrin rich U87MG cells. Higher temperature (37 °C versus 4 °C) and calcium ions (with 3 M calcium chloride in the cell culture medium versus no addition of calcium ions) enhanced the cellular uptake efficiency, suggesting that the uptake of the micelles is through the endocytosis pathway in cells. A 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay was used to evaluate the cytotoxicity of the micelles and no significant cytotoxicity was observed. The BTD-containing two-photon absorbing emitter in the micelles showed a two-photon absorbing cross-section of 236 GM (1 GM = 1 × 10−50 cm4 s per photonper molecule) at 820 nm, which is among the highest values reported for red 2PA emitters. Because of the two-photon absorbing characteristics, micelle 1 was successfully used for two-photon fluorescence imaging targeted to U87MG cells under a two-photon fluorescence microscope. This study is the first report regarding the targeted imaging of a specific cancer cell line (herein, U87MG) using the BTD-conjugated-fluorophore-containing block copolymers. A two-photon absorbing (2PA) red emitter group was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers, and further grafted with cyclo(Arg-Gly-Asp) (cRGD) peptide to form micelle 1.![]()
Collapse
Affiliation(s)
- Shanshan Wu
- Guangdong Industry Polytechnic, Foshan Municipality Anti-counterfeiting Engineering Research Center, Guangzhou, Guangdong 510300, China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hansa Y Magee
- Knowledge Enterprise, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Deirdre R Meldrum
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
20
|
Qiu K, Zhu H, Rees TW, Ji L, Zhang Q, Chao H. Recent advances in lysosome-targeting luminescent transition metal complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Mascheroni L, Dozzi MV, Ranucci E, Ferruti P, Francia V, Salvati A, Maggioni D. Tuning Polyamidoamine Design To Increase Uptake and Efficacy of Ruthenium Complexes for Photodynamic Therapy. Inorg Chem 2019; 58:14586-14599. [DOI: 10.1021/acs.inorgchem.9b02245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Luca Mascheroni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Maria Vittoria Dozzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Valentina Francia
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Anna Salvati
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
22
|
Solute-solvent electronic interaction is responsible for initial charge separation in ruthenium complexes [Ru(bpy)3]2+ and [Ru(phen)3]2+. Commun Chem 2019. [DOI: 10.1038/s42004-019-0213-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Origin of the initial charge separation in optically-excited Ruthenium(II) tris(bidentate) complexes of intrinsic D3 symmetry has remained a disputed issue for decades. Here we measure the femtosecond two-photon absorption (2PA) cross section spectra of [Ru(2,2′-bipyridine)3]2 and [Ru(1,10-phenanthroline)3]2 in a series of solvents with varying polarity and show that for vertical transitions to the lower-energy 1MLCT excited state, the permanent electric dipole moment change is nearly solvent-independent, Δμ = 5.1–6.3 D and 5.3–5.9 D, respectively. Comparison of experimental results with quantum-chemical calculations of complexes in the gas phase, in a polarizable dielectric continuum and in solute-solvent clusters containing up to 18 explicit solvent molecules indicate that the non-vanishing permanent dipole moment change in the nominally double-degenerate E-symmetry state is caused by the solute-solvent interaction twisting the two constituent dipoles out of their original opposite orientation, with average angles matching the experimental two-photon polarization ratio.
Collapse
|
23
|
Solvothermal Syntheses, Crystal Structures and Magnetic Properties of Two Nickel Cubane-Type Cluster Complexes. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01515-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Bazargan M, Mirzaei M, Franconetti A, Frontera A. On the preferences of five-membered chelate rings in coordination chemistry: insights from the Cambridge Structural Database and theoretical calculations. Dalton Trans 2019; 48:5476-5490. [PMID: 30920565 DOI: 10.1039/c9dt00542k] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purpose of this review is to give an overview of three important N-bidentate ligands: 1,10-phenanthroline (phen), 2,2'-bipyridine (bpy), and ethylenediamine (en). We have not attempted to be comprehensive because of the huge amount of activity being done in coordination chemistry using these ligands. Instead we present a full structural and geometrical study by using the Cambridge Structural Database (CSD) combined with theoretical calculations that allow us to parameterize their coordinating properties and ability to coordinate to transition and non-transition metals. More importantly, we illustrate that upon coordination and formation of the five-membered chelate ring, these ligands are able to adapt themselves to the requirements of the different metals by changing the MN distances and NMN angles. Therefore, a redefinition of the preferences of these ligands to metals with large ionic radii is needed. Finally, we will present some facts about the participation of these ligands in inorganic-organic hybrids (IOHs) based on Keggin polyoxometalates (POMs).
Collapse
Affiliation(s)
- Maryam Bazargan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 917751436, Mashhad, Iran.
| | | | | | | |
Collapse
|
25
|
Chen H, Ge C, Cao H, Zhang X, Zhang L, Jiang L, Zhang P, Zhang Q. Isomeric Ir(iii) complexes for tracking mitochondrial pH fluctuations and inducing mitochondrial dysfunction during photodynamic therapy. Dalton Trans 2019; 48:17200-17209. [DOI: 10.1039/c9dt03453f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two pairs of isomeric phosphorescent Ir(iii) complexes that show mitochondrial pH-response and induce mitochondrial dysfunction during photodynamic therapy.
Collapse
Affiliation(s)
- Haijie Chen
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Chen Ge
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huiqun Cao
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Xuepeng Zhang
- Lab of Computational and Drug Design
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Ling Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Linhai Jiang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
26
|
Huo J, Zhang YB, Zou WY, Hu X, Deng Q, Chen D. Mini-review on an engineering approach towards the selection of transition metal complex-based catalysts for photocatalytic H2 production. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02581a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Advances in transition-metal (Ru, Co, Cu, and Fe) complex-based catalysts since 2000 are briefly summarized in terms of catalyst selection and application for photocatalytic H2 evolution.
Collapse
Affiliation(s)
- Jingpei Huo
- Electrochemical Corrosion Institute
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| | - Yu-Bang Zhang
- Electrochemical Corrosion Institute
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| | - Wan-Ying Zou
- Electrochemical Corrosion Institute
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| | - Xiaohong Hu
- Electrochemical Corrosion Institute
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| | - Qianjun Deng
- Electrochemical Corrosion Institute
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| | - Dongchu Chen
- Electrochemical Corrosion Institute
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| |
Collapse
|
27
|
Du J, Lu Y, Zhang J, Wang J, Wang Y, Li M, Chen Q. Tuning Optical Limiting of Heterosized AuNPs and Fullerene by Countable Electrochemical Assembly. ACS OMEGA 2018; 3:12495-12500. [PMID: 31457981 PMCID: PMC6645007 DOI: 10.1021/acsomega.8b02022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/19/2018] [Indexed: 06/10/2023]
Abstract
Tuning optical limiting was achieved based on the nanostructural and synergistic effects of heterosized gold nanoparticles and fullerene on electrochemical assembly. In particular, with thicknesses of 200, 1, and 10 nm, heterosized AuNP multilayers with periodical pairs of layers present a superior threshold of 0.59 J cm-2 to monosized AuNP films with the values of 0.89-2.55 J cm-2, which was further significantly enhanced by the introduction of C70 with a significant threshold drop from 0.43 to 0.13 J cm-2, indicating that the reverse saturable absorption of C70 had a key contribution compared to the free carrier absorption of AuNPs. This paper not only demonstrates that the hybrid engineering of heterosized AuNPs into an identical film is an effective way to enhance the optical limiting but also indicates that the reverse saturable absorption of C70 is superior to free carrier absorption of AuNPs in optical limiting in AuNPs and C70 hybrid films.
Collapse
Affiliation(s)
- Jia Du
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University
of the Chinese Academy of Science, Beijing 100864, China
| | - Yiming Lu
- State
Key Laboratory on Integrated Optoelectronics, College of Electronic
Science and Engineering, Jilin University, Changchun 130012, China
| | - Jian Zhang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jinxin Wang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanfang Wang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Mao Li
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qidai Chen
- State
Key Laboratory on Integrated Optoelectronics, College of Electronic
Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|