1
|
Zhang Y, Li X, Li K, Wang L, Luo X, Zhang Y, Sun N, Zhu M. DNA binding studies and in-vitro anticancer studies of novel lanthanide complexes. Int J Biol Macromol 2024; 279:135048. [PMID: 39208896 DOI: 10.1016/j.ijbiomac.2024.135048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Pancreatic cancer, is an aggressive type of cancer and the most common malignancy with a poor prognosis regarding metastatic disease (survival < 10 %). The development of Novel chemotherapeutic drugs holds significant prospects for practical applications. Here, this work focuses on the interaction between two lanthanide complexes, Yb-BZA and Er-BZA, with DNA, as well as their anticancer activity against pancreatic cancer. The relationship between complexes and DNA is revealed by fluorescence, absorption spectral titration, cyclic voltammetric (CV) experiments, indicating that the Yb-BZA and Er-BZA interact with FS-DNA by bind groove. Moreover, molecular docking technology was utilized to confirm the binding of Yb-BZA and Er-BZA with 1BNA and 4AV1. The cytotoxic effects of Yb-BZA and Er-BZA on cancer cells BxPC-3 were evaluated, Yb-BZA (IC50 = 6.459 μg/mL) is more effective than oxaliplatin (IC50 = 16.46 μg/mL) evaluated using cytotoxicity assay. Yb-BZA and Er-BZA has the potential to become a chemotherapy drug for pancreatic cancer cells.
Collapse
Affiliation(s)
- Yuehong Zhang
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xinshu Li
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Kaisu Li
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ling Wang
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xin Luo
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Na Sun
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.
| |
Collapse
|
2
|
Echigo H, Munekane M, Fuchigami T, Washiyama K, Mishiro K, Wakabayashi H, Takahashi K, Kinuya S, Ogawa K. Optimizing the pharmacokinetics of an 211At-labeled RGD peptide with an albumin-binding moiety via the administration of an albumin-binding inhibitor. Eur J Nucl Med Mol Imaging 2024; 51:2663-2671. [PMID: 38570359 PMCID: PMC11224111 DOI: 10.1007/s00259-024-06695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE A probe for targeted alpha therapy (TAT) using the RGD peptide (Ga-DOTA-K([211At]APBA)-c(RGDfK) ([211At]1)) with albumin-binding moiety (ABM) was recently developed. [211At]1 highly accumulated in tumors and significantly inhibited tumor growth in U-87 MG tumor-bearing mice. However, high [211At]1 retention in blood may cause critical adverse events, such as hematotoxicity. Therefore, we attempted to accelerate the blood clearance of [211At]1 by competitively inhibiting the binding of [211At]1 to albumin to modulate the pharmacokinetics of the former. METHODS To evaluate the effects of albumin-binding inhibitors in normal mice, sodium 4-(4-iodophenyl)butanoate at 2, 5, or 10 molar equivalents of blood albumin was administered at 1-h postinjection of [211At]1. The biodistribution of [211At]1, SPECT/CT imaging of [67Ga]Ga-DOTA-K(IPBA)-c(RGDfK) ([67Ga]2), and the therapeutic effects of [211At]1 were compared with or without IPBA administration in U-87 MG tumor-bearing mice. RESULTS Blood radioactivity of [211At]1 was decreased in a dose-dependent manner with IPBA in normal mice. In U-87 MG tumor-bearing mice, the blood radioactivity and accumulation in nontarget tissues of [211At]1 were decreased by IPBA. Meanwhile, tumor [211At]1 accumulation was not changed at 3-h postinjection of IPBA. In SPECT/CT imaging of [67Ga]2, IPBA administration dramatically decreased radioactivity in nontarget tissues, and only tumor tissue was visualized. In therapeutic experiments, [211At]1 with IPBA injected-group significantly inhibited tumor growth compared to the control group. CONCLUSION IPBA administration (as an albumin-binding inhibitor) could modulate the pharmacokinetics and enhance the therapeutic effects of [211At]1.
Collapse
Affiliation(s)
- Hiroaki Echigo
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-Machi 13-1, Kanazawa, 920-8641, Ishikawa, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-Machi 13-1, Kanazawa, 920-8641, Ishikawa, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Ishikawa, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Ishikawa, Japan.
| |
Collapse
|
3
|
Arman MÖ, Mullaliu A, Geboes B, Van Hecke K, Das G, Aquilanti G, Binnemans K, Cardinaels T. Separation of terbium as a first step towards high purity terbium-161 for medical applications. RSC Adv 2024; 14:19926-19934. [PMID: 38903678 PMCID: PMC11187813 DOI: 10.1039/d4ra02694b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Terbium-161 is a medical radiolanthanide that has a beta decay energy and half-life similar to that of lutetium-177, which makes it a promising alternative for therapeutic purposes. The production route using an enriched gadolinium-160 target necessitates the purification of terbium-161 from the untransmuted target material as well as from its stable decay product, dysprosium-161. The separation of neighbouring lanthanides is challenging due to their similar chemical properties and prominent trivalent oxidation states. In this work, the aim is to change the oxidation state of terbium, resulting in the altering of chemical properties that ease the intragroup separation. To this end, a novel separation method is investigated, involving the electrochemical oxidation of terbium (3+) to terbium (4+) followed by anion exchange chromatography. The electrolysis conditions are set to the highest achievable conversion rate, followed by a dilution step during which the pH and electrolyte concentration are slightly lowered to obtain conditions that are compatible with the separation method. XAS analysis is done to characterize the carbonato complex of both oxidation states and to further elucidate the separation mechanism. The results show that the separation approach of combining electrochemical oxidation with anion exchange chromatography is promising for the purification of 161Tb for medical use.
Collapse
Affiliation(s)
- Meryem Özge Arman
- KU Leuven, Department of Chemistry Celestijnenlaan 200F, P.O. 2404 B-3001 Leuven Belgium
- Belgian Nuclear Research Centre SCK CEN, Institute for Nuclear Energy Technology Boeretang 200, Mol B-2400 Belgium
| | - Angelo Mullaliu
- KU Leuven, Department of Chemistry Celestijnenlaan 200F, P.O. 2404 B-3001 Leuven Belgium
| | - Bart Geboes
- Belgian Nuclear Research Centre SCK CEN, Institute for Nuclear Energy Technology Boeretang 200, Mol B-2400 Belgium
| | - Karen Van Hecke
- Belgian Nuclear Research Centre SCK CEN, Institute for Nuclear Energy Technology Boeretang 200, Mol B-2400 Belgium
| | - Ganghadar Das
- Elettra Sincrotrone Trieste 34149 Basovizza Trieste Italy
| | | | - Koen Binnemans
- KU Leuven, Department of Chemistry Celestijnenlaan 200F, P.O. 2404 B-3001 Leuven Belgium
| | - Thomas Cardinaels
- KU Leuven, Department of Chemistry Celestijnenlaan 200F, P.O. 2404 B-3001 Leuven Belgium
- Belgian Nuclear Research Centre SCK CEN, Institute for Nuclear Energy Technology Boeretang 200, Mol B-2400 Belgium
| |
Collapse
|
4
|
Ackroyd AJ, Gajecki L, Gogoulis AT, Smart JF, Oliver AG, McIndoe JS, Berg DJ. Mausolates: Large-Cavity Chelates with Potential as Delivery Vehicles in Nuclear Medicine. Chemistry 2024:e202401987. [PMID: 38820179 DOI: 10.1002/chem.202401987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
A new type of diborate clathrochelate (cage) ligand featuring nine inwardly pointing nitrogen donors that form a large, rigid cavity, termed a mausolate, is presented. The cavity size and high denticity make this an attractive delivery vehicle for large radionuclides in nuclear medicine. Metal mausolate complexes are stable to air and water (neutral pH) and display extremely high thermal stability (>400 °C). Lanthanide uptake by the mausolate ligand occurs rapidly in solution at room temperature and once complexed, the lanthanide ions are not displaced by a 250-fold excess of a competitive lanthanide salt over more than one week.
Collapse
Affiliation(s)
- Amanda J Ackroyd
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Leah Gajecki
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Athan T Gogoulis
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Jack F Smart
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - J Scott McIndoe
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - David J Berg
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
5
|
Lawal IO, Abubakar SO, Ndlovu H, Mokoala KMG, More SS, Sathekge MM. Advances in Radioligand Theranostics in Oncology. Mol Diagn Ther 2024; 28:265-289. [PMID: 38555542 DOI: 10.1007/s40291-024-00702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Theranostics with radioligands (radiotheranostics) has played a pivotal role in oncology. Radiotheranostics explores the molecular targets expressed on tumor cells to target them for imaging and therapy. In this way, radiotheranostics entails non-invasive demonstration of the in vivo expression of a molecular target of interest through imaging followed by the administration of therapeutic radioligand targeting the tumor-expressed molecular target. Therefore, radiotheranostics ensures that only patients with a high likelihood of response are treated with a particular radiotheranostic agent, ensuring the delivery of personalized care to cancer patients. Within the last decades, a couple of radiotheranostics agents, including Lutetium-177 DOTATATE (177Lu-DOTATATE) and Lutetium-177 prostate-specific membrane antigen (177Lu-PSMA), were shown to prolong the survival of cancer patients compared to the current standard of care leading to the regulatory approval of these agents for routine use in oncology care. This recent string of successful approvals has broadened the interest in the development of different radiotheranostic agents and their investigation for clinical translation. In this work, we present an updated appraisal of the literature, reviewing the recent advances in the use of established radiotheranostic agents such as radioiodine for differentiated thyroid carcinoma and Iodine-131-labeled meta-iodobenzylguanidine therapy of tumors of the sympathoadrenal axis as well as the recently approved 177Lu-DOTATATE and 177Lu-PSMA for differentiated neuroendocrine tumors and advanced prostate cancer, respectively. We also discuss the radiotheranostic agents that have been comprehensively characterized in preclinical studies and have shown some clinical evidence supporting their safety and efficacy, especially those targeting fibroblast activation protein (FAP) and chemokine receptor 4 (CXCR4) and those still being investigated in preclinical studies such as those targeting poly (ADP-ribose) polymerase (PARP) and epidermal growth factor receptor 2.
Collapse
Affiliation(s)
- Ismaheel O Lawal
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, NE, Atlanta, GA, 30322, USA.
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa.
| | - Sofiullah O Abubakar
- Department of Radiology and Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat, Oman
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Kgomotso M G Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Stuart S More
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, 7700, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| |
Collapse
|
6
|
Munekane M, Fuchigami T, Ogawa K. Recent advances in the development of 225Ac- and 211At-labeled radioligands for radiotheranostics. ANAL SCI 2024; 40:803-826. [PMID: 38564087 PMCID: PMC11035452 DOI: 10.1007/s44211-024-00514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Radiotheranostics utilizes a set of radioligands incorporating diagnostic or therapeutic radionuclides to achieve both diagnosis and therapy. Imaging probes using diagnostic radionuclides have been used for systemic cancer imaging. Integration of therapeutic radionuclides into the imaging probes serves as potent agents for radionuclide therapy. Among them, targeted alpha therapy (TAT) is a promising next-generation cancer therapy. The α-particles emitted by the radioligands used in TAT result in a high linear energy transfer over a short range, inducing substantial damage to nearby cells surrounding the binding site. Therefore, the key to successful cancer treatment with minimal side effects by TAT depends on the selective delivery of radioligands to their targets. Recently, TAT agents targeting biomolecules highly expressed in various cancer cells, such as sodium/iodide symporter, norepinephrine transporter, somatostatin receptor, αvβ3 integrin, prostate-specific membrane antigen, fibroblast-activation protein, and human epidermal growth factor receptor 2 have been developed and have made remarkable progress toward clinical application. In this review, we focus on two radionuclides, 225Ac and 211At, which are expected to have a wide range of applications in TAT. We also introduce recent fundamental and clinical studies of radiopharmaceuticals labeled with these radionuclides.
Collapse
Affiliation(s)
- Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
7
|
Saghez BS, Yang H, Radchenko V. High Separation Factor, High Molar Activity, and Inexpensive Purification Method for the Production of Pure 165Er. Inorg Chem 2024; 63:5330-5340. [PMID: 38324916 DOI: 10.1021/acs.inorgchem.3c03166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Introduction: Auger electron-emitting radionuclides with low (0.001-1 keV) energy, short-range (2-500 nm), and high linear energy transfer (4-26 keV/μm) can play an important role in the targeted radionuclide therapy (TRT) of cancer. 165Er is a pure Auger electron-emitting radionuclide, making it a useful tool for the fundamental studies of the biological effects of Auger electrons. This work develops a simple, inexpensive, high separation factor, and high molar activity radiochemical isolation process for the production of 165Er (t1/2 10.36 h) suitable for TRT in vitro and in vivo studies using irradiated natHo solid targets. Methods: Small medical cyclotron proton-irradiation of natHo targets produced 165Er in GBq scale quantities. 165Er was isolated using cation exchange chromatographic resin (AG 50W-X8, 200-400 mesh, 20 mL, under atmospheric pressure) using α-hydroxyisobutyric acid (70 mM, pH 4.75) followed by extraction using TK212, TK211, and TK221 extraction chromatographic columns. Radio nuclidic and chemical purity of the final 165Er were confirmed using HPGe Gamma spectrometry and induction coupled plasma-mass spectrometry analysis, respectively. The purified 165Er was radiolabeled with two radiometal chelators (DOTA and Crown) and used to produce a new Auger electron-emitting radiopharmaceutical, [165Er]Er-Crown-TATE. Results: Irradiation of 200 mg natHo targets with 20-30 μA of 12.8 MeV protons produced 165Er at 25 ± 5 MBq·μA-1·h-1. The 4.5 ± 0.5 h radiochemical isolation yielded GBq scale of 165Er in 0.05 M HCl (2 mL) with a radiochemical yield of 78.0 ± 5.6% decay corrected to the end of bombardment (EoB) and a Ho/165Er separation factor of (1.14 ± 0.25) × 106. The product showed high radio nuclidic purity and chemical purity. Concentration-dependent radiolabeling experiments with Crown and DOTA were performed resulting in the successful labeling of 165Er with high (>90%) radiochemical yield. Radiolabeling experiments with Crown-TATE were performed 8 h after EoB and synthesized [165Er]Er-Crown-TATE at molar activities of 202.4 MBq·nmol-1 at the end of synthesis (EoS). Conclusions: A 3 h cyclotron irradiation and 4.5 h radiochemical separation produced GBq-scale 165Er suitable for producing radiopharmaceuticals at molar activities satisfactory for investigations of targeted radionuclide therapeutic effects of Auger electron emissions. This will enable future fundamental radiation biology experiments of pure Auger electron-emitting therapeutic radiopharmaceuticals, such as [165Er]Er-Crown-TATE, which will be used to understand the impact of Auger electrons in TRT.
Collapse
Affiliation(s)
- Behrad Saeedi Saghez
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
8
|
Ogawa K. Recent development of probes for radiotheranostics. ANAL SCI 2024; 40:1-2. [PMID: 38175493 DOI: 10.1007/s44211-023-00452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Affiliation(s)
- Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
9
|
Echigo H, Mishiro K, Munekane M, Fuchigami T, Washiyama K, Takahashi K, Kitamura Y, Wakabayashi H, Kinuya S, Ogawa K. Development of probes for radiotheranostics with albumin binding moiety to increase the therapeutic effects of astatine-211 ( 211At). Eur J Nucl Med Mol Imaging 2024; 51:412-421. [PMID: 37819452 DOI: 10.1007/s00259-023-06457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE We have developed probes for multiradionuclides radiotheranostics using RGD peptide ([67Ga]Ga-DOTA-c[RGDf(4-I)K] ([67Ga]1) and Ga-DOTA-[211At]c[RGDf(4-At)K] ([211At]2)) for clinical applications. The introduction of an albumin binding moiety (ABM), such as 4-(4-iodophenyl)-butyric acid (IPBA), that has high affinity with the blood albumin and prolongs the circulation half-life can improve the pharmacokinetics of drugs. To perform more effective targeted alpha therapy (TAT), we designed and synthesized Ga-DOTA-K([211At]APBA)-c(RGDfK) ([211At]5) with 4-(4-astatophenyl)-butyric acid (APBA), which has an astato group instead of an iodo group in IPBA. We evaluated whether APBA functions as ABM and [211At]5 is effective for TAT. In addition, we prepared 67Ga-labeled RGD peptide without ABM, [67Ga]Ga-DOTA-K-c(RGDfK) ([67Ga]3), and 125I-labeled RGD peptide with ABM, Ga-DOTA-K([125I]IPBA)-c(RGDfK) ([125I]4), to compare with [211At]5. METHODS Biodistribution experiments of [67Ga]3 without ABM, [125I]4 and [211At]5 with ABM were conducted in normal mice and U-87 MG tumor-bearing mice. In addition, two doses of [211At]5 (370 or 925 kBq) were administered to U-87 MG tumor-bearing mice to confirm the therapeutic effects. RESULTS The blood retention of [125I]4 and [211At]5 was remarkably increased compared to [67Ga]3. Also, [125I]4 and [211At]5 showed similar biodistribution and significantly greater tumor accumulation and retention compared to [67Ga]3. In addition, [211At]5 inhibited tumor growth in a dose-dependent manner. CONCLUSION The functionality of APBA as ABM like IPBA, and the usefulness of [211At]5 as the radionuclide therapy agent for TAT was revealed.
Collapse
Affiliation(s)
- Hiroaki Echigo
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yoji Kitamura
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
10
|
Shafi Z, Gibson JK. Organolanthanide Complexes Containing Ln-CH 3 σ-bonds: Unexpectedly Similar Hydrolysis Rates for Trivalent and Tetravalent Organocerium. Inorg Chem 2023; 62:18399-18413. [PMID: 37910232 DOI: 10.1021/acs.inorgchem.3c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
We report the gas-phase preparation, isolation, and reactivity of a series of organolanthanides featuring the Ln-CH3 bond. The complexes are formed by decarboxylating anionic lanthanide acetates to form trivalent [LnIII(CH3)(CH3CO2)3]- (Ln = La, Ce, Pr, Nd, Sm, Tb, Tm, Yb, Lu), divalent [EuII(CH3)(CH3CO2)2]-, and the first examples of tetravalent organocerium complexes featuring CeIV-Calkyl σ-bonds: [CeIV(O)(CH3)(CH3CO2)2]- and [CeIV(O)(CH3)(NO3)2]-. Attempts to isolate PrIV-CH3 and TbIV-CH3 were unsuccessful; however, fragmentation patterns reveal that the oxidation of LnIII to a LnIV-oxo-acetate complex is more favorable for Ln = Pr than for Ln = Tb. The rate of Ln-CH3 hydrolysis is a measure of bond stability, and it decreases from LaIII-CH3 to LuIII-CH3, with increasing steric crowding for smaller Ln stabilizing the harder Ln-CH3 bond against hydrolysis. [EuII(CH3)(CH3CO2)2]- engages in a much faster hydrolysis versus LnIII-CH3. The surprising observation of similar hydrolysis rates for CeIV-CH3 and CeIII-CH3 is discussed with respect to sterics, the oxo ligand, and bond covalency in σ-bonded organolanthanides.
Collapse
Affiliation(s)
- Ziad Shafi
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Ogawa K, Nishizawa K, Washiyama K, Munekane M, Fuchigami T, Echigo H, Mishiro K, Hirata S, Wakabayashi H, Takahashi K, Kinuya S. Astatine-211-labeled aza-vesamicol derivatives as sigma receptor ligands for targeted alpha therapy. Nucl Med Biol 2023; 122-123:108369. [PMID: 37516066 DOI: 10.1016/j.nucmedbio.2023.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
INTRODUCTION As sigma receptors are abundantly expressed on different types of cancer cells, several radiolabeled sigma receptor ligands have been developed for cancer imaging and therapy. Previously, we synthesized and evaluated radioiodinated aza-vesamicol derivatives, [125I]pIC3NV, [125I]mIC2N5V, and [125I]mIC3N5V. They accumulated in tumors, and [125I]mIC2N5V and [125I]mIC3N5V showed higher tumor to non-target tissue ratios than [125I]pIC3NV. Therefore, we synthesized and evaluated the corresponding 211At-labeled compounds, [211At]mAtC2N5V and [211At]mAtC3N5V, for targeted alpha therapy (TAT). METHODS [211At]mAtC2N5V and [211At]mAtC3N5V were prepared by the standard method of electrophilic astatodestannylation of the corresponding trimethylstannyl precursors. Cellular uptake experiments, and biodistribution experiments and therapeutic experiments in tumor-bearing mice were performed. RESULTS The radiochemical yields of [211At]mAtC2N5V and [211At]mAtC3N5V were 45.5 ± 14.4% and 56.9 ± 13.8%, respectively. After HPLC purification, their radiochemical purities were over 95%. [211At]mAtC2N5V and [211At]mAtC3N5V showed high uptake in DU-145 cells. They demonstrated high accumulation in tumors (6.9 ± 1.4%injected dose/g and 5.1 ± 1.4%injected dose/g at 1 h, respectively) and similar biodistribution tendencies compared with the corresponding 125I-labeled compounds. A single injection of [211At]mAtC2N5V (0.48 MBq) or [211At]mAtC3N5V (0.48 MBq) significantly inhibited tumor growth. CONCLUSION These results indicated that [211At]mAtC2N5V and [211At]mAtC3N5V could be potential candidates for TAT.
Collapse
Affiliation(s)
- Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Kota Nishizawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Echigo
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Saki Hirata
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
12
|
Mishiro K, Ueno T, Wakabayashi H, Fukui M, Kinuya S, Ogawa K. Synthesis and evaluation of a deltic guanidinium analogue of a cyclic RGD peptide. Org Biomol Chem 2023; 21:1937-1941. [PMID: 36752554 DOI: 10.1039/d3ob00089c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A guanidine group is abundantly found in natural products and drugs. Guanidine has the highest basicity among many common functional groups in nature. Because of its high basicity, it generally exists as a protonated guanidinium and functions as a cationic hydrogen bond donor. Finding an appropriate bioisostere of guanidinium is challenging because of its high basicity and unique trigonal planar shape. In this study, we explored the possibility of "deltic guanidinium" as a bioisostere of guanidinium using a cyclic arginine-glycine-aspartic acid (RGD) peptide as a parent compound. We synthesized c(deltic RGDyK), in which a guanidinium group of an arginine residue in c(RGDyK) is replaced with deltic guanidinium. A target binding assay, biodistribution study, and metabolic stability assay were conducted with c(deltic RGDyK) and its radioiodinated variant. The deltic guanidinium analog peptides exhibited similar biological properties to the parent peptides and improved in vivo stability, indicating that deltic guanidinium could work as a unique bioisostere of guanidinium.
Collapse
Affiliation(s)
- Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Takahiro Ueno
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Masato Fukui
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan. .,Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
13
|
Elghobary MEN, Munekane M, Mishiro K, Fuchigami T, Ogawa K. Preparation and Evaluation of Thermosensitive Liposomes Encapsulating I-125-Labeled Doxorubicin Derivatives for Auger Electron Therapy. Molecules 2023; 28:molecules28041864. [PMID: 36838851 PMCID: PMC9962004 DOI: 10.3390/molecules28041864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Auger electrons (AEs) are very low-energy electrons emitted by radionuclides such as I-125 (125I). This energy is deposited across a small distance (<0.5 μm), resulting in high linear energy transfer that is potent for causing lethal damage to cancer cells. Thus, AE-emitting radiotherapeutic agents have great potential for cancer treatment. In this study, thermosensitive liposomes (TSLs) encapsulating 125I-labeled doxorubicin (DOX) derivatives were developed for Auger electron therapy, targeting the DNA of cancer cells. A radioiodinated DOX derivative [125I]5 highly accumulated in the nuclei of cancer cells and showed potent cytotoxicity against Colon 26 cancer cells by AEs. Subsequently, [125I]5 was loaded into the TSLs with high encapsulation efficiency. Potent release of [125I]5 from TSLs was achieved with heating, whereas a decreased release was observed without heating. Furthermore, TSLs encapsulating [125I]5 showed a high uptake in the nuclei at 42 °C for 1 h. We supposed that [125I]5 was released by heating at 42 °C and accumulated in the nuclei in the cells. These results suggest that the combination of TSLs encapsulating [125I]5 and hyperthermia is an effective cancer therapy.
Collapse
Affiliation(s)
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- Correspondence: (M.M.); (K.O.); Tel./Fax: +81-76-234-4461 (M.M.); +81-76-234-4460 (K.O.)
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
- Correspondence: (M.M.); (K.O.); Tel./Fax: +81-76-234-4461 (M.M.); +81-76-234-4460 (K.O.)
| |
Collapse
|
14
|
Gareev KG, Shevtsov M. Editorial: Radiotheranostics: From basic research to clinical application. Front Med (Lausanne) 2023; 10:1171218. [PMID: 37025958 PMCID: PMC10071033 DOI: 10.3389/fmed.2023.1171218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Affiliation(s)
- Kamil G. Gareev
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia
- *Correspondence: Kamil G. Gareev
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the RAS, St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
15
|
Mishiro K, Imai S, Ematsu Y, Hirose K, Fuchigami T, Munekane M, Kinuya S, Ogawa K. RGD Peptide-Conjugated Dodecaborate with the Ga-DOTA Complex: A Preliminary Study for the Development of Theranostic Agents for Boron Neutron Capture Therapy and Its Companion Diagnostics. J Med Chem 2022; 65:16741-16753. [PMID: 36512639 DOI: 10.1021/acs.jmedchem.2c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A boron neutron capture therapy (BNCT) system, using boron-10-introduced agents coupled with companion diagnostics, is anticipated as a promising cancer theranostic. Thus, this study aimed to synthesize and evaluate a probe closo-dodecaborate-(Ga-DOTA)-c(RGDfK) (16) [Ga = gallium, DOTA =1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, and c(RGDfK) = cyclo(arginine-glycine-aspartate-d-phenylalanine-lysine] containing closo-dodecaborate ([B12H12]2-) as a boron cluster, a [67Ga]Ga-DOTA derivative for nuclear medicine imaging, and an RGD peptide for tumor targeting. Moreover, we prepared a radioiodinated probe [125I]17 in which I-125 is introduced into a closo-dodecaborate moiety of 16. [67Ga]16 and [125I]17 showed high stability and high uptake in cancer cells in vitro. Biodistribution experiments in tumor-bearing mice revealed similar biodistribution patterns between [67Ga]16 and [125I]17, such as a high uptake in the tumor and a low uptake in other non-target tissues. Meanwhile, [125I]17 exhibited higher accumulation in most tissues, including the tumor, than [67Ga]16, probably because of higher albumin binding. The higher the [125I]17 accumulation in the tumor, the more desirable it is for BNCT, with the possibility that the iodo-closo-dodecaborate site may work as an albumin binder.
Collapse
Affiliation(s)
- Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa920-1192, Japan
| | - Sayaka Imai
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa920-1192, Japan
| | - Yuki Ematsu
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa920-1192, Japan
| | - Katsumi Hirose
- Southern Tohoku BNCT Research Center, Koriyama963-8052, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa920-1192, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa920-1192, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa920-8641, Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa920-1192, Japan.,Graduate School of Medical Sciences, Kanazawa University, Kanazawa920-1192, Japan
| |
Collapse
|
16
|
Ramzi NI, Mishiro K, Munekane M, Fuchigami T, Hu X, Jastrząb R, Kitamura Y, Kinuya S, Ogawa K. Synthesis and evaluation of radiolabeled porphyrin derivatives for cancer diagnoses and their nonradioactive counterparts for photodynamic therapy. RSC Med Chem 2022; 13:1565-1574. [PMID: 36561065 PMCID: PMC9749959 DOI: 10.1039/d2md00234e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 12/25/2022] Open
Abstract
Radioiodinated porphyrin derivatives and the corresponding nonradioactive iodine introduced compounds, [125I]I-TPPOH ([125I]3), [125I]I-l-tyrosine-TPP ([125I]9), I-TPPOH (3), and I-l-tyrosine-TPP (9) were designed, synthesized, and evaluated by in vitro and in vivo experiments. In cytotoxicity assays, 3 and 9 exhibited significant cytotoxicity under light conditions but did not show significant cytotoxicity without light irradiation. Biodistribution experiments with [125I]3 and [125I]9 showed similar distribution patterns with high retention in tumors. In photodynamic therapeutic (PDT) experiments, 3 and 9 at a dose of 13.6 μmol kg-1 weight with 50 W single light irradiation onto the tumor area significantly inhibited tumor growth. These results indicate that the iodinated porphyrin derivatives [123/natI]3 and [123/natI]9 are promising cancer theranostic agents.
Collapse
Affiliation(s)
- Nur Izni Ramzi
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Masayuki Munekane
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Takeshi Fuchigami
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University Shanghai 200444 China
| | - Renata Jastrząb
- Faculty of Chemistry, Adam Mickiewicz University of Poznan Uniwersytetu Poznanskiego 8 Poznan 61-614 Poland
| | - Yoji Kitamura
- Research Center for Experimental Modeling of Human Disease, Kanazawa University Takara-machi 13-1 Kanazawa Ishikawa 920-8640 Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University Takara-machi 13-1 Kanazawa Ishikawa 920-8641 Japan
| | - Kazuma Ogawa
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
17
|
Hirata S, Mishiro K, Higashi T, Fuchigami T, Munekane M, Arano Y, Kinuya S, Ogawa K. Synthesis and evaluation of a multifunctional probe with a high affinity for prostate-specific membrane antigen (PSMA) and bone. Nucl Med Biol 2022; 114-115:34-41. [PMID: 36088875 DOI: 10.1016/j.nucmedbio.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/27/2022]
Abstract
Prostate cancer frequently metastasizes to the bone. Because patients with bone metastases suffer from skeletal-related events, the diagnosis and treatment of bone metastases in the early stage are important. In this study, to improve the sensitivity of detecting bone metastases in patients with prostate cancer, we designed, synthesized, and evaluated a multifunctional radiotracer, [67Ga]Ga-D11-PSMA-617 ([67Ga]3), with an undeca-aspartic acid as a bone-seeking moiety between [67Ga]Ga-DOTA and a prostate-specific membrane antigen (PSMA) ligand based on the lysine-urea-glutamate motif. [67Ga]3 showed a high affinity for hydroxyapatite and high uptake in PSMA-positive LNCaP cells. Moreover, in biodistribution experiments using tumor-bearing mice, [67Ga]3 exhibited high accumulation in the bone and PSMA-positive tumor although the accumulation of [67Ga]3 in the PSMA-positive tumor was lower than that of [67Ga]Ga-PSMA-617. This study provides valuable information for developing radiotheranostic probes combining multiple carriers with different mechanisms.
Collapse
Affiliation(s)
- Saki Hirata
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takuma Higashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yasushi Arano
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Kanazawa 920-8641, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan; Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
18
|
Sadler AWE, Hogan L, Fraser B, Rendina LM. Cutting edge rare earth radiometals: prospects for cancer theranostics. EJNMMI Radiopharm Chem 2022; 7:21. [PMID: 36018527 PMCID: PMC9418400 DOI: 10.1186/s41181-022-00173-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background With recent advances in novel approaches to cancer therapy and imaging, the application of theranostic techniques in personalised medicine has emerged as a very promising avenue of research inquiry in recent years. Interest has been directed towards the theranostic potential of Rare Earth radiometals due to their closely related chemical properties which allow for their facile and interchangeable incorporation into identical bifunctional chelators or targeting biomolecules for use in a diverse range of cancer imaging and therapeutic applications without additional modification, i.e. a “one-size-fits-all” approach. This review will focus on recent progress and innovations in the area of Rare Earth radionuclides for theranostic applications by providing a detailed snapshot of their current state of production by means of nuclear reactions, subsequent promising theranostic capabilities in the clinic, as well as a discussion of factors that have impacted upon their progress through the theranostic drug development pipeline. Main body In light of this interest, a great deal of research has also been focussed towards certain under-utilised Rare Earth radionuclides with diverse and favourable decay characteristics which span the broad spectrum of most cancer imaging and therapeutic applications, with potential nuclides suitable for α-therapy (149Tb), β−-therapy (47Sc, 161Tb, 166Ho, 153Sm, 169Er, 149Pm, 143Pr, 170Tm), Auger electron (AE) therapy (161Tb, 135La, 165Er), positron emission tomography (43Sc, 44Sc, 149Tb, 152Tb, 132La, 133La), and single photon emission computed tomography (47Sc, 155Tb, 152Tb, 161Tb, 166Ho, 153Sm, 149Pm, 170Tm). For a number of the aforementioned radionuclides, their progression from ‘bench to bedside’ has been hamstrung by lack of availability due to production and purification methods requiring further optimisation. Conclusions In order to exploit the potential of these radionuclides, reliable and economical production and purification methods that provide the desired radionuclides in high yield and purity are required. With more reactors around the world being decommissioned in future, solutions to radionuclide production issues will likely be found in a greater focus on linear accelerator and cyclotron infrastructure and production methods, as well as mass separation methods. Recent progress towards the optimisation of these and other radionuclide production and purification methods has increased the feasibility of utilising Rare Earth radiometals in both preclinical and clinical settings, thereby placing them at the forefront of radiometals research for cancer theranostics.
Collapse
Affiliation(s)
| | - Leena Hogan
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW, 2232, Australia
| | - Benjamin Fraser
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW, 2232, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
19
|
Development and evaluation of a theranostic probe with RGD peptide introduced platinum complex to enable tumor-specific accumulation. Bioorg Med Chem 2022; 70:116919. [PMID: 35816895 DOI: 10.1016/j.bmc.2022.116919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Cisplatin (CDDP) has been widely used for chemotherapy. However, it has several unfavorable side effects due to its low tumor selectivity. In this study, we designed, synthesized, and evaluated Pt(IV)-[c(RGDyK)]2 (9), in which two molecules of an RGD peptide are introduced as a carrier molecule to cancer into oxoplatin, a Pt(IV) prodrug of CDDP, to enhance cancer selectivity. Furthermore, we prepared and evaluated Pt(IV)-[c(RGDyK)]{[125I]c[RGDy(3-I)K]} ([125I]10) for a preliminary step of nuclear medicine imaging and theranostics. Compound 9 inhibited cell growth in the cell viability assay and, [125I]10 was highly accumulated in tumor tissues (1 h: 3.53 ± 0.53 %ID/g) in the biodistribution study. These results indicate that implementing RGD peptides into oxoplatin enabled tumor-specific accumulation, and combining [123/124I]10 and 9 for diagnostic imaging and therapy could be useful for cancer theranostics.
Collapse
|
20
|
Pazderová L, Benešová M, Havlíčková J, Vojtíčková M, Kotek J, Lubal P, Ullrich M, Walther M, Schulze S, Neuber C, Rammelt S, Pietzsch HJ, Pietzsch J, Kubíček V, Hermann P. Cyclam with a phosphinate-bis(phosphonate) pendant arm is a bone-targeting carrier of copper radionuclides. Dalton Trans 2022; 51:9541-9555. [PMID: 35670322 DOI: 10.1039/d2dt01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligands combining a bis(phosphonate) group with a macrocycle function as metal isotope carriers for radionuclide-based imaging and for treating bone metastases associated with several cancers. However, bis(phosphonate) pendant arms often slow down complex formation and decrease radiochemical yields. Nevertheless, their negative effect on complexation rates may be mitigated by using a suitable spacer between bis(phosphonate) and the macrocycle. To demonstrate the potential of bis(phosphonate) bearing macrocyclic ligands as a copper radioisotope carrier, we report the synthesis of a new cyclam derivative bearing a phosphinate-bis(phosphonate) pendant (H5te1PBP). The ligand showed a high selectivity to CuII over ZnII and NiII ions, and the bis(phosphonate) group was not coordinated in the CuII complex, strongly interacting with other metal ions in solution. The CuII complex formed quickly, in 1 s, at pH 5 and at a millimolar scale. The complexation rates significantly differed under a ligand or metal ion excess due to the formation of reaction intermediates differing in their metal-to-ligand ratio and protonation state, respectively. The CuII-te1PBP complex also showed a high resistance to acid-assisted hydrolysis (t1/2 2.7 h; 1 M HClO4, 25 °C) and was effectively adsorbed on the hydroxyapatite surface. H5te1PBP radiolabeling with [64Cu]CuCl2 was fast and efficient, with specific activities of approximately 30 GBq 64Cu per 1 μmol of ligand (pH 5.5, room temperature, 30 min). In a pilot experiment, we further demonstrated the excellent suitability of [64Cu]CuII-te1PBP for imaging active bone compartments by dedicated small animal PET/CT in healthy mice and subsequently in a rat femoral defect model, in direct comparison with [18F]fluoride. Moreover, [64Cu]CuII-te1PBP showed a higher uptake in critical bone defect regions. Therefore, our study highlights the potential of [64Cu]CuII-te1PBP as a PET radiotracer for evaluating bone healing in preclinical and clinical settings with a diagnostic value similar to that of [18F]fluoride, albeit with a longer half-life (12.7 h) than 18F (1.8 h), thereby enabling extended observation times.
Collapse
Affiliation(s)
- Lucia Pazderová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Martina Benešová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic. .,Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Jana Havlíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Margareta Vojtíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Přemysl Lubal
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Martin Walther
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sabine Schulze
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Stefan Rammelt
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01069 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01069 Dresden, Germany
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
21
|
Holik HA, Ibrahim FM, Elaine AA, Putra BD, Achmad A, Kartamihardja AHS. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022; 27:3062. [PMID: 35630536 PMCID: PMC9143622 DOI: 10.3390/molecules27103062] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic radiopharmaceuticals have been researched extensively in the last decade as a result of the growing research interest in personalized medicine to improve diagnostic accuracy and intensify intensive therapy while limiting side effects. Radiometal-based drugs are of substantial interest because of their greater versatility for clinical translation compared to non-metal radionuclides. This paper comprehensively discusses various components commonly used as chemical scaffolds to build radiopharmaceutical agents, i.e., radionuclides, pharmacokinetic-modifying linkers, and chelators, whose characteristics are explained and can be used as a guide for the researcher.
Collapse
Affiliation(s)
- Holis Abdul Holik
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Faisal Maulana Ibrahim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Angela Alysia Elaine
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Bernap Dwi Putra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Arifudin Achmad
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Achmad Hussein Sundawa Kartamihardja
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
| |
Collapse
|
22
|
Shafi Z, Gibson JK. Lanthanide Complexes Containing a Terminal Ln═O Oxo Bond: Revealing Higher Stability of Tetravalent Praseodymium versus Terbium. Inorg Chem 2022; 61:7075-7087. [PMID: 35476904 DOI: 10.1021/acs.inorgchem.2c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the reactivity of gas-phase lanthanide-oxide nitrate complexes, [Ln(O)(NO3)3]- (denoted LnO2+), produced via elimination of NO2• from trivalent [LnIII(NO3)4]- (Ln = Ce, Pr, Nd, Sm, Tb, Dy). These complexes feature a LnIII-O• oxyl, a LnIV═O oxo, or an intermediate LnIII/IV oxyl/oxo bond, depending on the accessibility of the tetravalent LnIV state. Hydrogen atom abstraction reactivity of the LnO2+ complexes to form unambiguously trivalent [LnIII(OH)(NO3)3]- reveals the nature of the oxide bond. The result of slower reactivity of PrO2+ versus TbO2+ is considered to indicate higher stability of the tetravalent praseodymium-oxo, PrIV═O, versus TbIV═O. This is the first report of PrIV as more stable than TbIV, which is discussed with respect to ionization potentials, standard electrode potentials, atomic promotion energies, and oxo bond covalency via 4f- and/or 5d-orbital participation.
Collapse
Affiliation(s)
- Ziad Shafi
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Kim A, Choi K. Preparative chromatographic separation of neighboring lanthanides using amines as a pH adjusting additive for producing carrier-free 177Lu. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021. [DOI: 10.3390/molecules26226997
expr 973886017 + 973118332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
|
25
|
Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021; 26:6997. [PMID: 34834087 PMCID: PMC8619595 DOI: 10.3390/molecules26226997&set/a 916769719+956065658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Xu Zhou
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Linlin Dong
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
- Correspondence:
| |
Collapse
|
26
|
Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021; 26:6997. [PMID: 34834087 PMCID: PMC8619595 DOI: 10.3390/molecules26226997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Xu Zhou
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Linlin Dong
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
| |
Collapse
|
27
|
Bruins J, Damen JAM, Wijdeven MA, Lelieveldt LPWM, van Delft FL, Albada B. Non-Genetic Generation of Antibody Conjugates Based on Chemoenzymatic Tyrosine Click Chemistry. Bioconjug Chem 2021; 32:2167-2172. [PMID: 34519477 PMCID: PMC8532111 DOI: 10.1021/acs.bioconjchem.1c00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Indexed: 12/01/2022]
Abstract
The availability of tools to generate homogeneous and stable antibody conjugates without recombinant DNA technology is a valuable asset in fields spanning from in vitro diagnostics to in vivo imaging and therapeutics. We present here a general approach for the conjugation to human IgG1 antibodies, by employing a straightforward two-stage protocol based on antibody deglycosylation followed by tyrosinase-mediated ortho-quinone strain-promoted click chemistry. The technology is validated by the efficient and clean generation of highly potent DAR2 and DAR4 antibody-drug conjugates (ADCs) with cytotoxic payloads MMAE or PBD dimer, and their in vitro evaluation.
Collapse
Affiliation(s)
- Jorick
J. Bruins
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Johannes A. M. Damen
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | | | | | - Floris L. van Delft
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Synaffix
BV, Kloosterstraat 9, 5349 AB, Oss, The Netherlands
| | - Bauke Albada
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
28
|
Synthesis and Evaluation of a Dimeric RGD Peptide as a Preliminary Study for Radiotheranostics with Radiohalogens. Molecules 2021; 26:molecules26206107. [PMID: 34684688 PMCID: PMC8539346 DOI: 10.3390/molecules26206107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 01/12/2023] Open
Abstract
We recently developed 125I- and 211At-labeled monomer RGD peptides using a novel radiolabeling method. Both labeled peptides showed high accumulation in the tumor and exhibited similar biodistribution, demonstrating their usefulness for radiotheranostics. This study applied the labeling method to a dimer RGD peptide with the aim of gaining higher accumulation in tumor tissues based on improved affinity with αvβ3 integrin. We synthesized an iodine-introduced dimer RGD peptide, E[c(RGDfK)] (6), and an 125/131I-labeled dimer RGD peptide, E[c(RGDfK)]{[125/131I]c[RGDf(4-I)K]} ([125/131I]6), and evaluated them as a preliminary step to the synthesis of an 211At-labeled dimer RGD peptide. The affinity of 6 for αvβ3 integrin was higher than that of a monomer RGD peptide. In the biodistribution experiment at 4 h postinjection, the accumulation of [125I]6 (4.12 ± 0.42% ID/g) in the tumor was significantly increased compared with that of 125I-labeled monomer RGD peptide (2.93 ± 0.08% ID/g). Moreover, the accumulation of [125I]6 in the tumor was greatly inhibited by co-injection of an excess RGD peptide. However, a single injection of [131I]6 (11.1 MBq) did not inhibit tumor growth in tumor-bearing mice. We expect that the labeling method for targeted alpha therapy with 211At using a dimer RGD peptide could prove useful in future clinical applications.
Collapse
|
29
|
Cassells I, Ahenkorah S, Burgoyne AR, Van de Voorde M, Deroose CM, Cardinaels T, Bormans G, Ooms M, Cleeren F. Radiolabeling of Human Serum Albumin With Terbium-161 Using Mild Conditions and Evaluation of in vivo Stability. Front Med (Lausanne) 2021; 8:675122. [PMID: 34504849 PMCID: PMC8422959 DOI: 10.3389/fmed.2021.675122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/26/2021] [Indexed: 02/04/2023] Open
Abstract
Targeted radionuclide therapy (TRNT) is a promising approach for cancer therapy. Terbium has four medically interesting isotopes (149Tb, 152Tb, 155Tb and 161Tb) which span the entire radiopharmaceutical space (TRNT, PET and SPECT imaging). Since the same element is used, accessing the various diagnostic or therapeutic properties without changing radiochemical procedures and pharmacokinetic properties is advantageous. The use of (heat-sensitive) biomolecules as vector molecule with high affinity and selectivity for a certain molecular target is promising. However, mild radiolabeling conditions are required to prevent thermal degradation of the biomolecule. Herein, we report the evaluation of potential bifunctional chelators for Tb-labeling of heat-sensitive biomolecules using human serum albumin (HSA) to assess the in vivo stability of the constructs. p-SCN-Bn-CHX-A”-DTPA, p-SCN-Bn-DOTA, p-NCS-Bz-DOTA-GA and p-SCN-3p-C-NETA were conjugated to HSA via a lysine coupling method. All HSA-constructs were labeled with [161Tb]TbCl3 at 40°C with radiochemical yields higher than 98%. The radiolabeled constructs were stable in human serum up to 24 h at 37°C. 161Tb-HSA-constructs were injected in mice to evaluate their in vivo stability. Increasing bone accumulation as a function of time was observed for [161Tb]TbCl3 and [161Tb]Tb-DTPA-CHX-A”-Bn-HSA, while negligible bone uptake was observed with the DOTA, DOTA-GA and NETA variants over a 7-day period. The results indicate that the p-SCN-Bn-DOTA, p-NCS-Bz-DOTA-GA and p-SCN-3p-C-NETA are suitable bifunctional ligands for Tb-based radiopharmaceuticals, allowing for high yield radiolabeling in mild conditions.
Collapse
Affiliation(s)
- Irwin Cassells
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, KU Leuven, Leuven, Belgium.,Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science, Mol, Belgium
| | - Stephen Ahenkorah
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, KU Leuven, Leuven, Belgium.,Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science, Mol, Belgium
| | - Andrew R Burgoyne
- Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science, Mol, Belgium
| | - Michiel Van de Voorde
- Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science, Mol, Belgium
| | - Christophe M Deroose
- Nuclear Medicine, University Hospitals Leuven, Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Thomas Cardinaels
- Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science, Mol, Belgium.,Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, KU Leuven, Leuven, Belgium
| | - Maarten Ooms
- Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science, Mol, Belgium
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Ogawa K, Echigo H, Mishiro K, Hirata S, Washiyama K, Kitamura Y, Takahashi K, Shiba K, Kinuya S. 68Ga- and 211At-Labeled RGD Peptides for Radiotheranostics with Multiradionuclides. Mol Pharm 2021; 18:3553-3562. [PMID: 34403257 DOI: 10.1021/acs.molpharmaceut.1c00460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Probes for radiotheranostics could be produced by introducing radionuclides with similar chemical characteristics into the same precursors. We recently developed an 211At-labeled RGD peptide and a corresponding radioiodine-labeled RGD peptide. Both labeled peptides accumulated in large quantities in the tumor with similar biodistribution, demonstrating their usefulness for radiotheranostics. In this study, we hypothesized that probes for radiotheranostics combined with multiradionuclides, such as 68Ga and 211At, have useful clinical applications. New radiolabeled RGD peptide probes were synthesized via a molecular design approach, with two labeling sites for metal and halogen. These probes were evaluated in biodistribution experiments using tumor-bearing mice. [67Ga]Ga-DOTA-c[RGDf(4-I)K] ([67Ga]4), Ga-DOTA-[125I]c[RGDf(4-I)K] ([125I]4), and Ga-DOTA-[211At]c[RGDf(4-At)K] ([211At]7) showed similar biodistribution, with high and equivalent accumulation in tumors. These results indicate the usefulness of these probes in radiotheranostics with multiradionuclides, such as a radiometal and a radiohalogen, and they could contribute to a personalized medicine regimen.
Collapse
Affiliation(s)
- Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan.,Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroaki Echigo
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Saki Hirata
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Yoji Kitamura
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Kazuhiro Shiba
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
31
|
Van de Voorde M, Duchemin C, Heinke R, Lambert L, Chevallay E, Schneider T, Van Stenis M, Cocolios TE, Cardinaels T, Ponsard B, Ooms M, Stora T, Burgoyne AR. Production of Sm-153 With Very High Specific Activity for Targeted Radionuclide Therapy. Front Med (Lausanne) 2021; 8:675221. [PMID: 34350194 PMCID: PMC8326506 DOI: 10.3389/fmed.2021.675221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
Samarium-153 (153Sm) is a highly interesting radionuclide within the field of targeted radionuclide therapy because of its favorable decay characteristics. 153Sm has a half-life of 1.93 d and decays into a stable daughter nuclide (153Eu) whereupon β- particles [E = 705 keV (30%), 635 keV (50%)] are emitted which are suitable for therapy. 153Sm also emits γ photons [103 keV (28%)] allowing for SPECT imaging, which is of value in theranostics. However, the full potential of 153Sm in nuclear medicine is currently not being exploited because of the radionuclide's limited specific activity due to its carrier added production route. In this work a new production method was developed to produce 153Sm with higher specific activity, allowing for its potential use in targeted radionuclide therapy. 153Sm was efficiently produced via neutron irradiation of a highly enriched 152Sm target (98.7% enriched, σth = 206 b) in the BR2 reactor at SCK CEN. Irradiated target materials were shipped to CERN-MEDICIS, where 153Sm was isolated from the 152Sm target via mass separation (MS) in combination with laser resonance enhanced ionization to drastically increase the specific activity. The specific activity obtained was 1.87 TBq/mg (≈ 265 times higher after the end of irradiation in BR2 + cooling). An overall mass separation efficiency of 4.5% was reached on average for all mass separations. Further radiochemical purification steps were developed at SCK CEN to recover the 153Sm from the MS target to yield a solution ready for radiolabeling. Each step of the radiochemical process was fully analyzed and characterized for further optimization resulting in a high efficiency (overall recovery: 84%). The obtained high specific activity (HSA) 153Sm was then used in radiolabeling experiments with different concentrations of 4-isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA). Even at low concentrations of p-SCN-Bn-DOTA, radiolabeling of 0.5 MBq of HSA 153Sm was found to be efficient. In this proof-of-concept study, we demonstrated the potential to combine neutron irradiation with mass separation to supply high specific activity 153Sm. Using this process, 153SmCl3 suitable for radiolabeling, was produced with a very high specific activity allowing application of 153Sm in targeted radionuclide therapy. Further studies to incorporate 153Sm in radiopharmaceuticals for targeted radionuclide therapy are ongoing.
Collapse
Affiliation(s)
- Michiel Van de Voorde
- Belgian Nuclear Research Center, Institute for Nuclear Materials Science, Mol, Belgium
| | - Charlotte Duchemin
- Department of Physics and Astronomy, Institute for Nuclear and Radiation Physics, KU Leuven, Leuven, Belgium
- European Organization for Nuclear Research, MEDICIS, Geneva, Switzerland
| | - Reinhard Heinke
- Department of Physics and Astronomy, Institute for Nuclear and Radiation Physics, KU Leuven, Leuven, Belgium
- European Organization for Nuclear Research, MEDICIS, Geneva, Switzerland
| | - Laura Lambert
- European Organization for Nuclear Research, MEDICIS, Geneva, Switzerland
| | - Eric Chevallay
- European Organization for Nuclear Research, MEDICIS, Geneva, Switzerland
| | - Thomas Schneider
- European Organization for Nuclear Research, Thin Film Lab, Geneva, Switzerland
| | - Miranda Van Stenis
- European Organization for Nuclear Research, Thin Film Lab, Geneva, Switzerland
| | - Thomas Elias Cocolios
- Department of Physics and Astronomy, Institute for Nuclear and Radiation Physics, KU Leuven, Leuven, Belgium
| | - Thomas Cardinaels
- Belgian Nuclear Research Center, Institute for Nuclear Materials Science, Mol, Belgium
- Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Bernard Ponsard
- Belgian Nuclear Research Center, Institute for Nuclear Materials Science, Mol, Belgium
| | - Maarten Ooms
- Belgian Nuclear Research Center, Institute for Nuclear Materials Science, Mol, Belgium
| | - Thierry Stora
- European Organization for Nuclear Research, MEDICIS, Geneva, Switzerland
| | - Andrew R. Burgoyne
- Belgian Nuclear Research Center, Institute for Nuclear Materials Science, Mol, Belgium
| |
Collapse
|
32
|
Fiaccabrino DE, Kunz P, Radchenko V. Potential for production of medical radionuclides with on-line isotope separation at the ISAC facility at TRIUMF and particular discussion of the examples of 165Er and 155Tb. Nucl Med Biol 2021; 94-95:81-91. [PMID: 33607326 DOI: 10.1016/j.nucmedbio.2021.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/25/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Production of medical radionuclides with ISOL facilities is a unique production method that may provide access to preclinical quantities of some rare and potent radionuclides for nuclear medicine. Particularly attention over the past years was focused on several promising candidates for Targeted Radionuclides Therapy (TRT). With this review, we provide some perspectives of using the TRIUMF ISOL facility (ISAC) to produce medical radionuclides for TRT application and highlight our current effort to collect of 165Er and 155Tb for Auger Therapy and SPECT imaging, respectively.
Collapse
Affiliation(s)
- Desiree Erika Fiaccabrino
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada; Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Peter Kunz
- Accelerator Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
33
|
Mitrofanov YA, Larenkov AA, Kodina GE. Complexation of Scandium with
Oxabis(ethylenenitrilo)tetramethylenephosphonic Acid and Applicability of Its
44Sc-Labelled Analogue as Bone-Seeking
Agent. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221020080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Lyczko K, Rode JE, Dobrowolski JC. Chiral Lanthanide Complexes with l- and d-Alanine: An X-ray and Vibrational Circular Dichroism Study. Molecules 2020; 25:E2729. [PMID: 32545530 PMCID: PMC7357152 DOI: 10.3390/molecules25122729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/17/2023] Open
Abstract
A whole series of [Ln(H2O)4(Ala)2]26+ dimeric cationic lanthanide complexes with both L- and D-alanine enantiomers was synthesized. The single-crystal X-ray diffraction at 100 and 292 K shows the formation of two types of dimers (I and II) in crystals. Between the dimer centers, the alanine molecules behave as bridging (μ2-O,O'-) and chelating bridging (μ2-O,O,O'-) ligands. The first type of bridge is present in dimers I, while both bridge forms can be observed in dimers II. The IR and vibrational circular dichroism (VCD) spectra of all L- and D-alanine complexes were registered in the 1750-1250 cm-1 range as KBr pellets. Despite all the studied complexes are exhibiting similar crystal structures, the spectra reveal correlations or trends with the Ln-O1 distances which exemplify the lanthanide contraction effect in the IR spectra. This is especially true for the positions and intensities of some IR bands. Unexpectedly, the ν(C=O) VCD bands are quite intense and their composed shapes reveal the inequivalence of the C=O vibrators in the unit cell which vary with the lanthanide. Unlike in the IR spectra, the ν(C=O) VCD band positions are only weakly correlated with the change of Ln and the VCD intensities at most show some trends. Nevertheless, this is the first observation of the lanthanide contraction effect in the VCD spectra. Generally, for the heavier lanthanides (Ln: Dy-Lu), the VCD band maxima are very close to each other and the mirror reflection of the band of two enantiomers is usually better than that of the lighter Lns. DFT calculations show that the higher the multiplicity the higher the stability of the system. Actually, the molecular geometry in crystals (at 100 K) is well predicted based on the highest-spin structures. Also, the simulated IR and VCD spectra strongly depend on the Ln electron configuration but the best overall agreement was reached for the Lu complex, which is the only system with a fully filled f-shell.
Collapse
Affiliation(s)
- Krzysztof Lyczko
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (J.E.R.); (J.C.D.)
| | | | | |
Collapse
|
35
|
Mizuno Y, Komatsu N, Uehara T, Shimoda Y, Kimura K, Arano Y, Akizawa H. Aryl isocyanide derivative for one-pot synthesis of purification-free 99mTc-labeled hexavalent targeting probe. Nucl Med Biol 2020; 86-87:30-36. [PMID: 32470868 DOI: 10.1016/j.nucmedbio.2020.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION 99mTc-labeled hexavalent probes can be readily synthesized by the coordination of six equivalent isocyanide ligands towards TcI, and alkyl isocyanide ligands have been extensively used for preparing such probes. However, high ligand concentration (>1 mM) is generally required due to their insufficient coordination ability to TcI. METHODS AND RESULTS In this study, we revealed that aryl isocyanide ligands, which have greater π-accepting ability compared with alkyl ones, provided 99mTc-labeled hexavalent probes in high radiochemical yields (>95%) even at low ligand concentration (50 μM). We applied this finding to the synthesis of a 99mTc-labeled hexavalent RGD probe, targeting integrin αvβ3. This 99mTc-labeled probe was prepared in a 5 min reaction at ligand concentration of 50 μM, and exhibited high tumor localization in vivo without post-labeling purification. CONCLUSION The present findings indicate that aryl isocyanide ligands would be a useful precursor to a variety of 99mTc-labeled hexavalent targeting probes for molecular imaging of saturable systems. ADVANCES IN KNOWLEDGE Aryl isocyanide is a better precursor than alkyl isocyanide for preparing 99mTc-labeled hexavalent targeting probe. IMPLICATION FOR PATIENT CARE This work provides a straightforward method to prepare molecular imaging agents of high target uptake, which would facilitate nuclear medicine imaging in clinical settings.
Collapse
Affiliation(s)
- Yuki Mizuno
- Laboratory of Physical Chemistry, Showa Pharmaceutical University, Japan; Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Nagiho Komatsu
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Tomoya Uehara
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Yuka Shimoda
- Laboratory of Physical Chemistry, Showa Pharmaceutical University, Japan
| | - Kohta Kimura
- Laboratory of Physical Chemistry, Showa Pharmaceutical University, Japan
| | - Yasushi Arano
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Hiromichi Akizawa
- Laboratory of Physical Chemistry, Showa Pharmaceutical University, Japan.
| |
Collapse
|
36
|
Alshamrani AF, Prior TJ, Burke BP, Roberts DP, Archibald SJ, Higham LJ, Stasiuk G, Redshaw C. Water-Soluble Rhenium Phosphine Complexes Incorporating the Ph 2C(X) Motif (X = O -, NH -): Structural and Cytotoxicity Studies. Inorg Chem 2020; 59:2367-2378. [PMID: 31984731 DOI: 10.1021/acs.inorgchem.9b03239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction of [ReOCl3(PPh3)2] or [ReO2I(PPh3)2] with 2,2'-diphenylglycine (dpgH2) in refluxing ethanol afforded the air-stable complex [ReO(dpgH)(dpg)(PPh3)] (1). Treatment of [ReO(OEt)I2(PPh3)2] with 1,2,3-triaza-7-phosphaadamantane (PTA) afforded the complex [ReO(OEt)I2(PTA)2] (2). Reaction of [ReOI2(PTA)3] with dpgH2 led to the isolation of the complex [Re(NCPh2)I2(PTA)3]·0.5EtOH (3·0.5EtOH). A similar reaction but using [ReOX2(PTA)3] (X = Cl, Br) resulted in the analogous halide complexes [Re(NCPh2)Cl2(PTA)3]·2EtOH (4·2EtOH) and [Re(NCPh2)(PTA)3Br2]·1.6EtOH (5·1.6EtOH). Using benzilic acid (2,2'-diphenylglycolic acid, benzH) with 2 afforded the complex [ReO(benz)2(PTA)][PTAH]·EtOH (6·EtOH). The potential for the formation of complexes using radioisotopes with relatively short half-lives suitable for nuclear medicine applications by developing conditions for [Re(NCPh2)(dpg)I(PTA)3] (7)[ReO4]- in a 4 h time scale was investigated. A procedure for the technetium analog of complex [Re(NCPh2)I2(PTA)3] (3) from 99mTc[TcO4]- was then investigated. The molecular structures of 1-7 are reported; complexes 3-7 have been studied using in vitro cell assays (HeLa, HCT116, HT-29, and HEK 293) and were found to have IC50 values in the range of 29-1858 μM.
Collapse
Affiliation(s)
- Abdullah F Alshamrani
- Department of Chemistry & Biochemistry , University of Hull , Cottingham Road , Hull HU6 7RX , U.K.,Department of Biomedical Sciences , University of Hull , Cottingham Road , Hull HU6 7RX , U.K
| | - Timothy J Prior
- Department of Chemistry & Biochemistry , University of Hull , Cottingham Road , Hull HU6 7RX , U.K
| | - Benjamin P Burke
- Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , U.K
| | - David P Roberts
- Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , U.K
| | - Stephen J Archibald
- Department of Biomedical Sciences , University of Hull , Cottingham Road , Hull HU6 7RX , U.K.,Positron Emission Tomography Research Centre , University of Hull , Cottingham Road , Hull HU6 7RX , U.K
| | - Lee J Higham
- School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne NE1 7RU , U.K
| | - Graeme Stasiuk
- Department of Biomedical Sciences , University of Hull , Cottingham Road , Hull HU6 7RX , U.K
| | - Carl Redshaw
- Department of Chemistry & Biochemistry , University of Hull , Cottingham Road , Hull HU6 7RX , U.K
| |
Collapse
|
37
|
Kuźnik A, Październiok-Holewa A, Jewula P, Kuźnik N. Bisphosphonates-much more than only drugs for bone diseases. Eur J Pharmacol 2019; 866:172773. [PMID: 31705903 DOI: 10.1016/j.ejphar.2019.172773] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
α,α-Bisphosphonates (BPs) are well established in the treatment of bone diseases such as osteoporosis and Paget's disease. Their successful application originates from their high affinity to hydroxyapatite. While the initially appreciated features of BPs are already beneficial to many patients, recent developments have further expanded their pleiotropic applications. This review describes the background of the interactions of BPs with bone cells that form the basis of the classical treatment. A better understanding of the mechanism behind their interactions allows for the parallel application of BPs against bone cancer and metastases followed by palliative pain relief. Targeted therapy with bone-seeking BPs coupled with a diagnostic agent in one particle resulted in theranostics which is also described here. For example, in such a system, BP moieties are bound to contrast agents used in magnetic resonance imaging or radionuclides used in positron emission tomography. In addition, another example of the pleiotropic function of BPs which involves targeting the imaging agents to bone tissues accompanied by pain reduction is presented in this work.
Collapse
Affiliation(s)
- Anna Kuźnik
- Department of Organic and Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Center of Silesian University of Technology, B. Krzywoustego 8, 44-100, Gliwice, Poland.
| | - Agnieszka Październiok-Holewa
- Department of Organic and Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Center of Silesian University of Technology, B. Krzywoustego 8, 44-100, Gliwice, Poland
| | - Pawel Jewula
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612-00, Brno, Czech Republic
| | - Nikodem Kuźnik
- Department of Organic and Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| |
Collapse
|
38
|
Thiele NA, Woods JJ, Wilson JJ. Implementing f-Block Metal Ions in Medicine: Tuning the Size Selectivity of Expanded Macrocycles. Inorg Chem 2019; 58:10483-10500. [DOI: 10.1021/acs.inorgchem.9b01277] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Cheisson T, Kersey KD, Mahieu N, McSkimming A, Gau MR, Carroll PJ, Schelter EJ. Multiple Bonding in Lanthanides and Actinides: Direct Comparison of Covalency in Thorium(IV)- and Cerium(IV)-Imido Complexes. J Am Chem Soc 2019; 141:9185-9190. [PMID: 31117665 DOI: 10.1021/jacs.9b04061] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of thorium(IV)-imido complexes was synthesized and characterized. Extensive experimental and computational comparisons with the isostructural cerium(IV)-imido complexes revealed a notably more covalent bonding arrangement for the Ce═N bond compared with the more ionic Th═N bond. The thorium-imido moieties were observed to be 3 orders of magnitude more basic than their cerium congeners. More generally, these results provide unique experimental evidence for the larger covalent character of 4f05d0 Ce(IV) multiple bonds compared to its 5f06d0 Th(IV) actinide congener.
Collapse
Affiliation(s)
- Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Kyle D Kersey
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Nolwenn Mahieu
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States.,Département de Chimie, ENS Paris-Saclay , Université Paris-Saclay , 94235 Cachan , France
| | - Alex McSkimming
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Michael R Gau
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
40
|
Ogawa K. Development of Diagnostic and Therapeutic Probes with Controlled Pharmacokinetics for Use in Radiotheranostics. Chem Pharm Bull (Tokyo) 2019; 67:897-903. [PMID: 31474726 DOI: 10.1248/cpb.c19-00274] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The word "theranostics," a portmanteau word made by combining "therapeutics" and "diagnostics," refers to a personalized medicine concept. Recently, the word, "radiotheranostics," has also been used in nuclear medicine as a term that refer to the use of radioisotopes for combined imaging and therapy. For radiotheranostics, a diagnostic probe and a corresponding therapeutic probe can be prepared by introducing diagnostic and therapeutic radioisotopes into the same precursor. These diagnostic and therapeutic probes can be designed to show equivalent pharmacokinetics, which is important for radiotheranostics. As imaging can predict the absorbed radiation dose and thus the therapeutic and side effects, radiotheranostics can help achieve the goal of personalized medicine. In this review, I discuss the use of radiolabeled probes targeting bone metastases, sigma-1 receptor, and αVβ3 integrin for radiotheranostics.
Collapse
Affiliation(s)
- Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University
- Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|