1
|
Sharma M, Thakur D, Nidhi, Verma AK. Harnessing benzotriazole as a sustainable ligand in metal-catalyzed coupling reactions. Chem Commun (Camb) 2024; 60:12840-12851. [PMID: 39380493 DOI: 10.1039/d4cc04450a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Coupling reactions play a crucial role in drug development enabling the rapid expansion of structure-activity relationships (SARs) during drug discovery programs to identify a clinical candidate and simplify subsequent drug development processes. In particular, their relevance in clinical medicine and drug discovery has increased significantly in the last two decades. To facilitate these metal-catalyzed coupling reactions, suitably designed ligands are necessary and from the industrial point of view, sustainable and cost-effective ligands are of current need. Benzotriazole, a non-toxic, thermally stable, and inexpensive bidentate ligand, exhibits strong electron donating and electron accepting properties, along with excellent solubility in various organic solvents. It has been extensively explored as a synthetic auxiliary in the past; in recent years, benzotriazole and its derivatives have been used as ligands in metal-catalyzed coupling reactions. The facile construction of carbon-carbon and carbon-heteroatom bonds in the presence of versatile benzotriazole ligands makes it an indispensable ligand for catalytic transformations. The present feature article mainly emphasizes the advances in the utilization of benzotriazole as a ligand in a diverse range of C-C, C-N, C-O, and C-S coupling reactions.
Collapse
Affiliation(s)
- Manvi Sharma
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Deepika Thakur
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Nidhi
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Akhilesh K Verma
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
2
|
Kostakis GE. Chemical Chartographisis: a contemporary perspective in molecular design and synthesis. Dalton Trans 2023. [PMID: 38009065 DOI: 10.1039/d3dt02459h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The use of flexible molecular systems in solution, without strictly controlling their behaviour, has frequently been productive. Their potential could increase by a more holistic view of the reaction(s) process(es) in which they are involved. In this perspective, we introduce a broader approach - "Chemical Chartographisis" - and discuss three projects in detail to illustrate its potential. The topics involve bimetallic 3d/4f species and coordination compounds built from benzotriazole-based and (a)symmetric salan ligands and focus on catalytic and, in less detail, biological-related examples.
Collapse
Affiliation(s)
- George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK.
| |
Collapse
|
3
|
Qadri T, Aziz M, Channar PA, Ejaz SA, Hussain M, Attaullah HM, Ujan R, Hussain Z, Zehra T, Saeed A, Shah MR, Ogaly HA, Al-Zahrani FAM. Synthesis, biological evaluation and in silico investigations of benzotriazole derivatives as potential inhibitors of NIMA related kinase. RSC Adv 2023; 13:33826-33843. [PMID: 38020022 PMCID: PMC10655664 DOI: 10.1039/d3ra06149c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
In the current study, a novel compound, bis(3-(2H-benzo[d][1,2,3]triazol-2-yl)-2-(prop-2-yn-1-yloxy)-5-(2,4,4-trimethylpentan-2-yl)phenyl)methane (TAJ1), has been synthesized by the reaction of 6,6'-methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol) (1), propargyl bromide (2) and potassium carbonate. Spectroscopic (FTIR, 1H-NMR, 13C-NMR) and single-crystal assays proved the structure of the synthesized sample. XRD analysis confirmed the structure of the synthesized compound, showing that it possesses two aromatic parts linked via a -CH2 carbon with a bond angle of 108.40°. The cell line activity reported a percent growth reduction for different cell types (HeLa cells, MCF-7 cells, and Vero cells) under various treatment conditions (TAJ1, cisplatin, and doxorubicin) after 24 hours and 48 hours. The percent growth reduction represents a decrease in cell growth compared to a control condition. Furthermore, density functional theory (DFT) calculations were utilized to examine the frontier molecular orbitals (FMOs) and overall chemical reactivity descriptors of TAJ1. The molecule's chemical reactivity and stability were assessed by determining the HOMO-LUMO energy gap. TAJ1 displayed a HOMO energy level of -0.224 eV, a LUMO energy level of -0.065 eV, and a HOMO-LUMO gap of 0.159 eV. Additionally, molecular docking analysis was performed to assess the binding affinities of TAJ1 with various proteins. The compound TAJ1 showed potent interactions with NEK2, exhibiting -10.5 kcal mol-1 binding energy. Although TAJ1 has demonstrated interactions with NEK7, NEK9, TP53, NF-KAPPA-B, and caspase-3 proteins, suggesting its potential as a therapeutic agent, it is important to evaluate the conformational stability of the protein-ligand complex. Hence, molecular dynamics simulations were conducted to assess this stability. To analyze the complex, root mean square deviation (RMSD) and root mean square fluctuation analyses were performed. The results of these analyses indicate that the top hits obtained from the virtual screening possess the ability to act as effective NEK2 inhibitors. Therefore, further investigation of the inhibitory potential of these identified compounds using in vitro and in vivo approaches is recommended.
Collapse
Affiliation(s)
- Tahir Qadri
- Department of Chemistry, University of Karachi Karachi 75270 Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Pervaiz Ali Channar
- Department of Basic Science and Humanities, Faculty of Information Science Humanities, Dawood University of Engineering and Technology Karachi 74800 Karachi Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Mumtaz Hussain
- Department of Chemistry, University of Karachi Karachi 75270 Pakistan
| | - Hafiz Muhammad Attaullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Rabail Ujan
- Dr M. A. Kazi Institute of Chemistry, University of Sindh Jamshoro Pakistan
| | - Zahid Hussain
- Department of Chemistry, University of Karachi Karachi 75270 Pakistan
| | - Tasneem Zehra
- Department of Basic Science and Humanities, Faculty of Information Science Humanities, Dawood University of Engineering and Technology Karachi 74800 Karachi Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320 Pakistan
| | - M R Shah
- H.E.J.Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 7527 Pakistan
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Fatimah A M Al-Zahrani
- Chemistry Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| |
Collapse
|
4
|
Yu H, Xu F. Advances in the synthesis of nitrogen-containing heterocyclic compounds by in situ benzyne cycloaddition. RSC Adv 2023; 13:8238-8253. [PMID: 36922948 PMCID: PMC10010163 DOI: 10.1039/d3ra00400g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Nitrogen-containing heterocyclic compounds are prevalent in various natural products, medicines, agrochemicals, and organic functional materials. Among strategies to prepare nitrogen-containing heterocyclic compounds, pathways involving benzyne intermediates are attractive given that they can readily assemble highly diverse heterocyclic compounds in a step-economical manner under transition-metal-free conditions. The synthesis of nitrogen-containing heterocyclic compounds from benzyne intermediates offers an alternative strategy to the conventional metal-catalyzed activation approaches. In the past years, chemists have witnessed the revival of benzyne chemistry, mainly attributed to the wide application of various novel benzyne precursors. The cycloaddition of benzynes is a powerful tool for the synthesis of nitrogen-containing heterocyclic compounds, which can be constructed by [n + 2] cyclization of benzyne intermediates in situ generated from benzyne precursors under mild reaction conditions. This review focuses on the application of cycloaddition reactions involving in situ benzynes in the construction of various nitrogen-containing heterocyclic compounds.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pharmacy, Shizhen College of Guizhou University of Traditional Chinese Medicine Guiyang Guizhou 550200 China
| | - Feng Xu
- School of Mathematics and Information Science, Guiyang University Guiyang Guizhou 550005 P. R. China
| |
Collapse
|
5
|
Zhu LL, Tian L, Sun K, Li Y, Liu G, Cai B, Zhang H, Wang Y. N 2-Selective β-Thioalkylation of Benzotriazoles with Alkenes. J Org Chem 2022; 87:12963-12974. [PMID: 36137279 DOI: 10.1021/acs.joc.2c01519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, N2-selective β-thioalkylation of benzotriazoles with unactivated alkenes and styrenes is reported. The N2-selective β-thioalkylation of benzotriazoles is highly stereospecific and works under simple and mild conditions, exhibiting excellent functional group tolerance. The high N2-selectivity is a consequence of the combination of hydrogen bonding and Lewis acid/base activation, which reverses the N2-position to be favored for alkylation.
Collapse
Affiliation(s)
- Li-Li Zhu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Lifang Tian
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kunhui Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yiwen Li
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Guanglu Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Yahui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Castro J, Ferraro V, Bortoluzzi M. Visible-emitting Cu( i) complexes with N-functionalized benzotriazole-based ligands. NEW J CHEM 2022. [DOI: 10.1039/d2nj03165e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bidentate benzotriazole-based N-ligands are suited for the preparation of luminescent heteroleptic copper(i) complexes with noticeable emissions related to 3MLCT transitions.
Collapse
Affiliation(s)
- Jesús Castro
- Departamento de Química Inorgánica, Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais, 36310 Vigo, Galicia, Spain
| | - Valentina Ferraro
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre (VE), Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, I-30172 Mestre (VE), Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
7
|
Fu H, Jiang Y, Wang F, Zhang J. The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2791. [PMID: 34835554 PMCID: PMC8618028 DOI: 10.3390/nano11112791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Metal-Organic Frameworks (MOFs) as a class of crystalline materials are constructed using metal nodes and organic spacers. Polydentate N-donor ligands play a mainstay-type role in the construction of metal-organic frameworks, especially cationic MOFs. Highly stable cationic MOFs with high porosity and open channels exhibit distinct advantages, they can act as a powerful ion exchange platform for the capture of toxic heavy-metal oxoanions through a Single-Crystal to Single-Crystal (SC-SC) pattern. Porous luminescent MOFs can act as nano-sized containers to encapsulate guest emitters and construct multi-emitter materials for chemical sensing. This feature article reviews the synthesis and application of porous Metal-Organic Frameworks based on tridentate ligand tris (4-(1H-imidazol-1-yl) phenyl) amine (TIPA) and focuses on design strategies for the synthesis of TIPA-dominated Metal-Organic Frameworks with high porosity and stability. The design strategies are integrated into four types: small organic molecule as auxiliaries, inorganic oxyanion as auxiliaries, small organic molecule as secondary linkers, and metal clusters as nodes. The applications of ratiometric sensing, the adsorption of oxyanions contaminants from water, and small molecule gas storage are summarized. We hope to provide experience and inspiration in the design and construction of highly porous MOFs base on polydentate N-donor ligands.
Collapse
Affiliation(s)
- Hongru Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China;
| | - Yuying Jiang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China;
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| |
Collapse
|
8
|
Zhao Y, Mandal D, Guo J, Wu Y, Stephan DW. B(C 6F 5) 3-Catalyzed site-selective N1-alkylation of benzotriazoles with diazoalkanes. Chem Commun (Camb) 2021; 57:7758-7761. [PMID: 34254070 DOI: 10.1039/d1cc03048e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkylation of benzotriazoles is synthetically challenging, often leading to mixtures of N1 and N2 alkylation. Herein, metal-free catalytic site-selective N1-alkylation of benzotriazoles with diazoalkanes is described in the presence of 10 mol% of B(C6F5)3. These reactions provide N1-alkylated benzotriazoles in good to excellent yields and this protocol is successfully adapted to gram-scale syntheses as well as a derivative with antimicrobial activity.
Collapse
Affiliation(s)
- Yunbo Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Dipendu Mandal
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Jing Guo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Yile Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. and Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada.
| |
Collapse
|
9
|
Lazari G, Grammatikopoulos S, Perlepes SP, Stamatatos TC. Combining benzotriazoles and azides in copper(II) chemistry: synthesis, structural and spectroscopic characterization of a 1-D corrugated tape [Cu(N 3) 2(1-Mebta)] n coordination polymer (1-Mebta = 1-methylbenzotriazole). J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1934460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Ferraro V, Castro J, Agostinis L, Bortoluzzi M. Luminescent heteroleptic copper(I) complexes with polydentate benzotriazolyl-based ligands. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00458-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Sampani SI, Zdorichenko V, Devonport J, Rossini G, Leech MC, Lam K, Cox B, Abdul-Sada A, Vargas A, Kostakis GE. Structural and Electronic Control of the Bidentate 1-(2-pyridyl)benzotriazole Ligand in Copper Chemistry with Application to Catalysis in the A 3 Coupling Reaction. Chemistry 2021; 27:4394-4400. [PMID: 33296102 DOI: 10.1002/chem.202004781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Indexed: 12/15/2022]
Abstract
The hybrid bidentate 1-(2-pyridyl)benzotriazole (pyb) ligand was introduced into 3d transition metal catalysis. Specifically, [CuII (OTf)2 (pyb)2 ]⋅2 CH3 CN (1) enables the synthesis of a wide range of propargylamines by the A3 coupling reaction at room temperature in the absence of additives. Experimental and high-level theoretical calculations suggest that the bridging N atom of the ligand imposes exclusive trans coordination at Cu and allows ligand rotation, while the N atom of the pyridine group modulates charge distribution and flux, and thus orchestrates structural and electronic precatalyst control permitting alkyne binding with simultaneous activation of the C-H bond via a transient CuI species.
Collapse
Affiliation(s)
- Stavroula I Sampani
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Victor Zdorichenko
- Photodiversity Ltd. c/o Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Jack Devonport
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Gioia Rossini
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Matthew C Leech
- School of Science, Department of Pharmaceutical Chemical and Environmental Sciences, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, UK
| | - Kevin Lam
- School of Science, Department of Pharmaceutical Chemical and Environmental Sciences, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, UK
| | - Brian Cox
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK.,Photodiversity Ltd. c/o Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Alaa Abdul-Sada
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Alfredo Vargas
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| |
Collapse
|
12
|
Cao L, Yang L, Xu Y, Yin Q, Huang Y, Chang G. A Toughening and Anti-Counterfeiting Benzotriazole-Based High-Performance Polymer Film Driven by Appropriate Intermolecular Coordination Force. Macromol Rapid Commun 2021; 42:e2000617. [PMID: 33491847 DOI: 10.1002/marc.202000617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/22/2020] [Indexed: 11/11/2022]
Abstract
It is of great significance to circumvent the inherent trade-off between strength and extensibility for epoxy resins. Herein dynamic Cu-benzotriazole cross-links are incorporated, as the appropriate intermolecular coordination interaction, into high performance epoxy networks, and the resulting epoxy resins exhibits outstanding thermal stability and mechanical properties, their strength and extensibility are simultaneously improved. Additionally, local manipulation of coordination crosslinking confers the film with anti-counterfeiting function.
Collapse
Affiliation(s)
- Liang Cao
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Li Yang
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yewei Xu
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Qiang Yin
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Ying Huang
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Guanjun Chang
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| |
Collapse
|
13
|
Kleoff M, Boeser L, Baranyi L, Heretsch P. Scalable Synthesis of Benzotriazoles via [3+2] Cycloaddition of Azides and Arynes in Flow. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Merlin Kleoff
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Lisa Boeser
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Linda Baranyi
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Philipp Heretsch
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|
14
|
Tang S, Yu J, Shao Y, Sun J. Scandium-catalyzed highly selective N2-alkylation of benzotriazoles with cyclohexanones. Org Chem Front 2021. [DOI: 10.1039/d0qo01060j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A scandium-catalyzed highly N2-selective alkylation of benzotriazoles with cyclohexanones has been developed.
Collapse
Affiliation(s)
- Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Jianliang Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| |
Collapse
|
15
|
Richa, Kumar N, Sindhu J, Patil Y, Sharma SK, Pani B, Mehta SK, Kataria R. Synthesis, Crystal and DFT studies of Zn/Co complexes of Dehydroacetic acid using ligand exchange approach. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Serkova OS, Glushko VV, Toropygin IY, Maslennikova VI. Synthesis of Triazole‐Containing
rctt
Tetra‐
C
‐Naphthyl‐Calix [4]resorcinarene and 1,1‐Dinaphthylmethane Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202003503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga S. Serkova
- Institute of Biology and Chemistry Moscow Pedagogical State University Kibalchicha Str. 6 Moscow 129164 Russia
| | - Valentina V. Glushko
- Institute of Biology and Chemistry Moscow Pedagogical State University Kibalchicha Str. 6 Moscow 129164 Russia
| | - Ilya Yu. Toropygin
- Institute of Biomedical Chemistry Pogodinskaya Str. 10 Moscow 119121 Russia
| | - Vera I. Maslennikova
- Institute of Biology and Chemistry Moscow Pedagogical State University Kibalchicha Str. 6 Moscow 129164 Russia
| |
Collapse
|
17
|
Yang J, Duan J, Wang G, Zhou H, Ma B, Wu C, Xiao J. Visible-Light-Promoted Site-Selective N1-Alkylation of Benzotriazoles with α-Diazoacetates. Org Lett 2020; 22:7284-7289. [DOI: 10.1021/acs.orglett.0c02619] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiaokui Duan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ganggang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hongyan Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Chengqi Wu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
18
|
Wang XZ, Du J, Xiao NN, Zhang Y, Fei L, LaCoste JD, Huang Z, Wang Q, Wang XR, Ding B. Driving force to detect Alzheimer's disease biomarkers: application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid β-protein and acetylcholine. Analyst 2020; 145:4646-4663. [PMID: 32458857 DOI: 10.1039/d0an00440e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, the highly sensitive detection of Alzheimer's Disease (AD) biomarkers, namely presenilin 1, amyloid β-protein (Aβ), and acetylcholine (ACh), is vital to helping us prevent and diagnose AD. In this work, a novel metal-organic framework [Er(L)(DMF)1.27]n (Er-MOF) (H3L = terphenyl-3,4'',5-tricarboxylic acid) has been synthesized by solvothermal and ultrasonic methods. Further, through the post-synthesis assembly strategy, the fluorescent dye thioflavine T (ThT) has been introduced into Er-MOF to construct a dual-emission ThT@Er-MOF ratiometric fluorescent sensor. This is the first time that ThT@Er-MOF has been successfully applied in the highly sensitive detection of three main Alzheimer's disease biomarkers in the cerebrospinal fluid through three different low cost and facile detection strategies. Firstly, with the spilted DNA strategy, this is the first time that ThT@Er-MOF can be applied in the label-free detection of SSODN (part of the presenilin 1 gene). Secondly, for the detection of Aβ, because ThT can be specifically combined with Aβ and has an excellent characteristic fluorescence band, the dual-emission ThT@Er-MOF sensor can be selectively applied to detect Aβ over the analog protein, which shows far more sensitivity than other Aβ sensors. Thirdly, through the acetylcholine esterase (AchE) enzymatic cleavage and release strategy, ThT@Er-MOF enhances the detection of acetylcholine (ACh) with a low limit of detection (LOD) value (0.03226 nM). It should be noticed that the three different detection methods are low cost and facile. This study also provides the first example of utilizing laser scanning confocal microscopy (LSCM) to investigate the fluorescence resonance energy transfer (FRET) detection mechanism by ThT@Er-MOF in more detail. The location of FRET occurrence and FRET efficiency can also be investigated by LSCM, which can be helpful to understand the FRET detection process by these unique MOF-based hybrid materials.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang L, Ma L. Crystal structure of catena-poly[diaqua-bis(3-(4-trifluoromethyl-phenyl)-acrylato-κ O
1)-(μ 2-1,4-bis(1-imidazolyl)benzene-κ 2
N
3: N3′)cobalt(II)], C 32H 26CoF 6N 4O 6. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2019-0852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
C32H26CoF6N4O6, triclinic, P1̄ (no. 2), a = 5.4881(3) Å, b = 11.6495(6) Å, c = 13.1533(6) Å, α = 84.979(2)°, β = 84.370(2)°, γ = 80.602(2)°, V = 823.46(7) Å3, Z = 1, R
gt(F) = 0.0381, wR
ref(F
2) = 0.1069, T = 293(2) K.
Collapse
Affiliation(s)
- Lei Wang
- Department of Fundamental Science , Henan Polytechnic Institute , 473000 Nanyang, Henan , P.R. China
| | - Leijuan Ma
- Department of Automotive Engineering , Henan Polytechnic Institute , 473000 Nanyang, Henan , P.R. China
| |
Collapse
|
20
|
Wang XZ, Zhang ZQ, Guo R, Zhang YY, Zhu NJ, Wang K, Sun PP, Mao XY, Liu JJ, Huo JZ, Wang XR, Ding B. Dual-emission CdTe quantum dot@ZIF-365 ratiometric fluorescent sensor and application for highly sensitive detection of l-histidine and Cu 2. Talanta 2020; 217:121010. [PMID: 32498848 DOI: 10.1016/j.talanta.2020.121010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/13/2022]
Abstract
l-histidine acts as a semi-essential amino acid, which is medically used in the treatment of gastric ulcer, anemia, allergies. However, the overuse of l-histidine will result in terrible damage to heart disease, slow growth of animals and water pollution in the environment. In addition, Cu2+ pollution is common environmental pollution in the industry. It has the characteristics of high accumulation, migration, and persistence. Given this, through the post-synthesis strategy, CdTe quantum dots (QDs) were the first time to introduce into zeolitic imidazolate framework-ZIF-365 to synthesis dual-emission hybrid material CdTe@ZIF-365 with high quantum yield. TEM mappings and N2 absorption tests are applied to confirm the combination mode between CdTe quantum dots and ZIF-365. It should be noted that CdTe@ZIF-365 can be successfully utilized as a bi-functional ratiometric sensor for highly sensitive discrimination of l-histidine and Cu2+. Firstly, CdTe@ZIF-365 is applied to a fluorescent ratiometric sensor for Cu2+ with high sensitivity (the Ksv value is 2.7417✕107 [M-1]) and selectivity in the mixed cation ions' solution. On the other hand, CdTe@ZIF-365 also behaved as the first example for an excellent ratiometric fluorescent senor for l-histidine with high sensitivity (the Ksv value is 6.0507✕108 [M-1]) and selectivity in the mixed amino acids' solutions.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Zi Qing Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Yi Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Na Jia Zhu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Kuo Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Ping Ping Sun
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Xin Yu Mao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Jun Jie Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
21
|
Wang XZ, Mao XY, Zhang ZQ, Guo R, Zhang YY, Zhu NJ, Wang K, Sun PP, Huo JZ, Wang XR, Ding B. Solvothermal and Ultrasonic Preparation of Two Unique Cluster-Based Lu and Y Coordination Materials: Metal-Organic Framework-Based Ratiometric Fluorescent Biosensor for an Ornidazole and Ronidazole and Sensing Platform for a Biomarker of Amoeba Liver Abscess. Inorg Chem 2020; 59:2910-2922. [PMID: 32037805 DOI: 10.1021/acs.inorgchem.9b03272] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Through powerful solvothermal and facile ultrasonic synthetic strategies, two unique cluster-based lanthanide Lu and Y nanoporous metal organic frameworks (MOFs) have been successfully prepared, namely, {[Lu2(L)2]·2DMF·H2O}n (Lu-MOF) and [Y(L)(DMF)0.75]n (Y-MOF) (H3L = terphenyl-3,4'',5-tricarboxylic acid). In addition, both the morphologies and nanosizes of Lu-MOF and Y-MOF materials also have been deliberately tuned by adjustable ultrasonic conditions including irradiation time (40, 60, and 80 min) and power (70 w, 100 w). Currently, it is noted that the abuse of antibiotics such as ornidazole and ronidazole leads to great damage to human health, and therefore the development of highly effective and facile detection methods for ornidazole and ronidazole is quite important. Herein, to improve the fluorescent sensing sensitivity of antibiotics, Eu3+ and Tb3+ have been introduced into Lu-MOF (under a solvothermal preparation method) to fabricate a dual-emission hybrid material Eu3+/Tb3+@Lu-MOF through a postsynthesis strategy, which can be successfully applied as a self-calibrated ratiometric fluorescent sensor for ornidazole and ronidazole with high selectivity and sensitivity (the Ksv value for ornidazole is 1.0854 × 106 [M-1], and the Ksv value for ronidazole is 1.0595 × 107 [M-1]) and low detection limit values (2.85 nM for ornidazole and 26.7 nM for ronidazole). On the other hand, amoeba liver abscess (ALA) will easily lead to irregular fever, night sweats, and other tortured symptoms; C-reactive protein autoantibody (CRP Ab) is the important biomarker for the detection of ALA. Given this, Y-MOF (under the solvothermal preparation method) also has been successfully designed to combine FAM-labeled NH-ssDNA to construct the scarcely reported excellent hybrid FAM-labeled NH-ssDNA/Y-MOF sensing platform for the highly effective discrimination of CRP Ab with excellent sensitivity and selectivity in real samples such as human serum solution.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Xin Yu Mao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Zi Qing Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yi Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Na Jia Zhu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Kuo Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Ping Ping Sun
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
22
|
Synthesis, structural diversity, luminescent properties and antibacterial effects of cadmium(II) and silver(I) coordination compounds with bis(1,2,3-benzotriazol-1-yl)alkanes. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Pandey S, Mandal T, Singh V. (
para
‐Cymene)Ru(II) Complexes with Chelating Benzotriazole Ligands: Application in Oxidation and Reduction Catalysis. ChemistrySelect 2020. [DOI: 10.1002/slct.201904495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sharmila Pandey
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462 066 India
| | - Tanmoy Mandal
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462 066 India
| | - Vivek Singh
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462 066 India
| |
Collapse
|
24
|
Yahata K, Kaneko Y, Akai S. Cobalt-Catalyzed Intermolecular Markovnikov Hydroamination of Nonactivated Olefins: N2-Selective Alkylation of Benzotriazole. Org Lett 2020; 22:598-603. [DOI: 10.1021/acs.orglett.9b04375] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kenzo Yahata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuki Kaneko
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Gu JZ, Wan SM, Kirillova MV, Kirillov AM. H-Bonded and metal(ii)-organic architectures assembled from an unexplored aromatic tricarboxylic acid: structural variety and functional properties. Dalton Trans 2020; 49:7197-7209. [PMID: 32418999 DOI: 10.1039/d0dt01261k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study reports the application of an aromatic tricarboxylic acid, 2,5-di(4-carboxylphenyl)nicotinic acid (H3dcna) as a versatile and unexplored organic building block for assembling a new series of metal(ii) (M = Co, Ni, Zn, Fe, and Mn) complexes and coordination polymers, namely [M(Hdcna)(phen)2(H2O)]·H2O (M = Co (1), Ni (2)), [Zn(μ-Hdcna)(phen)]n (3), [Co(μ-Hdcna)(bipy)(H2O)2]n·nH2O (4), [Zn2(μ-Hdcna)2(bipy)2(H2O)4]·6H2O (5), [Zn(μ3-Hdcna)(H2biim)]n (6), [Ni2(Hdcna)2(μ-bpb)(bpb)2(H2O)4] (7), [Fe(μ4-Hdcna)(μ-H2O)]n·nH2O (8), and [Mn3(μ5-dcna)2(bipy)2(H2O)2]n·2nH2O (9). Such a diversity of products was hydrothermally prepared from the corresponding metal(ii) salts, H3dcna as a principal multifunctional ligand, and N-donor mediators of crystallization (1,10-phenanthroline, phen; 2,2'-bipyridine, bipy; 2,2'-biimidazole, H2biim; or 1,4-bis(pyrid-4-yl)benzene, bpb). The obtained products 1-9 were fully characterized by standard methods (elemental analysis, FTIR, TGA, PXRD) and the structures were established by single-crystal X-ray diffraction. These vary from the discrete monomers (1, 2) and dimers (5, 7) to the 1D (3, 4, 6) and 2D (8, 9) coordination polymers (CPs). Structural and topological characteristics of hydrogen-bonded or metal-organic architectures in 1-9 were highlighted, revealing that their structural multiplicity depends on the type of metal(ii) source and crystallization mediator. Thermal stability as well as luminescent, magnetic, or catalytic properties were explored for selected compounds. In particular, the zinc(ii) derivatives 3, 5, and 6 were applied as efficient heterogeneous catalysts for the cyanosilylation of aldehydes with trimethylsilyl cyanide at room temperature. The catalytic reactions were optimized by tuning the different reaction parameters (solvent composition, time, catalyst loading) and the substrate scope was also explored. Compound 5 revealed superior catalytic activity leading to up to 75% product yields, while maintaining its original performance upon recycling for at least four reaction cycles. Finally, the obtained herein products represent the unique examples of coordination compounds derived from H3dcna, thus opening up the use of this multifunctional tricarboxylic acid for generating complexes and coordination polymers with interesting structures and functional properties.
Collapse
Affiliation(s)
- Jin-Zhong Gu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Shi-Mao Wan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Marina V Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. and Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation
| |
Collapse
|
26
|
Li XF, Ma LG, Yang YQ, Liu YJ, Meng XR, Yang HX. Synthesis, crystal structure and bovine serum albumin–binding studies of a new Cd(II) complex incorporating 2,2′-(propane-1,3-diyl)bis(1H-imidazole-4,5-dicarboxylate). JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819895240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new Cd(II) complex, [Cd(H4pbidc)(H2O)] n (1), incorporating 2,2′-(propane-1,3-diyl)bis(1H- imidazole-4,5-dicarboxylic acid) (H6pbidc) was synthesized and characterized by elemental analysis, infrared spectra and X-ray single-crystal diffraction. In complex 1, each Cd(II) ion is hepta-coordinated, showing a significantly distorted pentagonal-bipyramidal coordination environment. Adjacent Cd(II) ions are alternately joined through two carboxylate oxygen atoms and two bridging water molecules resulting in a one-dimensional chain structure. In the solid state, adjacent chains are further linked by hydrogen bonds, forming a three-dimensional supramolecular architecture. Meanwhile, the interactions of complex 1 with bovine serum albumin were analysed by fluorescence measurements under physiological conditions. The results indicated that the fluorescence intensity of bovine serum albumin was decreased considerably upon the addition of complex 1 through a static quenching mechanism with formation of one binding site. The negative values of the thermodynamic parameters including enthalpy change (Δ H), entropy change (Δ S) and Gibbs free energy change (Δ G) showed that hydrogen bonding and van der Waals forces were the main interactions in the binding of complex 1 to bovine serum albumin, and the binding process is spontaneous in thermodynamics.
Collapse
Affiliation(s)
- Xiao-Fei Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Li-Gang Ma
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Yan-Qiu Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Yan-Ju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Xiang-Ru Meng
- College of Chemistry, Zhengzhou University, Zhengzhou, P.R. China
| | - Huai-Xia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| |
Collapse
|
27
|
Facile synthesis of a luminescent copper(I) coordination polymer containing a flexible benzotriazole-based ligand: An effective catalyst for three-component azide-alkyne cycloaddition. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Quesada-Moreno MM, Avilés-Moreno JR, López-González JJ, Zúñiga FJ, María DS, Claramunt RM, Reviriego F, Alkorta I, Elguero J. The synergy of different solid-state techniques to elucidate the supramolecular assembly of two 1H-benzotriazole polymorphs. Phys Chem Chem Phys 2019; 21:19879-19889. [PMID: 31475282 DOI: 10.1039/c9cp03209f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1H-Benzotriazole crystallizes as two different polymorphs, namely 4aα and 4aβ. One polymorph is chiral and it resolves spontaneously as conglomerates. The other polymorph crystallizes in a centrosymmetric space group and it is therefore achiral. In both polymorphs supramolecular structures are formed starting from achiral monomers. An analysis of these two polymorphs of 1H-benzotriazole has been carried out by a complete strategy involving different solid-state experimental techniques and quantum chemical calculations (DFT, Density Functional Theory). In particular, X-ray crystallography, NMR spectroscopy and vibrational spectroscopy techniques (FarIR, IR and Raman) that are not sensitive to chirality have been used to characterize the two polymorphs structurally. Vibrational spectroscopy (VCD, Vibrational Circular Dichroism) that is sensitive to chirality was employed to determine the absolute configuration (M or P helices) of the chiral supramolecular structure of 4aα.
Collapse
Affiliation(s)
- María Mar Quesada-Moreno
- Departamento de Química Física y Analítica, Universidad de Jaén, Campus Las Lagunillas, E-23071, Jaén, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shao ZC, Meng XR, Hou HW. Effect of pH on the construction of Cd II coordination polymers involving the 1,1'-[1,4-phenylenebis(methylene)]bis(3,5-dicarboxylatopyridinium) ligand. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:1142-1149. [PMID: 31380797 DOI: 10.1107/s2053229619010192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Changing the pH value of a reaction system can result in polymers with very different compositions and architectures. Two new coordination polymers based on 1,1'-[1,4-phenylenebis(methylene)]bis(3,5-dicarboxylatopyridinium) (L2-), namely catena-poly[[[tetraaquacadmium(II)]-μ2-1,1'-[1,4-phenylenebis(methylene)]bis(3,5-dicarboxylatopyridinium)] 1.66-hydrate], {[Cd(C22H14N2O8)(H2O)4]·1.66H2O}n, (I), and poly[{μ6-1,1'-[1,4-phenylenebis(methylene)]bis(3,5-dicarboxylatopyridinium)}cadmium(II)], [Cd(C22H14N2O8)]n, (II), have been prepared in the presence of NaOH or HNO3 and structurally characterized by single-crystal X-ray diffraction. In polymer (I), each CdII ion is coordinated by two halves of independent L2- ligands, forming a one-dimensional chain structure. In the crystal, these chains are further connected through O-H...O hydrogen bonds, leading to a three-dimensional hydrogen-bonded network. In polymer (II), each hexadentate L2- ligand coordinates to six CdII ions, resulting in a three-dimensional network structure, in which all of the CdII ions and L2- ligands are equivalent, respectively. The IR spectra, thermogravimetric analyses and fluorescence properties of both reported compounds were investigated.
Collapse
Affiliation(s)
- Zhi Chao Shao
- The College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, People's Republic of China
| | - Xiang Ru Meng
- The College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, People's Republic of China
| | - Hong Wei Hou
- The College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, People's Republic of China
| |
Collapse
|