1
|
Ramana AK, Tidey JP, de Lima GM, Walton RI. Polymorphism and Structural Variety in Sn(II) Carboxylate Coordination Polymers Revealed from Structure Solution of Microcrystals. SMALL METHODS 2024:e2301703. [PMID: 38461543 DOI: 10.1002/smtd.202301703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Indexed: 03/12/2024]
Abstract
The crystal structures of four coordination polymers constructed from Sn(II) and polydentate carboxylate ligands are reported. All are prepared under hydrothermal conditions in KOH or LiOH solutions (either water or methanol-water) at 130-180 °C and crystallize as small crystals, microns or less in size. Single-crystal structure solution and refinement are performed using synchrotron X-ray diffraction for two materials and using 3D electron diffraction (3DED) for the others. Sn2 (1,3,5-BTC)(OH), where 1,3,5-BTC is benzene-1,3,5-tricarboxylate, is a new polymorph of this composition and has a three-dimensionally connected structure with potential for porosity. Sn(H-1,3,5-BTC) retains a partially protonated ligand and has a 1D chain structure bound by hydrogen bonding via ─COOH groups. Sn(H-1,2,4-BTC) contains an isomeric ligand, benzene-1,2,4-tricarboxylate, and contains inorganic chains in a layered structure held by hydrogen bonding. Sn2 (DOBDC), where DOBDC is 2,5-dioxido-benzene-1,4-dicarboxylate, is a new polymorph for this composition and has a three-dimensionally connected structure where both carboxylate and oxido groups bind to the tin centers to create a dense network with dimers of tin. In all materials, the Sn centers are found in highly asymmetric coordination, as expected for Sn(II). For all materials phase purity of the bulk is confirmed using powder X-ray diffraction, thermogravimetric analysis, and infrared spectroscopy.
Collapse
Affiliation(s)
- Avneet K Ramana
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Jeremiah P Tidey
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Geraldo M de Lima
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Richard I Walton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
2
|
Momeni BZ, Hosseini SF, Janczak J. New supramolecular architectures of 4′-(4-quinolinyl)-2,2′:6′,2′'-terpyridine based tin complexes: Design, structural variations and thermal properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Baul TSB, Hlychho B, Addepalli MR, Kundu S, de Vos D, Linden A. Synthesis and structures of polynuclear organotin(IV) complexes of polyaromatic ligand and cytotoxic evaluation in tumor cell lines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Zhang S, Li S. Crystal structure of [2-hydroxy-3-methyl-benzoato-k 1
O-triphenyltin(IV)], C 26H 22O 3Sn. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
C26H22O3Sn, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 10.8480(9) Å, b = 11.3511(11) Å, c = 11.4109(12) Å, α = 114.431(3)°, β = 96.994(2)°, γ = 108.207(3)°, V = 1162.94(19) Å3, Z = 2, R
gt
(F) = 0.0357, wR
ref
(F
2) = 0.0667, T = 298 K.
Collapse
Affiliation(s)
- Shaoliang Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252059 , Shandong , China
| | - Shanshan Li
- School of Geography and Environment, Liaocheng University , Liaocheng 252000 , Shandong , China
| |
Collapse
|
5
|
Shankar R, Dubey A, Jakhar E, Chauhan P, Kociok-Köhn G. Supramolecular Assemblies and Reversible De−/Rehydration in One−dimensional Dimethyltin Carboxylates. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ravi Shankar
- Indian Institute of Technology chemistry Hauz Khas 110016 New Delhi INDIA
| | | | - Ekta Jakhar
- Indian Institute of Technology Delhi Chemistry INDIA
| | | | | |
Collapse
|
6
|
Su HQ, Zhang RF, Guo Q, Wang J, Li QL, Du XM, Ru J, Zhang QF, Ma CL. Five organotin complexes derived from hydroxycinnamic acid ligands: Synthesis, structure, in vitro cytostatic activity and binding interaction with BSA. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Astaf'eva TV, Rumyantcev RV, Arsenyev MV, Zherebtsov MA, Fukin GK, Cherkasov VK, Poddel'sky AI. 1D Coordination polymers based on triphenylantimony(V) 3-formyl-substituted catecholates. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Kaur K, Singh R, Kaur V, Capalash N. Water stable fluorescent organotin( iv) compounds: aggregation induced emission enhancement and recognition of lead ions in an aqueous system. NEW J CHEM 2022. [DOI: 10.1039/d1nj04612h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water stable fluorescent organotin(iv) compounds are investigated for their structural aspects, aggregation-induced emission enhancement (AIEE) properties and ability to recognize lead ions in the aqueous medium.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Department of Chemistry, Panjab University, Sector-14, Chandigarh-160014, India
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Sector-14, Chandigarh-160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh-160014, India
| |
Collapse
|
9
|
Guo Q, Zhang RF, Hua XW, Li QL, Du XM, Ru J, Ma CL. Syntheses, structures, in vitro cytostatic activity and antifungal activity evaluation of four diorganotin( iv) complexes based on norfloxacin and levofloxacin. NEW J CHEM 2022. [DOI: 10.1039/d1nj05742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four organotin(iv) complexes have been designed and synthesized from the reactions of R2SnO (R = Me, Ph) with the corresponding ligands norfloxacin and levofloxacin. And the cytostatic and antifungal activity test have been done.
Collapse
Affiliation(s)
- Qiang Guo
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ru-Fen Zhang
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xue-Wen Hua
- College of Agronomy, Liaocheng University, 252000, Liaocheng, Shandong, China
| | - Qian-Li Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xiu-Mei Du
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Jing Ru
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Chun-Lin Ma
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| |
Collapse
|
10
|
Bankiewicz B, Kupfer S, Matczak P. Tuning the metal-ligand bond in the σ-complexes of stannylenes and azabenzenes. J Comput Chem 2021; 42:2103-2115. [PMID: 34420225 DOI: 10.1002/jcc.26741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022]
Abstract
The metal-ligand bond in a set of 60 σ-complexes has been investigated by electronic structure computations. These σ-complexes originate from the unique combination of 12 stannylenes (SnX2 ) with five azabenzene ligands (pyridine, pyrazine, pyrimidine, pyridazine, and s-triazine), where the nitrogen center of the ligand acts as σ-donor and the tin(II) center as σ-acceptor in a 1:1 fashion. The Sn ← N bond and the total interaction between the stannylene and azabenzene moieties of the σ-complexes are characterized in depth to relate the Sn ← N strength to the substitution pattern at SnX2 and to the number and the positioning of N atoms in the azabenzenes. Such X substituents as (iso)cyano and trifluoromethyl groups enhance the interaction strength, while the presence of alkyl, phenyl, and silyl substituents in SnX2 diminishes the stability of σ-complexes. A gradual weakening of the total interaction is associated with the growing number of N atoms in the azabenzenes, while the N-atom positioning in pyridazine is particularly effective in strengthening the interaction with stannylenes. Variations in the Sn ← N bond strength usually follow those in the total interaction between the moieties but the interacting quantum atoms picture of Sn ← N reveals certain intriguing exceptions.
Collapse
Affiliation(s)
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Jena, Germany
| | - Piotr Matczak
- Faculty of Chemistry, University of Łódź, Lodz, Poland
| |
Collapse
|
11
|
Mishra A, Batar A, Kumar R, Khandelwal A, Lama P, Chhabra M, Metre RK. Assembly of Di-, Tetra- and Hexanuclear Organostannoxanes Using Hemi Labile Intramolecular N→Sn Coordination: Synthesis, Structure, DFT and Antibacterial Studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Dimethyltin(IV) Coordination Polymers Featuring the Versatile Ligand of 2,2′-Bipyrimidine: A Multi-NMR, Hirshfeld Surface Analysis Study and Thermal Properties. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Saleh DI, Mahmoud SF, Etaiw SEH. Nanoscale supramolecular architectures assembly of copper cyanide, organotin, and 1,10‐phenanthroline coordination polymers: Design and biological applications. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dalia I. Saleh
- Department of Chemistry, College of Science Taif University Taif Saudi Arabia
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science Taif University Taif Saudi Arabia
| | | |
Collapse
|