1
|
Liu S, Liu W, Chen C, Sun Y, Bai S, Liu W. Construction of Highly Luminescent Lanthanide Coordination Polymers and Their Visualization for Luminescence Sensing. Inorg Chem 2024; 63:1725-1735. [PMID: 38225216 DOI: 10.1021/acs.inorgchem.3c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
NaH2SIP was selected as an organic ligand (NaH2SIP = 5-sulfoisophthalic acid monosodium salt). We successfully constructed a new class of lanthanide coordination polymers Ln-HS ([Ln(SIP)(DMF)(H2O)4]DMF·H2O; Ln = Eu, Tb, Sm, and Dy) by a simple solvothermal synthesis method. They exhibited excellent photoluminescence properties for Ln3+ ions, where Eu-HS and Tb-HS exhibited high quantum yields of 13.70 and 42.38%, respectively. The codoped lanthanide coordination polymers obtained by doping with different ratios of Eu3+/Tb3+ serve as excellent ratiometric thermometers with high sensitivities in the physiological temperature range, with values of 16.8, 7.0, and 14.5%·K-1, respectively. The luminescent colors of Tb0.95Eu0.05-HS and Tb0.94Eu0.06-HS exhibit variations from green to yellow to orange, achieving visualized luminescence in a narrow temperature range. The composite film material Tb0.94Eu0.06-HS@PMMA demonstrates this color variation. Next, Tb0.5Sm0.5-HS obtained by Tb3+/Sm3+ codoping was investigated. The difference in the luminescence colors visible to the naked eye at different excitation wavelengths and the change in luminescence colors occur in a very narrow temperature range. All of them show the great value of the visualized luminescence in practical anticounterfeiting, with double anticounterfeiting function and high security.
Collapse
Affiliation(s)
- Shiying Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Liu
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Chunyang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yiliang Sun
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Shiqiang Bai
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Zhang J, Lei H, Li Z, Jiang F, Chen L, Hong M. Halogen-Modulated 2D Coordination Polymers for Efficient Hydrogen Peroxide Photosynthesis under Air and Pure Water Conditions. Angew Chem Int Ed Engl 2024; 63:e202316998. [PMID: 38017354 DOI: 10.1002/anie.202316998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
H2 O2 is a widely used eco-friendly oxidant and a potential energy carrier. Photocatalytic H2 O2 production from water and O2 is an ideal approach with the potential to address the current energy crisis and environmental issues. Three zig-zag two-dimensional coordination polymers (2D CPs), named CuX-dptz, were synthesized by a rapid and facile method at room temperature, showing preeminent H2 O2 photoproduction performance under pure water and open air without any additives. CuBr-dptz exhibits a H2 O2 production rate high up to 1874 μmol g-1 h-1 , exceeding most reported photocatalysts under this condition, even comparable to those supported by sacrificial agents and O2 . The coordination environment of Cu can be modulated by halogen atoms (X=Cl, Br, I), which in turn affects the electron transfer process and finally determines the reaction activity. This is the first time that 2D CPs have been used for photocatalytic H2 O2 production in such challenging conditions, which provides a new pathway for the development of portable in situ H2 O2 photosynthesis devices.
Collapse
Affiliation(s)
- Jieping Zhang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hang Lei
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhijia Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Lian Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
3
|
Gupta S. Recent reports on vanadium based coordination polymers and MOFs. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Coordination polymers (CP) and metal-organic frameworks (MOF) have become a topic of immense interest in this century primarily because of the structural diversity that they offer. This structural diversity results in their multifaceted utility in various fields of science and technology such as catalysis, medicine, gas storage or separation, conductivity and magnetism. Their utility inspires a large variety of scientists to engage with them in their scientific pursuit thus creating a buzz around them in the scientific community. Metals capable of forming CPs and MOFs are primarily transition metals. Among them vanadium-based CPs and MOFs demand detailed discussion because of the unique nature of vanadium which makes it stable in many oxidation states and coordination number. Vanadium’s versatility imparts additional structural marvel and usefulness to these CPs and MOFs.
Collapse
Affiliation(s)
- Samik Gupta
- Department of Chemistry , Sambhu Nath College , Labpur , Birbhum , West Bengal , 731303 , India
| |
Collapse
|
4
|
Wang JL, Hu XY, Han CG, Hou SY, Wang HS, Zheng F. Lanthanide Complexes for Tumor Diagnosis and Therapy by Targeting Sialic Acid. ACS NANO 2022; 16:14827-14837. [PMID: 35981089 DOI: 10.1021/acsnano.2c05715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sialic acid (SA) is overexpressed on cell membranes of tumor cells, and increased serum SA concentration has been observed in tumor-bearing patients. Herein, a series of lanthanide-containing bimetallic complexes (TDA-M-Lns) for targeting SA were prepared via coordination among luminescent lanthanide ions (Ln3+ = Tb3+, Eu3+, Dy3+, or Sm3+), metal ion quenchers (M2+ = Cu2+ or Co2+), and the organic ligand 2,2'-thiodiacetic acid (TDA). SA can competitively coordinate with Ln3+, resulting in the "signal-on" of the Ln3+. Therefore, the TDA-M-Lns can be simply used for cost-saving detection of SA in the blood samples. Among the TDA-M-Lns, TDA-Co-Eu showed the highest sensitivity to detect SA in the blood of tumor-bearing mice. Furthermore, the TDA-Co-Eu was successfully used to target SA and deposit Eu3+ on the surfaces of tumor cells for the inhibition of tumor cell growth and migration. The therapeutic effect of TDA-Co-Eu on a Balb/c mouse liver tumor model was evaluated. It was proved that TDA-Co-Eu can be applied for SA detection as well as for inhibiting tumor growth.
Collapse
Affiliation(s)
- Jia-Li Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Yuan Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng-Gang Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Shao-Yuan Hou
- Administration for Market Regulation of Shanting district, Zaozhuang 277200, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Zheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Liu B, Zhang Y, Hao Y, Zhu X, Zhang Y, Zhou Y, Tan H, Xu M. All-in-One Luminescent Lanthanide Coordination Polymer Nanoprobe for Facile Detection of Protein Kinase Activity. Anal Chem 2022; 94:10730-10736. [DOI: 10.1021/acs.analchem.2c01307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Baoxia Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Yaoyao Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Xu Zhu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Hongliang Tan
- College of Biological and Food Engineering, Huaihua University, Huaihua 418000, PR China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| |
Collapse
|
6
|
Jin L, Miao Y, Liu D, Song F. Fe/Mn‐Porphyrin Coordination Polymer Nanoparticles for Magnetic Resonance Imaging (MRI) Guided‐Combination Therapy between Photodynamic Therapy and Chemodynamic Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lin Jin
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 China
| | - Yuyang Miao
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 China
| | - Dapeng Liu
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 China
| | - Fengling Song
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
7
|
Hu XY, Song Z, Yang ZW, Li JJ, Liu J, Wang HS. Cancer drug resistance related microRNAs: recent advances in detection methods. Analyst 2022; 147:2615-2632. [DOI: 10.1039/d2an00171c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MiRNAs are related to cancer drug resistance through various mechanisms. The advanced detection methods for the miRNAs are reviewed.
Collapse
Affiliation(s)
- Xin-Yuan Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Wei Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jia-Jing Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Green synthesis of polyacrylamide/polyanionic cellulose hydrogels composited with Zr-based coordination polymer and their enhanced mechanical and adsorptive properties. Polym J 2021. [DOI: 10.1038/s41428-021-00590-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Deneff JI, Butler KS, Kotula PG, Rue BE, Sava Gallis DF. Expanding the ZIFs Repertoire for Biological Applications with the Targeted Synthesis of ZIF-20 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27295-27304. [PMID: 34085832 DOI: 10.1021/acsami.1c05657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to their facile synthesis, tailorable porosity, diverse compositions, and low toxicity, zeolitic imidazolate framework (ZIF) nanoparticles (NPs) have emerged as attractive platforms for a variety of biologically relevant applications. To date, a small subset of ZIFs representing only two topologies and very few linker chemistries have been studied in this realm. We seek to expand the bio-design space for ZIF NPs through the targeted synthesis of a hierarchically complex ZIF based on two types of cages, ZIF-20, with lta topology. This study demonstrates the rapid synthesis and size tunability of ZIF-20 particles across the micro and nanoregimes via microwave heating and the use of a modulating agent. To evaluate the utility of ZIF particles for biological applications, we examine their stability in biologically relevant media and demonstrate biocompatibility with A549 human epithelial cells. Further, the ability to encapsulate and release methylene blue, a therapeutic and bioimaging agent, is validated. Importantly, ZIF-20 NPs display a unique behavior relative to previously studied ZIFs based on their specific structural and chemical features. This finding highlights the need to expand the design space across the broader ZIFs family, to exploit a wider range of relevant properties for biological applications and beyond.
Collapse
Affiliation(s)
- Jacob I Deneff
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Paul G Kotula
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Braden E Rue
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
10
|
Imidazole Cation as Guest Encapsulated within Unique Anionic Cyanocuprate(I) Supramolecular Architecture as Luminescent Sensor and Catalyst for Efficient Removal of Hazardous Materials. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01946-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Zhang G, Fu X, Sun H, Zhang P, Zhai S, Hao J, Cui J, Hu M. Poly(ethylene glycol)-Mediated Assembly of Vaccine Particles to Improve Stability and Immunogenicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13978-13989. [PMID: 33749241 DOI: 10.1021/acsami.1c00706] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report the one-step assembly of vaccine particles by encapsulating ovalbumin (OVA) and cytosine-phosphate-guanine oligodeoxynucleotides (CpG) into poly(ethylene glycol) (PEG)-mediated zeolitic imidazolate framework-8 nanoparticles (OVA-CpG@ZIF-8 NPs), where PEG improves the stability and dispersity of ZIF-8 NPs and the NPs protect the encapsulated OVA and CpG to circumvent the cold chain issue. Compared with free OVA and OVA-encapsulated ZIF-8 (OVA@ZIF-8) NPs, OVA-CpG@ZIF-8 NPs can enhance antigen uptake, cross-presentation, dendritic cell (DC) maturation, production of specific antibody and cytokines, and CD4+ T and CD8+ T cell activation. More importantly, the vaccine particles retain their bioactivity against enzymatic degradation, elevated temperatures, and long-term storage at ambient temperature. The study highlights the importance of PEG-mediated ZIF-8 NPs as a vaccine delivery system for the promising application of effective and cold chain-independent vaccination against diseases.
Collapse
Affiliation(s)
- Guiqiang Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiao Fu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Haifeng Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Shumei Zhai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Ming Hu
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
Miao Y, Lv S, Zheng D, Liu Y, Liu D, Song F. Porphyrin-based metal coordination polymers with self-assembly pathway-dependent properties for photodynamic and photothermal therapy. Biomater Sci 2021; 9:2533-2541. [DOI: 10.1039/d0bm02112a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the self-assembly process of porphyrin-based metal coordination polymers, two different nanoaggregates were discovered. The nanoaggregates exhibited pathway-dependent properties and showed different applications in phototherapy.
Collapse
Affiliation(s)
- Yuyang Miao
- Institute of Molecular Science and Engineering
- Institute of Frontier and Interdisciplinary Science. Shandong University
- Qingdao
- China
| | - Shibo Lv
- Institute of Molecular Science and Engineering
- Institute of Frontier and Interdisciplinary Science. Shandong University
- Qingdao
- China
| | - Daoyuan Zheng
- Institute of Molecular Science and Engineering
- Institute of Frontier and Interdisciplinary Science. Shandong University
- Qingdao
- China
| | - Yuhan Liu
- Institute of Molecular Science and Engineering
- Institute of Frontier and Interdisciplinary Science. Shandong University
- Qingdao
- China
| | - Dapeng Liu
- Institute of Molecular Science and Engineering
- Institute of Frontier and Interdisciplinary Science. Shandong University
- Qingdao
- China
| | - Fengling Song
- Institute of Molecular Science and Engineering
- Institute of Frontier and Interdisciplinary Science. Shandong University
- Qingdao
- China
| |
Collapse
|
13
|
Structural diversity and near-infrared luminescence of lanthanide coordination polymers with different flexibility and coordination orientation based on bipyridyl carboxylate and dicarboxylate ligands. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Bai C, Zhang JL, Hu HM, Wang F, Wang BZ, Yan L, He S, Wang X. Influences of reaction temperature and pH on structural diversity of visible and near-infrared lanthanide coordination compounds based on bipyridyl carboxylate and oxalate ligands. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Three new cadmium(II) coordination compounds based on 2-(pyridin-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline: syntheses, structures and luminescence. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2020. [DOI: 10.1515/znb-2020-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Three cadmium(II) coordination compounds, [Cd(pyip)2(CH3COO)2] (1), [Cd(pyip)2(cis-OH)2]·H2O (2) and [Cd(pyip)2(trans-OH)2]·3H2O (3), based on 2-(pyridin-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (pyip) have been synthesized by a hydrothermal method and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Compounds 1, 2 and 3 all appear as monomeric entities, which are further assembled into supramolecular networks by hydrogen bonding interactions. The Cd(II) centers in compounds 2 and 3 lie in distinct octahedral environments with the hydroxyl groups in cis- and trans-positions, respectively, leading to the generation of different structures . Photoluminescence studies of compounds 1–3 were also carried out.
Collapse
|
16
|
Liu Y, Lv S, Liu D, Song F. Recent development of amorphous metal coordination polymers for cancer therapy. Acta Biomater 2020; 116:16-31. [PMID: 32942012 DOI: 10.1016/j.actbio.2020.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/15/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Nanoscale metal coordination polymers (NCPs), built from metal ions and organic ligands, have attracted tremendous interest in biomedical applications. This is mainly due to their mesoporous structure, tunable size and morphology and versatile functionality. NCPs can be further divided into nanoscale metal-organic frameworks (NMOFs) and amorphous coordination polymer particles (ACPPs) depending on their structural crystallinity. NMOFs as nanocarriers have been extensively reviewed. However, the highlights of ACPPs as theranostic nanoplatforms are still limited. In this review, the recent progress of ACPPs as theranostic nanoplatforms is summarized based on what types of organic linkers used. The ACPPs are divided into three main parts: photosensitizers-based ACPPs, chemical drugs-based ACPPs, and biomolecules-based ACPPs. Finally, the prospects and challenges of the ACPPs for enhanced biomedical applications are also discussed. STATEMENT OF SIGNIFICANCE: Over the last decades, amorphous metal coordination polymers (ACPPs), constructed by metal ions and organic linkers, have attracted enormous interest in cancer treatment owing to their high drug loading capability, facile synthetic procedures, low long-term toxicity, and mild preparation conditions. In this review, we highlight the recent progress of ACPPs for biomedical application based on different types of organic building blocks including photosensitizers, chemical drugs, and biomolecules. Moreover, the prospects and challenges of ACPPs for clinical application are also discussed. We hope this review entitled "Recent development of amorphous metal coordination polymers for cancer therapy" would arise the researchers' interest in this field to accelerate their clinical application in cancer therapy.
Collapse
Affiliation(s)
- Yuhan Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Shibo Lv
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Dapeng Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China.
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
17
|
Zhang J, Wang XY, Wang YH, Wang DD, Song Z, Zhang CD, Wang HS. Colorable Zeolitic Imidazolate Frameworks for Colorimetric Detection of Biomolecules. Anal Chem 2020; 92:12670-12677. [PMID: 32842725 DOI: 10.1021/acs.analchem.0c02895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a series of colorable zeolitic imidazolate framework (ZIF)-based nanomaterials prepared by encapsulating starches (amylopectin, dextrin, or amylose) or tannic acid in the frameworks of ZIFs and first applied them in colorimetric assay of microRNA/DNA by adding I2/KI or FeCl3 solutions as chromogenic reagents. We found that iodine molecules can lead to rapid degradation of the ZIF-8 framework, while ZIF-90 remains stable. Therefore, ZIF-90 was selected for encapsulating the starches or tannic acid, and then assembled with polyethylenimine (PEI) and aptamers of microRNA/DNA. After interacting with the target microRNA/DNA, the aptamers (Ap) move away from the surface of the prepared Ap-starch@ZIF-90 or Ap-tan@ZIF-90, and the I2/KI or FeCl3 solution is added into the system to interact the starches (amylopectin, dextrin, or amylose) or tannic acid to generate different colors. According to the absorbance spectra, good linear correlations between the logarithm of absorbance intensity and the concentration of microRNA (1-180 nM) can be observed, and the naked eye can distinguish the change from ∼60 to ∼180 nM with a concentration gradient of 20 nM. A similar colorimetric assay ability for pathogenic bacteria can also be realized by detecting the gene fragments IS200 and eaeA. The detection limits can be potentially optimized by changing the amount of adsorbed PEI and aptamers on the surface of Ap-starch@ZIF-90 (or Ap-tan@ZIF-90) nanoparticles. This method could be a promising alternative for simple and cost-effective assay of microRNA/DNA.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Xing-Yu Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Hui Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Dan-Dan Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Chang-Dong Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|