1
|
Xu K, Zheng L, Bao SS, Ma J, Xie X, Zheng LM. Lanthanide-Sensitized Upconversion Iridium Complex via Triplet Energy Transfer. SMALL METHODS 2025; 9:e2400671. [PMID: 38803310 DOI: 10.1002/smtd.202400671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Cyclometalated iridium (Ir) complexes demonstrate impressive capabilities across a range of fields, including biology and photocatalysis, due to their tunable optical characteristics and structure flexibility. However, generating upconversion luminescence of Ir complexes under near-infrared light excitation is challenging. Herein, by employing lanthanide-doped upconversion nanoparticles (UCNPs) as the sensitizer, a new strategy is demonstrated to gain upconversion luminescence of Ir complexes via triplet energy transfer. This design relies on a rationally designed hybrid of core-shell structured NaYbF4:Tb@NaTbF4 UCNPs and new Ir phosphonate complexes, in which UCNPs can migrate upconverted energy to the surface of nanoparticles through Tb3+-mediated energy migration and then sensitize the upconversion luminescence of Ir complexes upon 980 nm excitation. Both experimental and theoretical investigations highlight the significance of triplet energy transfer from excited Tb3+ ions to the triplet state of Ir complexes in the sensitization of upconversion luminescence of Ir complexes. These findings may open exciting avenues for fabricating hybrid Ir materials with new functions and driving the development of UCNP-based nanomaterials.
Collapse
Affiliation(s)
- Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Lifeng Zheng
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaoji Xie
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Huang M, Cui J, Wu Q, Liu S, Zhu D, Li G, Bryce MR, Wang D, Tang BZ. Disulfide-Bridged Cationic Dinuclear Ir(III) Complex with Aggregation-Induced Emission and Glutathione-Consumption Properties for Elevating Photodynamic Therapy. Inorg Chem 2024; 63:24030-24040. [PMID: 39621999 DOI: 10.1021/acs.inorgchem.4c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The ability of photosensitizers (PSs) to generate reactive oxygen species (ROS) is crucial for photodynamic therapy (PDT). However, many traditional PSs face the drawbacks that aggregation-caused quenching (ACQ) and highly expressed glutathione (GSH) in the tumor microenvironment seriously limit their ROS generation ability. Herein, we report two cationic dinuclear iridium complexes, Ir-C-C-Ir and Ir-S-S-Ir, which possess aggregation-induced emission (AIE). Ir-S-S-Ir was constructed for GSH consumption by introducing a disulfide linkage between the two auxiliary ligands with imine units. Quantum chemical calculations revealed that Ir-C-C-Ir and Ir-S-S-Ir possess many degenerate states, which provide more channels for singlet-to-triplet exciton transitions, and then the intersystem crossing rate is increased due to the heavy atom effect of the iridium and sulfur atoms. The ROS production experiments indicated that the singlet oxygen yield of Ir-S-S-Ir was 33 times more than that of the ACQ mononuclear iridium complex Ir-C. Most importantly, Ir-S-S-Ir consumed GSH through a thiol-disulfide exchange reaction, as demonstrated by mass spectrometry and high-performance liquid chromatography. Cell experiments testified that Ir-S-S-Ir consumes GSH in tumor cells, possesses good ROS production capacity, and exhibits an extraordinary PDT effect. This is the first report of an AIE dinuclear iridium complex with a GSH-consuming function.
Collapse
Affiliation(s)
- Meijia Huang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P. R. China
| | - Jie Cui
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qi Wu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P. R. China
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shengnan Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P. R. China
| | - Dongxia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P. R. China
| | - Guangzhe Li
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province 130117, P. R. China
| | - Martin R Bryce
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
3
|
Yu Q, Gu S, Yang X, Jiang Q, Shi P. Four cyclometalated Ir(iii) complexes and insights into their luminescence, cytotoxicity and DNA/BSA binding performance. RSC Adv 2024; 14:29934-29941. [PMID: 39309647 PMCID: PMC11413735 DOI: 10.1039/d4ra04408h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Four cyclometalated Ir(iii) complexes based on 4'-p-N,N-bis(2-hydroxyethyl)benzyl-2,2':6',2''-terpyridine (TPYOH) and 4'-p-N,N-bis(2-hydroxyethyl)benzyl-6'-benzyl-2,2'-bipyridine (PhbpyOH) were synthesized and characterized. All the Ir(iii) complexes exhibited strong MLCT absorption peaks at about 450 nm, broad emission bands in the range of 500-700 nm. Z-scan results revealed that only complex Ir1A could exhibit certain two-photon absorption with maximal cross section values of 215 GM at 890 nm. When excited by 700-850 nm femtosecond laser, complex Ir1A gave a TPEF peak around 567 nm. All four complexes exhibited enhanced cell growth inhibitory activity against MCF-7 tumour cells under light irradiation comparing to their dark toxicity, with Ir1B showing the highest PI value (>50). The pathways and efficiencies of ROS generation by Ir(iii) complexes varied, with Ir2A being more effective in producing 1O2 while Ir1A mainly generating O2˙-. The Ir(iii) complexes undergo hydrogen bonding with DNA bases/phosphodiester through two O-H bonds on the bis(hydroxyethyl)amino group. The free pyridine-N atom in Ir1A forms additional hydrogen bond with DNA base, while the ligand TPYOH in Ir2A has better molecular planarity due to adopting {N, N, N} coordination mode, thus these two complexes show better DNA affinity. The complexes demonstrated weak interactions with BSA, through hydrogen bonding with amino acid residues at different regions of BSA molecule.
Collapse
Affiliation(s)
- Qianshui Yu
- School of Environmental and Chemical Engineering, Jiangsu OceanUniversity Lianyungang 222005 P. R. China
| | - Shunxin Gu
- School of Environmental and Chemical Engineering, Jiangsu OceanUniversity Lianyungang 222005 P. R. China
| | - Xinda Yang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability,School of Chemical Science and Engineering,Tongji University Shanghai 200120 P. R. China
| | - Qin Jiang
- School of Environmental and Chemical Engineering, Jiangsu OceanUniversity Lianyungang 222005 P. R. China
| | - Pengfei Shi
- School of Environmental and Chemical Engineering, Jiangsu OceanUniversity Lianyungang 222005 P. R. China
| |
Collapse
|
4
|
Liang G, Montesdeoca N, Tang D, Wang B, Xiao H, Karges J, Shang K. Facile one-pot synthesis of Ir(III) Bodipy polymeric gemini nanoparticles for tumor selective NIR photoactivated anticancer therapy. Biomaterials 2024; 309:122618. [PMID: 38797122 DOI: 10.1016/j.biomaterials.2024.122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Over the last decades, a variety of metal complexes have been developed as chemotherapeutic agents. Despite the promising therapeutic prospects, the vast majority of these compounds suffer from low solubility, poor pharmacological properties, and most importantly poor tumor accumulation. To circumvent these limitations, herein, the incorporation of cytotoxic Ir(III) complexes and a variety of photosensitizers into polymeric gemini nanoparticles that selectively accumulate in the tumorous tissue and could be activated by near-infrared (NIR) light to exert an anticancer effect is reported. Upon exposure to light, the photosensitizer is able to generate singlet oxygen, triggering the rapid dissociation of the nanostructure and the activation of the Ir prodrug, thereby initiating a cascade of mitochondrial targeting and damage that ultimately leads to cell apoptosis. While selectively accumulating into tumorous tissue, the nanoparticles achieve almost complete eradication of the cisplatin-resistant cervical carcinoma tumor in vivo upon exposure to NIR irradiation.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
5
|
Yoshihara T, Tamura T, Shiozaki S, Chou LC, Kakuchi R, Rokudai S. Confocal microscopic oxygen imaging of xenograft tumors using Ir(III) complexes as in vivo intravascular and intracellular probes. Sci Rep 2024; 14:18443. [PMID: 39117886 PMCID: PMC11310526 DOI: 10.1038/s41598-024-69369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Hypoxia is an important feature of the tumor microenvironment (TME) of most solid tumors, and it is closely linked to cancer cell proliferation, therapy resistance, and the tumor immune response. Herein, we describe a method for hypoxia-induced heterogeneous oxygen distribution in xenograft tumors based on phosphorescence imaging microscopy (PLIM) using intravascular and intracellular oxygen probes. We synthesized Ir(III) complexes with polyethylene glycol (PEG) units of different molecular weights into the ligand as intravascular oxygen probes, BTP-PEGm (m = 2000, 5000, 10000, 20000). BTP-PEGm showed red emission with relatively high emission quantum yield and high oxygen sensitivity in saline. Cellular and in vivo experiments using these complexes revealed that BTP-PEG10000 was the most suitable probe in terms of blood retention and ease of intravenous administration in mice. PLIM measurements of xenograft tumors in mice treated with BTP-PEG10000 allowed simultaneous imaging of the tumor microvasculature and quantification of oxygen partial pressures. From lifetime images using the red-emitting intracellular oxygen probe BTPDM1 and the green-emitting intravascular fluorescent probe FITC-dextran, we demonstrated hypoxic heterogeneity in the TME with a sparse vascular network and showed that the oxygen levels of tumor cells gradually decreased with vascular distance.
Collapse
Affiliation(s)
- Toshitada Yoshihara
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan.
| | - Takuto Tamura
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Shuichi Shiozaki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Li-Chieh Chou
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Ryohei Kakuchi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Susumu Rokudai
- Molecular Pharmacology and Oncology, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
6
|
Dai W, Yang X, Lv K, Li L, Peng Y, Ma H, An Z. Modulating Heavy Atom Effect in Germylene for Persistent Room Temperature Phosphorescence. Chemistry 2024:e202401882. [PMID: 38820203 DOI: 10.1002/chem.202401882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
It is worth but still challenging to develop the low-valent main group compounds with persistent room temperature phosphorescence (pRTP). Herein, we presented germylene-based persistent phosphors by introduction of low-valent Ge center into chromophore. A novel phosphors CzGe and its series of derivatives, namely CzGeS, CzGeSe, CzGeAu, and CzGeCu, were synthesized. Experiments and theoretical calculations reveal that the pRTP behavior were "turn on" due to the heavy atom effect of germylene. More importantly, the low-valent of oxidation state and structural traits propelled GeCz had a balance between the intersystem crossing and the shortening of lifetime caused by the heavy atoms, resulting the ultralong lifetime of 309 ms and phosphorescent quantum efficiency of 15.84 %, which is remarkable among heavy main group phosphors. This research provides valuable insights to the design of heavy atoms in phosphors and expand the applications of germylene chemistry.
Collapse
Affiliation(s)
- Wen Dai
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaoang Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kaiqi Lv
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Lei Li
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanbo Peng
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| |
Collapse
|
7
|
Palion-Gazda J, Choroba K, Maroń AM, Malicka E, Machura B. Structural and Photophysical Trends in Rhenium(I) Carbonyl Complexes with 2,2':6',2″-Terpyridines. Molecules 2024; 29:1631. [PMID: 38611910 PMCID: PMC11013590 DOI: 10.3390/molecules29071631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
This is the first comprehensive review of rhenium(I) carbonyl complexes with 2,2':6',2″-terpyridine-based ligands (R-terpy)-encompassing their synthesis, molecular features, photophysical behavior, and potential applications. Particular attention has been devoted to demonstrating how the coordination mode of 2,2':6',2″-terpyridine (terpy-κ2N and terpy-κ3N), structural modifications of terpy framework (R), and the nature of ancillary ligands (X-mono-negative anion, L-neutral ligand) may tune the photophysical behavior of Re(I) complexes [Re(X/L)(CO)3(R-terpy-κ2N)]0/+ and [Re(X/L)(CO)2(R-terpy-κ3N)]0/+. Our discussion also includes homo- and heteronuclear multicomponent systems with {Re(CO)3(R-terpy-κ2N)} and {Re(CO)2(R-terpy-κ3N)} motifs. The presented structure-property relationships are of high importance for controlling the photoinduced processes in these systems and making further progress in the development of more efficient Re-based luminophores, photosensitizers, and photocatalysts for modern technologies.
Collapse
Affiliation(s)
- Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland; (K.C.); (A.M.M.); (E.M.)
| | | | | | | | - Barbara Machura
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland; (K.C.); (A.M.M.); (E.M.)
| |
Collapse
|
8
|
Jing S, Wu X, Niu D, Wang J, Leung CH, Wang W. Recent Advances in Organometallic NIR Iridium(III) Complexes for Detection and Therapy. Molecules 2024; 29:256. [PMID: 38202839 PMCID: PMC10780525 DOI: 10.3390/molecules29010256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Iridium(III) complexes are emerging as a promising tool in the area of detection and therapy due to their prominent photophysical properties, including higher photostability, tunable phosphorescence emission, long-lasting phosphorescence, and high quantum yields. In recent years, much effort has been devoted to develop novel near-infrared (NIR) iridium(III) complexes to improve signal-to-noise ratio and enhance tissue penetration. In this review, we summarize different classes of organometallic NIR iridium(III) complexes for detection and therapy, including cyclometalated ligand-enabled NIR iridium(III) complexes and NIR-dye-conjugated iridium(III) complexes. Moreover, the prospects and challenges for organometallic NIR iridium(III) complexes for targeted detection and therapy are discussed.
Collapse
Affiliation(s)
- Shaozhen Jing
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Xiaolei Wu
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Dou Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Jing Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa, Macau 999078, China
- MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Wanhe Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| |
Collapse
|
9
|
Tong J, Liu A, Huang S, Zhou D, Gao Y, Wang Y, Shan GG. Precise ligand engineering of Ir(III)-based photosensitizer with aggregation-induced emission for image-guided photodynamic therapy. LUMINESCENCE 2023. [PMID: 38148616 DOI: 10.1002/bio.4656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Photodynamic therapy (PDT), which relies on the production of reactive oxygen species (ROS) induced by a photosensitizer to kill cancer cells, has become a non-invasive approach to combat cancer. However, the conventional aggregation-caused quenching effect, as well as the low ROS generation ability of photosensitizers, restrict their biological applications. In this work, a new Ir(III) complex with a dendritic ligand has been strategically designed and synthesized by ingenious modification of the ancillary ligand of a reported Ir(III) complex (Ir-1). The extended π-conjugation and multiple aromatic donor moieties endow the resulting complex Ir-2 with obvious aggregation-induced emission (AIE) activity and bathochromic emission. In in vitro experiments, importantly, Ir-2 nanoparticles exhibit the excellent photoinduced ROS generation capabilities of O2 •- and 1 O2 , as well as excellent biocompatibility and the lipid droplets (LDs) targeting feature. This study would provide useful guidance to design efficient Ir(III)-based photosensitizers used in biological applications in the future.
Collapse
Affiliation(s)
- Jialin Tong
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Ao Liu
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Shanshan Huang
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Dan Zhou
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Ying Gao
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, China
| | - Yan Wang
- Engineering Research Center of Advanced Ferroelectric Functional Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji, China
| | - Guo-Gang Shan
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, China
| |
Collapse
|
10
|
Choroba K, Penkala M, Palion-Gazda J, Malicka E, Machura B. Pyrenyl-Substituted Imidazo[4,5- f][1,10]phenanthroline Rhenium(I) Complexes with Record-High Triplet Excited-State Lifetimes at Room Temperature: Steric Control of Photoinduced Processes in Bichromophoric Systems. Inorg Chem 2023; 62:19256-19269. [PMID: 37950694 PMCID: PMC10685448 DOI: 10.1021/acs.inorgchem.3c02662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Photochemical applications based on intermolecular photoinduced energy triplet state transfer require photosensitizers with strong visible absorptivity and extended triplet excited-state lifetimes. Using a bichromophore approach, two Re(I) tricarbonyl complexes with 2-(1-pyrenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (pyr-imphen) and 1-(4-(methyl)phenyl)-2-(1-pyrenyl)-imidazo[4,5-f][1,10]phenanthroline (pyr-tol-imphen) showing extraordinary long triplet excited states at room temperature (>1000 μs) were obtained, and their ground- and excited-state properties were thoroughly investigated by a wide range of spectroscopic methods, including femtosecond transient absorption (fs-TA). It is worth noting that the designed [ReCl(CO)3(pyr-imphen)] (1) and [ReCl(CO)3(pyr-tol-imphen)] (2) complexes form a unique pair differing in the mutual chromophore arrangement due to introduction of a 4-(methyl)phenyl substituent into the imidazole ring at the H1-position, imposing an increase in the dihedral angle between the pyrene and {ReCl(CO)3(imphen)} chromophores. The magnitude of the electronic coupling between the pyrene and {ReCl(CO)3(imphen)} chromophores was found to be an efficient tool to tune the photophysical properties of 1 and 2. The usefulness of designed Re(I) compounds as triplet photosensitizers was successfully verified by examination of their abilities for 1O2 generation and triplet-triplet annihilation upconversion. The phosphorescence lifetimes, ∼1800 μs for 1 and ∼1500 μs for 2, are the longest lifetimes reported for Re(I) diimine carbonyl complexes in solution at room temperature.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Mateusz Penkala
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Ewa Malicka
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| |
Collapse
|
11
|
Gómez de Segura D, Giménez N, Rincón-Montón D, Moreno MT, Pichel JG, López IP, Lalinde E. A new family of luminescent [Pt(pbt) 2(C 6F 5)L] n+ ( n = 1, 0) complexes: synthesis, optical and cytotoxic studies. Dalton Trans 2023; 52:12390-12403. [PMID: 37594064 DOI: 10.1039/d3dt01759a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Given the widely recognized bioactivity of 2-arylbenzothiazoles against tumor cells, we have designed a new family of luminescent heteroleptic pentafluorophenyl-bis(2-phenylbenzothiazolyl) PtIV derivatives, fac-[Pt(pbt)2(C6F5)L]n+ (n = 1, 0) [L = 4-Mepy 1, 4-pyridylbenzothiazole (pybt) 2, 4,4'-bipyridine (4,4'-bpy) 3, 1,2-bis-(4-pyridyl)ethylene (bpe) 4 (E/Z ratio: 90/10), 1,4-bis-(pyridyl)butadiyne (bpyb) 5, trifluoroacetate (-OCOCF3) 6] and a dinuclear complex [{Pt(pbt)2(C6F5)}2(μ-bpyb)](PF6)27, in which the trans ligand to the metalated C-(pbt) was varied to modify the optical properties and lipophilicity. Their photophysical properties were systematically studied through experimental and theoretical investigations, which were strongly dependent on the identity of the N-bonded ligand. Thus, complexes 1, 3 and 6 display, in different media, emission from the triplet excited states of primarily intraligand 3ILCT nature localized on the pbt ligand, while the emissions of 2, 5 and 7 were ascribed to a mixture of close 3IL'(N donor)/3ILCT(pbt) excited states, as supported by lifetime measurements and theoretical calculations. Irradiation of the initial E/Z mixture of 4 (15 min) led to a steady state composed of roughly 1 : 1.15 (E : Z) and this complex was not emissive at room temperature due to an enhanced intramolecular E to Z isomerization process of the 1,2-bis-(4-pyridyl)ethylene ligand. Complexes 1-3 and 6 showed excellent quantum yields for the generation of singlet oxygen in aerated MeCN solution with the values of ϕ(1O2) ranging from 0.66 to 0.86 using phenalenone as a reference. Cationic complexes 1-3 exhibited remarkable efficacy in the nanomolar range against A549 (lung carcinoma) and HeLa (cervix carcinoma) cell lines with notable selectivity relative to the non-tumorigenic BEAS-2B (bronchial epithelium) cells. In the A549 cell line, the neutral complex 6 showed low cytotoxicity (IC50: 29.40 μM) and high photocytotoxicity (IC50: 5.75) when cells were irradiated with blue light for 15 min. These complexes do not show evidence of DNA interaction.
Collapse
Affiliation(s)
- David Gómez de Segura
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - Nora Giménez
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - David Rincón-Montón
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - M Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - José G Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, 26006, Logroño, Spain.
- Spanish Biomedical Research Networking Centre in Respiratory Diseases (CIBERES), ISCIII, E-28029, Madrid, Spain
| | - Icíar P López
- Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, 26006, Logroño, Spain.
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| |
Collapse
|
12
|
Su R, Huang Z. A Series of Singlet‐Triplet InVerted TADF Fluorescent Probes with High Stability, Low Molecular Weight, and Synthesis Accessibility. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Rongchuan Su
- Department of Pharmacology North Sichuan Medical College Nanchong 637100 China
| | - Zhenmei Huang
- College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
13
|
Denison M, Ahrens JJ, Dunbar MN, Warmahaye H, Majeed A, Turro C, Kocarek TA, Sevrioukova IF, Kodanko JJ. Dynamic Ir(III) Photosensors for the Major Human Drug-Metabolizing Enzyme Cytochrome P450 3A4. Inorg Chem 2023; 62:3305-3320. [PMID: 36758158 PMCID: PMC10268476 DOI: 10.1021/acs.inorgchem.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Probing the activity of cytochrome P450 3A4 (CYP3A4) is critical for monitoring the metabolism of pharmaceuticals and identifying drug-drug interactions. A library of Ir(III) probes that detect occupancy of the CYP3A4 active site were synthesized and characterized. These probes show selectivity for CYP3A4 inhibition, low cellular toxicity, Kd values as low as 9 nM, and are highly emissive with lifetimes up to 3.8 μs in cell growth media under aerobic conditions. These long emission lifetimes allow for time-resolved gating to distinguish probe from background autofluorescence from growth media and live cells. X-ray crystallographic analysis revealed structure-activity relationships and the preference or indifference of CYP3A4 toward resolved stereoisomers. Ir(III)-based probes show emission quenching upon CYP3A4 binding, then emission increases following displacement with CYP3A4 inhibitors or substrates. Importantly, the lead probes inhibit the activity of CYP3A4 at concentrations as low as 300 nM in CYP3A4-overexpressing HepG2 cells that accurately mimic human hepatic drug metabolism. Thus, the Ir(III)-based agents show promise as novel chemical tools for monitoring CYP3A4 active site occupancy in a high-throughput manner to gain insight into drug metabolism and drug-drug interactions.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Justin J Ahrens
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Marilyn N Dunbar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Habon Warmahaye
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aliza Majeed
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
14
|
Jin M, Zhao Y, Guan ZJ, Fang Y. Porous Framework Materials for Bioimaging and Cancer Therapy. Molecules 2023; 28:1360. [PMID: 36771027 PMCID: PMC9921779 DOI: 10.3390/molecules28031360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Cancer remains one of the most pressing diseases in the world. Traditional treatments, including surgery, chemotherapy, and radiotherapy still show certain limitations. Recently, numerous cancer treatments have been proposed in combination with novel materials, such as photothermal therapy, chemodynamic therapy, immunotherapy, and a combination of therapeutic approaches. These new methods have shown significant advantages in reducing side effects and synergistically enhancing anti-cancer efficacy. In addition to the above approaches, early diagnosis and in situ monitoring of lesion areas are also important for reducing side effects and improving the success rate of cancer therapy. This depends on the decent use of bioimaging technology. In this review, we mainly summarize the recent advances in porous framework materials for bioimaging and cancer therapy. In addition, we present future challenges relating to bioimaging and cancer therapy based on porous framework materials.
Collapse
Affiliation(s)
- Meng Jin
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingying Zhao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zong-Jie Guan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yu Fang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Innovation Institute of Industrial Design and Machine Intelligence, Quanzhou-Hunan University, Quanzhou 362801, China
| |
Collapse
|
15
|
|
16
|
|
17
|
Denison M, Steinke SJ, Majeed A, Turro C, Kocarek TA, Sevrioukova IF, Kodanko JJ. Ir(III)-Based Agents for Monitoring the Cytochrome P450 3A4 Active Site Occupancy. Inorg Chem 2022; 61:13673-13677. [PMID: 35994607 PMCID: PMC9547529 DOI: 10.1021/acs.inorgchem.2c02587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochromes P450 (CYPs) are a superfamily of enzymes responsible for biosynthesis and drug metabolism. Monitoring the activity of CYP3A4, the major human drug-metabolizing enzyme, is vital for assessing the metabolism of pharmaceuticals and identifying harmful drug-drug interactions. Existing probes for CYP3A4 are irreversible turn-on substrates that monitor activity at specific time points in end-point assays. To provide a more dynamic approach, we designed, synthesized, and characterized emissive Ir(III) and Ru(II) complexes that allow monitoring of the CYP3A4 active-site occupancy in real time. In the bound state, probe emission is quenched by the active-site heme. Upon displacement from the active site by CYP3A4-specific inhibitors or substrates, these probes show high emission turn-on. Direct probe binding to the CYP3A4 active site was confirmed by X-ray crystallography. The lead Ir(III)-based probe has nanomolar Kd and high selectivity for CYP3A4, efficient cellular uptake, and low toxicity in CYP3A4-overexpressing HepG2 cells.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aliza Majeed
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Irina F Sevrioukova
- Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
18
|
Phosphorescent Ir(III) Complexes for Biolabeling and Biosensing. Top Curr Chem (Cham) 2022; 380:35. [PMID: 35948820 DOI: 10.1007/s41061-022-00389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/27/2022] [Indexed: 10/15/2022]
Abstract
Cyclometalated Ir(III) complexes exhibit strong phosphorescence emission with lifetime of submicroseconds to several microseconds at room temperature. Their synthetic versatility enables broad control of physical properties, such as charge and lipophilicity, as well as emission colors. These favorable properties have motivated the use of Ir(III) complexes in luminescent bioimaging applications. This review examines the recent progress in the development of phosphorescent biolabels and sensors based on Ir(III) complexes. It begins with a brief introduction about the basic principles of the syntheses and photophysical processes of cyclometalated Ir(III) complexes. Focus is placed on illustrating the broad imaging utility of Ir(III) complexes. Phosphorescent labels illuminating intracellular organelles, including mitochondria, lysosomes, and cell membranes, are summarized. Ir(III) complexes capable of visualization of tumor spheroids and parasites are also introduced. Facile chemical modification of the cyclometalating ligands endows the Ir(III) complexes with strong sensing ability. Sensors of temperature, pH, CO2, metal ions, anions, biosulfur species, reactive oxygen species, peptides, and viscosity have recently been added to the molecular imaging tools. This diverse utility demonstrates the potential of phosphorescent Ir(III) complexes toward bioimaging applications.
Collapse
|
19
|
Zhao S, Chen L, Yang Y, Liu X. Research progress of phosphorescent probe for biological imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Sulfonamides differing in the alkylamino substituent length – Synthesis, electrochemical characteristic, acid-base profile and complexation properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Graf M, Böttcher HC, Czerwieniec R, Mayer P, Thavalingam S, Metzler-Nolte N. Photophysical and structural characterization of the bis-cyclometalated compound [Ir(ptpy)2(κ2N-tppz)]PF6 and evaluation of its cytotoxic activity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Xu K, Xie X, Zheng LM. Iridium-lanthanide complexes: Structures, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Canisares FSM, Mutti AMG, Santana EF, Oliveira VC, Cavalcante DGSM, Job AE, Pires AM, Lima SAM. Red-emitting heteroleptic iridium(III) complexes: photophysical and cell labeling study. Photochem Photobiol Sci 2022; 21:1077-1090. [PMID: 35304728 DOI: 10.1007/s43630-022-00200-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Two red-emitting heteroleptic iridium(III) complexes (Ir-p and Ir-q) were synthesized and their photophysical and biological properties were analyzed. After their structures have been confirmed by several techniques, such as 1H NMR, 13C NMR, FT-IR, UV-Vis, and MALDI TOF analyses, their luminescence behavior was investigated in ethanol and PBS (physiological medium, pH ~ 7.4) solutions. Emission spectra of both complexes are dominated by 3MLCT states at room temperature in ethanolic solution, but at 77 K the Ir-q exhibits the 3LC as the dominant emission state. The Ir-q complex shows one of the highest emission quantum yields, 11.5%, for a red emitter based on iridium(III) complexes in aerated PBS solution, with color coordinates (x;y) of (0.712;0.286). Moreover, both complexes display high potential to be used as a biological marker with excitation wavelengths above 400 nm, high water solubility (Ir-p 1838 μmol L-1, Ir-q 7601 μmol L-1), and distinct emission wavelengths from the biological autofluorescence. Their cytotoxicity was analyzed in CHO-k1 cells by MTT assays, and the IC50 was estimated as being higher than 131 μmol L-1 for Ir-p, and higher than 116 μmol L-1 for Ir-q. Concentrations above 70% of viability were used to perform cell imaging by confocal and fluorescence microscopies and the results suggest that the complexes were internalized by the cell membrane and they are staining the cytoplasm region.
Collapse
Affiliation(s)
- Felipe S M Canisares
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil.,Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José Do Rio Preto, SP, Brazil
| | - Alessandra M G Mutti
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Edy F Santana
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Vytor C Oliveira
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Dalita G S M Cavalcante
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Aldo E Job
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Ana M Pires
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil.,Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José Do Rio Preto, SP, Brazil
| | - Sergio A M Lima
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil.
| |
Collapse
|
24
|
Mizukami K, Muraoka T, Shiozaki S, Tobita S, Yoshihara T. Near-Infrared Emitting Ir(III) Complexes Bearing a Dipyrromethene Ligand for Oxygen Imaging of Deeper Tissues In Vivo. Anal Chem 2022; 94:2794-2802. [PMID: 35109653 DOI: 10.1021/acs.analchem.1c04271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorescence lifetime imaging microscopy (PLIM) using a phosphorescent oxygen probe is an innovative technique for elucidating the behavior of oxygen in living tissues. In this study, we designed and synthesized an Ir(III) complex, PPYDM-BBMD, that exhibits long-lived phosphorescence in the near-infrared region and enables in vivo oxygen imaging in deeper tissues. PPYDM-BBMD has a π-extended ligand based on a meso-mesityl dipyrromethene structure and phenylpyridine ligands with cationic dimethylamino groups to promote intracellular uptake. This complex gave a phosphorescence spectrum with a maximum at 773 nm in the wavelength range of the so-called biological window and exhibited an exceptionally long lifetime (18.5 μs in degassed acetonitrile), allowing for excellent oxygen sensitivity even in the near-infrared window. PPYDM-BBMD showed a high intracellular uptake in cultured cells and mainly accumulated in the endoplasmic reticulum. We evaluated the oxygen sensitivity of PPYDM-BBMD phosphorescence in alpha mouse liver 12 (AML12) cells based on the Stern-Volmer analysis, which gave an O2-induced quenching rate constant of 1.42 × 103 mmHg-1 s-1. PPYDM-BBMD was administered in the tail veins of anesthetized mice, and confocal one-photon PLIM images of hepatic tissues were measured at different depths from the liver surfaces. The PLIM images visualized the oxygen gradients in hepatic lobules up to a depth of about 100 μm from the liver surfaces with a cellular-level resolution, allowing for the quantification of oxygen partial pressure based on calibration results using AML12 cells.
Collapse
Affiliation(s)
- Kiichi Mizukami
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Takako Muraoka
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Shuichi Shiozaki
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Toshitada Yoshihara
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| |
Collapse
|
25
|
Zhou J, Li J, Zhang KY, Liu S, Zhao Q. Phosphorescent iridium(III) complexes as lifetime-based biological sensors for photoluminescence lifetime imaging microscopy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Zhang H, sun M, wang Y, Yin L, Ma DL, Leung CH, Lu L. A time-resolved ratiometric luminescent anthrax biomarker nanosensor based on Ir(III) complex-doped coordination polymer network. J Mater Chem B 2022; 10:1853-1857. [DOI: 10.1039/d1tb02652f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an Ir(III) complex-doped coordination polymer networks (Ir(III)@GMP-Eu3+) is firstly fabricated for the ratiometric luminescent detection of anthrax biomarker 2,6-dipicolinic acid (DPA) through time-resolved emission spectra (TRES) measurement. The detection...
Collapse
|
27
|
Kinzhalov MA, Grachova EV, Luzyanin KV. Tuning the luminescence of transition metal complexes with acyclic diaminocarbene ligands. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01288f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organometallics featuring acyclic diaminocarbene ligands have recently emerged as powerful emitters for use in electroluminescent technologies.
Collapse
Affiliation(s)
- Mikhail A. Kinzhalov
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russia
| | - Elena V. Grachova
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russia
| | | |
Collapse
|
28
|
Heavy main group element containing organometallic phosphorescent materials. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Dai P, Li J, Tang M, Yan D, Xu Z, Li YH, Chen Z, Liu SJ, Zhao Q, Zhang KY. Cellular imaging properties of phosphorescent iridium(III) complexes substituted with ester or amide groups. Dalton Trans 2022; 51:10501-10506. [DOI: 10.1039/d2dt01551j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported four iridium(III) complexes substituted with ester or amide groups as luminescent cellular imaging reagents. While three of the complexes stained the cytoplasm, the other complex showed the exceptional...
Collapse
|
30
|
Solomatina AI, Kozina DO, Porsev VV, Tunik SP. pH-Responsive N^C-Cyclometalated Iridium(III) Complexes: Synthesis, Photophysical Properties, Computational Results, and Bioimaging Application. Molecules 2021; 27:232. [PMID: 35011464 PMCID: PMC8747057 DOI: 10.3390/molecules27010232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Herein we report four [Ir(N^C)2(L^L)]n+, n = 0,1 complexes (1-4) containing cyclometallated N^C ligand (N^CH = 1-phenyl-2-(4-(pyridin-2-yl)phenyl)-1H-phenanthro[9,10-d]imidazole) and various bidentate L^L ligands (picolinic acid (1), 2,2'-bipyridine (2), [2,2'-bipyridine]-4,4'-dicarboxylic acid (3), and sodium 4,4',4″,4‴-(1,2-phenylenebis(phosphanetriyl))tetrabenzenesulfonate (4). The N^CH ligand precursor and iridium complexes 1-4 were synthesized in good yield and characterized using chemical analysis, ESI mass spectrometry, and NMR spectroscopy. The solid-state structure of 2 was also determined by XRD analysis. The complexes display moderate to strong phosphorescence in the 550-670 nm range with the quantum yields up to 30% and lifetimes of the excited state up to 60 µs in deoxygenated solution. Emission properties of 1-4 and N^CH are strongly pH-dependent to give considerable variations in excitation and emission profiles accompanied by changes in emission efficiency and dynamics of the excited state. Density functional theory (DFT) and time-dependent density functional theory (TD DFT) calculations made it possible to assign the nature of emissive excited states in both deprotonated and protonated forms of these molecules. The complexes 3 and 4 internalize into living CHO-K1 cells, localize in cytoplasmic vesicles, primarily in lysosomes and acidified endosomes, and demonstrate relatively low toxicity, showing more than 80% cells viability up to the concentration of 10 µM after 24 h incubation. Phosphorescence lifetime imaging microscopy (PLIM) experiments in these cells display lifetime distribution, the conversion of which into pH values using calibration curves gives the magnitudes of this parameter compatible with the physiologically relevant interval of the cell compartments pH.
Collapse
Affiliation(s)
- Anastasia I. Solomatina
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia;
| | | | - Vitaly V. Porsev
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia;
| | - Sergey P. Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia;
| |
Collapse
|
31
|
Chelushkin PS, Shakirova JR, Kritchenkov IS, Baigildin VA, Tunik SP. Phosphorescent NIR emitters for biomedicine: applications, advances and challenges. Dalton Trans 2021; 51:1257-1280. [PMID: 34878463 DOI: 10.1039/d1dt03077a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.
Collapse
Affiliation(s)
- Pavel S Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| |
Collapse
|
32
|
Yu HJ, Zhou Q, Dai X, Shen FF, Zhang YM, Xu X, Liu Y. Photooxidation-Driven Purely Organic Room-Temperature Phosphorescent Lysosome-Targeted Imaging. J Am Chem Soc 2021; 143:13887-13894. [PMID: 34410118 DOI: 10.1021/jacs.1c06741] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The construction of host-guest-binding-induced phosphorescent supramolecular assemblies has become one of increasingly significant topics in biomaterial research. Herein, we demonstrate that the cucurbit[8]uril host can induce the anthracene-conjugated bromophenylpyridinium guest to form a linear supramolecular assembly, thus facilitating the enhancement of red fluorescence emission by the host-stabilized charge-transfer interactions. When the anthryl group is photo-oxidized to anthraquinone, the obtained linear nanoconstructs can be readily converted into the homoternary inclusion complex, accompanied by the emergence of strong green phosphorescence in aqueous solution. More intriguingly, dual organelle-targeted imaging abilities have been also distinctively achieved in nuclei and lysosomes after undergoing photochemical reaction upon UV irradiation. This photooxidation-driven purely organic room-temperature phosphorescence provides a convenient and feasible strategy for supramolecular organelle identification to track specific biospecies and physiological events in the living cells.
Collapse
Affiliation(s)
- Hua-Jiang Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingyang Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fang-Fang Shen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
33
|
Sengupta P, Das R, Dhibar P, Paul P, Bhattacharya S. Rhodium and Iridium Mediated C-H and O-H Bond Activation of Two Schiff Base Ligands: Synthesis, Characterization and Catalytic Properties of the Organometallic Complexes. Front Chem 2021; 9:696460. [PMID: 34434917 PMCID: PMC8380818 DOI: 10.3389/fchem.2021.696460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Reaction of [Rh(PPh3)3Cl] with two Schiff base ligands, viz. N-(2′-hydroxyphenyl)furan-2-aldimine (H2L1) and N-(2′-hydroxyphenyl)thiophene-2-aldimine (H2L2), in refluxing toluene affords organorhodium complexes of type [Rh(PPh3)2(L)Cl] (L = L1 and L2). Similar reaction with [Ir(PPh3)3Cl] yields organoiridium complexes of type [Ir(PPh3)2(L) (H)] (L = L1 and L2). Crystal structures of [Rh(PPh3)2(L1)Cl] and [Ir(PPh3)2(L2) (H)] have been determined, where the imine ligands are found to bind to the metal centers as CNO-donors. Structures of [Rh(PPh3)2(L2)Cl] and [Ir(PPh3)2(L1) (H)] have been optimized by density functional theory method. Formation of the organometallic complexes is believed to proceed via C-H and O-H bond activation of the imine ligands. All four complexes show intense absorptions in the visible and ultraviolet regions. Cyclic voltammetry on the complexes shows an oxidation on the positive side of SCE and a reduction on the negative side. The organoiridium complexes are found to efficiently catalyze Suzuki-type C-C cross coupling reactions.
Collapse
Affiliation(s)
- Poulami Sengupta
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, India.,Henkel Limited, Hemel Hempstead, United Kingdom
| | - Rituparna Das
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, India
| | - Papu Dhibar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, India
| | - Piyali Paul
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, India.,Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata, India
| | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, India
| |
Collapse
|
34
|
Zhang L, Ding D. Recent advances of transition Ir(III) complexes as photosensitizers for improved photodynamic therapy. VIEW 2021. [DOI: 10.1002/viw.20200179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Liping Zhang
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences Nankai University Tianjin P. R. China
- Shenzhen Key Laboratory of Neurosurgery Shenzhen Second People's Hospital Shenzhen P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences Nankai University Tianjin P. R. China
| |
Collapse
|
35
|
He M, Chen F, Shao D, Weis P, Wei Z, Sun W. Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials 2021; 275:120915. [PMID: 34102525 DOI: 10.1016/j.biomaterials.2021.120915] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Over the past decades, transition metal complexes have been successfully used in anticancer phototherapies. They have shown promising properties in many different areas including photo-induced ligand exchange or release, rich excited state behavior, and versatile biochemical properties. When encorporated into polymeric frameworks and become part of nanostructures, photoresponsive metallopolymer nanoparticles (MPNs) show enhanced water solubility, extended blood circulation and increased tumor-specific accumulation, which greatly improves the tumor therapeutic effects compared to low-molecule-weight metal complexes. In this review, we aim to present the recent development of photoresponsive MPNs as therapeutic nanomedicines. This review will summarize four major areas separately, namely platinum-containing polymers, zinc-containing polymers, iridium-containing polymers and ruthenium-containing polymers. Representative MPNs of each type are discussed in terms of their design strategies, fabrication methods, and working mechanisms. Current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Fangman Chen
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Dan Shao
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Philipp Weis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
36
|
Nittayacharn P, Abenojar E, La Deda M, Ricciardi L, Strangi G, Exner AA. Iridium(III) Complex-Loaded Perfluoropropane Nanobubbles for Enhanced Sonodynamic Therapy. Bioconjug Chem 2021; 33:1057-1068. [PMID: 33677967 PMCID: PMC10108504 DOI: 10.1021/acs.bioconjchem.1c00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sonodynamic therapy (SDT) is a novel promising approach for the minimally invasive treatment of cancer derived from photodynamic therapy (PDT). In this study, we have explored an effective sonosensitizer for SDT by loading the iridium(III) complex [Ir(ppy)2(en)] OOCCH3, where ppy = 2-phenylpyridine and en = ethylenediamine], from now on referred to as Ir, with high photosensitizing ability, into echogenic nanobubbles (Ir-NBs). Akin to photosensitizers, sonosensitizers are acoustically activated by deep-tissue-penetrating low-frequency ultrasound (US) resulting in a localized therapeutic effect attributed to an excessive generation of reactive oxygen species (ROS). The Ir-NB formulation was optimized, and the in vitro characterizations were carried out, including physical properties, acoustic performance, intracellular ROS generation, and cytotoxicity against two human cancer cell lines. Ir-NBs had an average size of 303.3 ± 91.7 nm with a bubble concentration of 9.28 × 1010 particles/mL immediately following production. We found that the initial Ir feeding concentration had a negligible effect on the NB size, but affected the bubble concentration as well as the acoustic performance of the NBs. Through a combination of sonication and Ir-NBs treatment, an increase of 68.8% and 69.6% cytotoxicity in human ovarian cancer cells (OVCAR-3) and human breast cancer cells (MCF-7), respectively, was observed compared to the application of Ir-NBs alone. Furthermore, Ir-NBs exposed to the US also induced the highest levels of intracellular ROS generation compared to free Ir and free Ir with empty NBs. The combination of these results suggests that the differences in treatment efficacy is a direct result of acoustic cavitation. These results provide evidence that US activated Ir-loaded NBs have the potential to become an effective sonosensitizer for SDT.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Cosenza, Italy.,CNR NANOTEC - Institute of Nanotechnology, UOS Cosenza, 87036 Rende, Cosenza, Italy
| | - Loredana Ricciardi
- CNR NANOTEC - Institute of Nanotechnology, UOS Cosenza, 87036 Rende, Cosenza, Italy
| | - Giuseppe Strangi
- CNR NANOTEC - Institute of Nanotechnology, UOS Cosenza, 87036 Rende, Cosenza, Italy.,Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.,Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
37
|
Phosphorescence-based ratiometric probes: Design, preparation and applications in sensing, imaging and biomedicine therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213694] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Ricciardi L, La Deda M. Recent advances in cancer photo-theranostics: the synergistic combination of transition metal complexes and gold nanostructures. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04329-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractIn this mini review, we highlight advances in the last five years in light-activated cancer theranostics by using hybrid systems consisting of transition metal complexes (TMCs) and plasmonic gold nanostructures (AuNPs). TMCs are molecules with attractive properties and high potential in biomedical application. Due to their antiproliferative abilities, platinum-based compounds are currently first-choice drugs for the treatment of several solid tumors. Moreover, ruthenium, iridium and platinum complexes are well-known for their ability to photogenerate singlet oxygen, a highly cytotoxic reactive species with a key role in photodynamic therapy. Their potential is further extended by the unique photophysical properties, which make TMCs particularly suitable for bioimaging. Recently, gold nanoparticles (AuNPs) have been widely investigated as one of the leading nanomaterials in cancer theranostics. AuNPs—being an inert and highly biocompatible material—represent excellent drug delivery systems, overcoming most of the side effects associated with the systemic administration of anticancer drugs. Furthermore, due to the thermoplasmonic properties, AuNPs proved to be efficient nano-sources of heat for photothermal therapy application. Therefore, the hybrid combination TMC/AuNPs could represent a synergistic merger of multiple functionalities for combinatorial cancer therapy strategies. Herein, we report the most recent examples of TMC/AuNPs systems in in-vitro in-vivo cancer tharanostics application whose effects are triggered by light-exposure in the Vis–NIR region, leading to a spatial and temporal control of the TMC/AuNPs activation for light-mediated precision therapeutics.
Collapse
|
39
|
Graf M, Böttcher H, Sünkel K, Thavalingam S, Metzler‐Nolte N, Czerwieniec R. Bis‐cyclometalated Iridium Complexes Containing Modified Phenanthroline Ligands and Evaluation of their Cytotoxic Activities. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Marion Graf
- Department Chemie Ludwig‐Maximilians‐Universität Butenandtstrasse 5–13 (D) 81377 München Germany
| | - Hans‐Christian Böttcher
- Department Chemie Ludwig‐Maximilians‐Universität Butenandtstrasse 5–13 (D) 81377 München Germany
| | - Karlheinz Sünkel
- Department Chemie Ludwig‐Maximilians‐Universität Butenandtstrasse 5–13 (D) 81377 München Germany
| | - Sugina Thavalingam
- Faculty for Chemistry and Biochemistry Chair of Inorganic Chemistry I Bioinorganic Chemistry Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Nils Metzler‐Nolte
- Faculty for Chemistry and Biochemistry Chair of Inorganic Chemistry I Bioinorganic Chemistry Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Rafał Czerwieniec
- Institute of Physical and Theoretical Chemistry University Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
40
|
Guan R, Xie L, Ji L, Chao H. Phosphorescent Iridium(III) Complexes for Anticancer Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule School of Chemistry and Chemical Engineering Hunan University of Science and Technology 400201 Xiangtan P. R. China
| |
Collapse
|
41
|
Bi XD, Yang R, Zhou YC, Chen D, Li GK, Guo YX, Wang MF, Liu D, Gao F. Cyclometalated Iridium(III) Complexes as High-Sensitivity Two-Photon Excited Mitochondria Dyes and Near-Infrared Photodynamic Therapy Agents. Inorg Chem 2020; 59:14920-14931. [PMID: 32951429 DOI: 10.1021/acs.inorgchem.0c01509] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photodynamic therapy (PDT) using two-photon near-infrared light excitation is a very effective way to avoid the use of short-wavelength ultraviolet or visible light which cannot efficiently penetrate into the biological tissues and is harmful to the healthy cells. Herein, a series of cyclometalated Ir(III) complexes with a structurally simple diimine ligand were designed and the synthetic route and preparation procedure were optimized, so that the complexes could be obtained in apparently higher yield, productivity, and efficiency in comparison to the traditional methods. Their ground state and excited singlet and triplet state properties were studied by spectroscopy and quantum chemistry theoretical calculations to investigate the effect of substituent groups on the photophysical properties of the complexes. The Ir(III) complexes, especially Ir1 and Ir3, showed very low dark toxicities and high phototoxicities under both one-photon and two-photon excitation, indicating their great potential as PDT agents. They were also found to be highly sensitive two-photon mitochondria dyes.
Collapse
Affiliation(s)
- Xu-Dan Bi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Rong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Yue-Chen Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Daomei Chen
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Guo-Kui Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Yuan-Xiao Guo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Meng-Fan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Dandan Liu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, Yunnan, People's Republic of China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| |
Collapse
|
42
|
Fluorinated Tolane Dyads with Alkylene Linkage: Synthesis and Evaluation of Photophysical Characteristics. CRYSTALS 2020. [DOI: 10.3390/cryst10080711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Light-emitting materials have received considerable attention because of their broad applications as substrates in bio-imaging and sensing components, light-emitting displays, and lighting devices. Herein, we developed fluorinated tolane and bistolane derivatives containing fluorinated aromatic rings and demonstrated their intense photoluminescence (PL) characteristics in crystalline powder states. We focused on molecules showing varied PL behavior with a change in the molecular aggregated structures. We synthesized novel fluorinated tolane dyads consisting of fluorinated tolane-based π-conjugated scaffolds and flexible alkylene linkages to control both the electron-density distribution and molecular aggregated states. Fluorinated tolane dyads connected with an alkylene linkage showed blue PL in a dilute solution, but the PL efficiency achieved was low. In contrast, the crystalline powder of tolane dyad substrates exhibited dual emission—relatively intense blue to deep blue PL—originating from monomer and aggregate emission. The PL behavior changed significantly with the alkylene linkage and the application of a mechanical stimulus to the crystalline powder sample. The fluorinated tolane dyads developed in this study could serve as stimulus-responsive photoluminescent materials suitable for optical applications.
Collapse
|
43
|
Shaikh S, Younis M, Rehman FU, Jiang H, Wang X. Specific Oxide Nanoclusters Enhance Intracellular Reactive Oxygen Species for Cancer-Targeted Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9472-9480. [PMID: 32701296 DOI: 10.1021/acs.langmuir.0c01378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bio-nanotechnology based cancer therapeutics exponentially increase every year. A therapeutic strategy to induce intracellular reactive oxygen species (ROS) has received promising success in oncotherapy. In this study, the new strategy has been exploited by the treatment of iridium (Ir) and Fe2+ ions with cancer cells to biosynthesize the biocompatible fluorescent iridium oxide (IrO2) and iron oxide nanoclusters (NCs) under the specific redox heterogeneous microenvironment of these diseased cells and tumors. The hydroxyl radical produced by the presence of Fe2+ and H2O2 in cancer cells apparently increased the ROS level in cancer cells during the process of biosynthesized NCs and, hence, simultaneously instigated apoptosis of relevant cells. Therefore, intracellular ROS-mediated in situ biosynthesis of IrO2 and iron oxide NCs may also act as anticancer agents and provide a promising pathway for targeted cancer therapy.
Collapse
Affiliation(s)
- Sana Shaikh
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Muhammad Younis
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Fawad Ur Rehman
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|