1
|
Oliveira MKNG, Castro GP, Gonçalves SMC, Simas AM. Microwave Synthesis and Luminescence Efficiencies in Mixed-Ligand Europium Complexes. Chem Asian J 2024; 19:e202400800. [PMID: 39509540 DOI: 10.1002/asia.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/13/2024] [Indexed: 11/15/2024]
Abstract
The microwave-assisted methodology is now extended and fine-tuned for the synthesis of mixed-ligand europium complexes with an average reaction time of 12 min. Overall, 14 different complexes were synthesized to improve luminescence using our previously proposed strategy to boost luminescence through ligand diversification, specifically by applying it to quaternary europium complexes with at least one DBM (1,3-diphenylpropane-1,3-dionate) ligand. DBM is a strong absorbant of UV radiation that can dissipate energy through nonradiative channels; thus, it is a useful molecular scaffold for sunblockers and cosmetics. Accordingly, the following luminescent tetrakis and quaternary complexes were prepared: K[Eu(DBM)4], K[Eu(β)4], K[Eu(DBM)3(β)], K[Eu(DBM)2(β)2], K[Eu(DBM)2(β)(β')], and the fully mixed complex K[Eu(DBM)(BTFA)(TTA)(HFAC)], where β can be either BTFA (4,4,4-trifluoro-1-phenylbutane-1,3-dionate), TTA (4,4,4-trifluoro-1-(2-thienyl)butane-1,3-dionate), or HFAC (1,1,1,5,5,5-hexafluoropentane-2,4-dionate). For all the complexes, luminescence experiments were performed in chloroform and acetone solutions. Our findings confirm that mixed-ligand complexes exhibit superior quantum efficiencies compared to the average of their homoleptic counterparts. The presence of DBM in the complexes tends to dramatically increase the nonradiative decay rates of the solutions. Finally, we present formulae that provide a detailed understanding of the distinctive roles of each ligand and their relevant interactions in luminescence.
Collapse
Affiliation(s)
- Miriam K N G Oliveira
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil
| | - Gerson P Castro
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil
| | - Simone M C Gonçalves
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil
| | - Alfredo M Simas
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Ceballos-Sanchez O, Navarro-López DE, Mejía-Méndez JL, Sanchez-Ante G, Rodríguez-González V, Sánchez-López AL, Sanchez-Martinez A, Duron-Torres SM, Juarez-Moreno K, Tiwari N, López-Mena ER. Enhancing antioxidant properties of CeO 2 nanoparticles with Nd 3+ doping: structural, biological, and machine learning insights. Biomater Sci 2024; 12:2108-2120. [PMID: 38450552 DOI: 10.1039/d3bm02107f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The antioxidant capabilities of nanoparticles are contingent upon various factors, including their shape, size, and chemical composition. Herein, novel Nd-doped CeO2 nanoparticles were synthesized and the neodymium content was varied to investigate the synergistic impact on the antioxidant properties of CeO2 nanoparticles. Incorporating Nd3+ induced changes in lattice parameters and significantly altered the morphology from nanoparticles to nanorods. The biological activity of Nd-doped CeO2 was examined against pathogenic bacterial strains, breast cancer cell lines, and antioxidant models. The antibacterial and anticancer activities of nanoparticles were not observed, which could be associated with the Ce3+/Ce4+ ratio. Notably, the incorporation of neodymium improved the antioxidant capacity of CeO2. Machine learning techniques were employed to forecast the antioxidant activity to enhance understanding and predictive capabilities. Among these models, the random forest model exhibited the highest accuracy at 96.35%, establishing it as a robust computational tool for elucidating the biological behavior of Nd-doped CeO2 nanoparticles. This study presents the first exploration of the influence of Nd3+ on the structural, optical, and biological attributes of CeO2, contributing valuable insights and extending the application of machine learning in predicting the therapeutic efficacy of inorganic nanomaterials.
Collapse
Affiliation(s)
- Oscar Ceballos-Sanchez
- Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Departamento de Ingenieria de Proyectos, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan, Jalisco, 45157, Mexico.
| | - Diego E Navarro-López
- Tecnologico de Monterrey, Escuela de ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| | - Jorge L Mejía-Méndez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, 72810 Cholula, Puebla, Mexico
| | - Gildardo Sanchez-Ante
- Tecnologico de Monterrey, Escuela de ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| | - Vicente Rodríguez-González
- División de Materiales Avanzados, IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P., Mexico
| | - Angélica Lizeth Sánchez-López
- Tecnologico de Monterrey, Escuela de ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| | - Araceli Sanchez-Martinez
- Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Departamento de Ingenieria de Proyectos, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan, Jalisco, 45157, Mexico.
| | - Sergio M Duron-Torres
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Carretera Zacatecas, Guadalajara Km 6, Ejido La Escondida, 98160, Zacatecas, Mexico
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro, QRO 76230, Mexico
| | - Naveen Tiwari
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), C/Jenaro de la Fuente s/n, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Edgar R López-Mena
- Tecnologico de Monterrey, Escuela de ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| |
Collapse
|
3
|
Aguado RJ, Gomes BO, Durães L, Valente AJM. Luminescent Papers with Asymmetric Complexes of Eu(III) and Tb(III) in Polymeric Matrices and Suggested Combinations for Color Tuning. Molecules 2023; 28:6164. [PMID: 37630416 PMCID: PMC10459821 DOI: 10.3390/molecules28166164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Complexes of lanthanide ions, such as Eu(III) (red light emission) and Tb(III) (green light emission), with proper ligands can be highly luminescent and color-tunable, also attaining yellow and orange emission under UV radiation. The ligands employed in this work were poly(sodium acrylate), working as polymeric matrix, and 1,10-phenanthroline, taking advantage of its antenna effect. Possibilities of color display were further enhanced by incorporating a cationic polyfluorene with blue emission. This strategy allowed for obtaining cyan and magenta, besides the aforementioned colors. Uncoated cellulose paper was impregnated with the resulting luminescent inks, observing a strong hypsochromic shift in excitation wavelength upon drying. Hence, while a cheap UV-A lamp sufficed to reveal the polyfluorene's blue emission, shorter wavelengths were necessary to visualize the emission due to lanthanide ions as well. The capacity to reveal, with UV-C radiation, a full-color image that remains invisible under natural light is undoubtedly useful for anti-counterfeiting applications. Furthermore, both lanthanide ion complexes and polyfluorenes were shown to have their luminescence quenched by Cu(II) ions and nitroarenes, respectively.
Collapse
Affiliation(s)
- Roberto J. Aguado
- LEPAMAP-PRODIS Research Group, University of Girona, Maria Aurèlia Capmany 61, 17003 Girona, Spain;
| | - Beatriz O. Gomes
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal;
| | - Luisa Durães
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, 3030-790 Coimbra, Portugal;
| | - Artur J. M. Valente
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal;
| |
Collapse
|
4
|
Heptacoordinated lanthanide(III) complexes based on 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine ligands (bbp, bmbp and bdmbp): Computational calculations, luminescent properties and cytotoxic evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
5
|
Binuclear Cu(II), Ni(II) and Zn(II) Complexes of Hydrazone Schiff Bases: Synthesis, Spectroscopy, DFT Calculations, and SOD Mimetic Activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Coban MB. A new 3D HoIII-organic framework constructed from 1,3,5-tris(4-carboxyphenyl)benzene and 1,10-phenanthroline: Crystal structure, morphological and solid state luminescence properties. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
Köse A, Bal M. SYNTHESIS, STRUCTURE AND PHOTOLUMINESCENCE PROPERTIES OF A Cd2+ COMPLEX OF A PYRIDINE-BIS-BENZIMIDAZOLE LIGAND. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622120095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Chai Y, Li C, Zhang X, Chai L. Antimicrobial activities of two 1‐D, 2‐D and 3‐D mononuclear Mn (II) and dinuclear Bi (III) complexes: X‐ray structures, spectroscopic, ESP, HSA and TD/DFT studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yong‐Mei Chai
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Cheng‐Guo Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Xiao‐Fang Zhang
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Lan‐Qin Chai
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| |
Collapse
|
9
|
Liu T, Chen L, Chao D. Noble metal-free bis-tridentate benzimidazole zinc(II) and iron(II) complexes for selective CO 2 photoreduction. Dalton Trans 2022; 51:4052-4057. [PMID: 35175260 DOI: 10.1039/d2dt00226d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three noble metal-free metal complexes [Fe(Me-bzimpy)2]2+ (Fe1), [Fe(bzimpy)2]2+ (Fe2) and [Zn(Me-bzimpy)2]2+ (Zn1) were synthesized and studied in the visible light-driven CO2 reduction, where ligands bzimpy and Me-bzimpy were 2,6-bis(1-methyl-1H-benzo[d]imidazol-2-yl)pyridine and 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine, respectively. It was found that Fe1 displayed the best photocatalytic performance with a turnover number (TON) of 878 and high selectivity up to 99.2% towards CO generation in the presence of an organic thermally activated delayed fluorescence (TADF) photosensitizer, which was more than 10 times that of Fe2 (TONCO = 63) and Zn1 (TONCO = 53). This is attributed to the much higher stability of Fe1 upon reduction, as proved by the cyclic voltammograms of the three complexes. These results highlight the cooperation of ligands and metals in molecular metal complexes for CO2 photoreduction.
Collapse
Affiliation(s)
- Ting Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Longxin Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Duobin Chao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
10
|
Chen BL, Sun Y, Xiang H, Lin MX, Li JH, Huang YL. A thermostable terbium(III) complex with high fluorescence quantum yields. NEW J CHEM 2022. [DOI: 10.1039/d2nj01250b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel complex (C6H16N)3[Tb2(Hsal)3(NO3)6] (1) was synthesised and characterized by X-ray crystallography. The PXRD indicate that the complex 1 is stable after heating at 180°C for half an hour. More...
Collapse
|
11
|
Xing C, Deng J, Fu W, Li J, Xu L, Sun R, Wang D, Li C, Liang K, Gao M, Kong B. Interfacially Super-Assembled Benzimidazole Derivative-Based Mesoporous Silica Nanoprobe for Sensitive Copper (II) Detection and Biosensing in Living Cells. Chemistry 2021; 28:e202103642. [PMID: 34878646 DOI: 10.1002/chem.202103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 01/01/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) functionalized with benzimidazole-derived fluorescent molecules (DHBM) are fabricated via a feasible interfacial superassembly strategy for the highly sensitive and selective detection of Cu2+ . DHBM-MSN exhibits an obvious quenching effect on Cu2+ in aqueous solutions, and the detection limit can be as low as 7.69×10-8 M. The DHBM-MSN solid-state sensor has good recyclability, and the silica framework can simultaneously improve the photostability of DHBM. Two mesoporous silica nanoparticles with different morphologies were specially designed to verify that nanocarriers with different morphologies do not affect the specific detectionability. The detection mechanism of the fluorescent probe was systematically elucidated by combining experimental results and density function theory calculations. Moreover, the detection system was successfully applied to detect Cu2+ in bovine serum, juice, and live cells. These results indicate that the DHBM-MSN fluorescent sensor holds great potential in practical and biomedical applications.
Collapse
Affiliation(s)
- Chenchen Xing
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Jianlin Deng
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Wenlong Fu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Jichao Li
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Lijie Xu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Ruihao Sun
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Dan Wang
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Chengwen Li
- Dezhou deyao Pharmaceutical Limited Company, Dezhou, 253015, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW2052, Australia
| | - Meng Gao
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
12
|
Ma H, Zhou Y, Gao T, Li H, Yan P. The role of ancillary ligand on regulating photoluminescence properties of Eu(III) helicates. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Nguyen HVL, Gulaczyk I, Kręglewski M, Kleiner I. Large amplitude inversion tunneling motion in ammonia, methylamine, hydrazine, and secondary amines: From structure determination to coordination chemistry. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|