1
|
Terpstra K, Huang Y, Na H, Sun L, Gutierrez C, Yu Z, Mirica LM. 2-Phenylbenzothiazolyl iridium complexes as inhibitors and probes of amyloid β aggregation. Dalton Trans 2024; 53:14258-14264. [PMID: 39129539 PMCID: PMC11445708 DOI: 10.1039/d4dt01691b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The aggregation of amyloid β (Aβ) peptides is a significant hallmark of Alzheimer's disease (AD), and the detection of Aβ aggregates and the inhibition of their formation are important for the diagnosis and treatment of AD, respectively. Herein, we report a series of benzothiazole-based Ir(III) complexes HN-1 to HN-8 that exhibit appreciable inhibition of Aβ aggregation in vitro and in living cells. These Ir(III) complexes can induce a significant fluorescence increase when binding to Aβ fibrils and Aβ oligomers, while their measured log D values suggest these compounds could have enhanced blood-brain barrier (BBB) permeability. In vivo studies show that HN-1, HN-2, HN-3, and HN-8 successfully penetrate the BBB and stain the amyloid plaques in AD mouse brains after a 10-day treatment, suggesting that these Ir(III) complexes could act as lead compounds for AD therapeutic and diagnostic agent development.
Collapse
Affiliation(s)
- Karna Terpstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Yiran Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Hanah Na
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Liang Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Citlali Gutierrez
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Zhengxin Yu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| |
Collapse
|
2
|
Li Z, Ekanayake AB, Bartman AE, Doorn JA, Tivanski AV, Pigge FC. Detection and disaggregation of amyloid fibrils by luminescent amphiphilic platinum(II) complexes. Dalton Trans 2024; 53:9001-9010. [PMID: 38726661 DOI: 10.1039/d4dt00882k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cyclometallated Pt(II) complexes possessing hydrophobic 2-phenylpyridine (ppy) ligands and hydrophilic acetonylacetone (acac) ligands have been investigated for their ability to detect amyloid fibrils via luminescence response. Using hen egg-white lysozyme (HEWL) as a model amyloid protein, Pt(II) complexes featuring benzanilide-substituted ppy ligands and ethylene glycol-functionalized acac ligands demonstrated enhanced luminescence in the presence of HEWL fibrils, whereas Pt(II) complexes lacking complementary hydrophobic/hydrophilic ligand sets displayed little to no emission enhancement. An amphiphilic Pt(II) complex incorporating a bis(ethylene glycol)-derivatized acac ligand was additionally found to trigger restructuring of HEWL fibrils into smaller spherical aggregates. Amphiphilic Pt(II) complexes were generally non-toxic to SH-SY5Y neuroblastoma cells, and several complexes also exhibited enhanced luminescence in the presence of Aβ42 fibrils associated with Alzheimer's disease. This study demonstrates that easily prepared and robust (ppy)PtII(acac) complexes show promising reactivity toward amyloid fibrils and represent attractive molecular scaffolds for design of small-molecule probes targeting amyloid assemblies.
Collapse
Affiliation(s)
- Zhuoheng Li
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | - Anna E Bartman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
3
|
Song YQ, Li GD, Niu D, Chen F, Jing S, Wai Wong VK, Wang W, Leung CH. A robust luminescent assay for screening alkyladenine DNA glycosylase inhibitors to overcome DNA repair and temozolomide drug resistance. J Pharm Anal 2023; 13:514-522. [PMID: 37305785 PMCID: PMC10257196 DOI: 10.1016/j.jpha.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 04/15/2023] [Indexed: 06/13/2023] Open
Abstract
Temozolomide (TMZ) is an anticancer agent used to treat glioblastoma, typically following radiation therapy and/or surgical resection. However, despite its effectiveness, at least 50% of patients do not respond to TMZ, which is associated with repair and/or tolerance of TMZ-induced DNA lesions. Studies have demonstrated that alkyladenine DNA glycosylase (AAG), an enzyme that triggers the base excision repair (BER) pathway by excising TMZ-induced N3-methyladenine (3meA) and N7-methylguanine lesions, is overexpressed in glioblastoma tissues compared to normal tissues. Therefore, it is essential to develop a rapid and efficient screening method for AAG inhibitors to overcome TMZ resistance in glioblastomas. Herein, we report a robust time-resolved photoluminescence platform for identifying AAG inhibitors with improved sensitivity compared to conventional steady-state spectroscopic methods. As a proof-of-concept, this assay was used to screen 1440 food and drug administration-approved drugs against AAG, resulting in the repurposing of sunitinib as a potential AAG inhibitor. Sunitinib restored glioblastoma (GBM) cancer cell sensitivity to TMZ, inhibited GBM cell proliferation and stem cell characteristics, and induced GBM cell cycle arrest. Overall, this strategy offers a new method for the rapid identification of small-molecule inhibitors of BER enzyme activities that can prevent false negatives due to a fluorescent background.
Collapse
Affiliation(s)
- Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Guo-Dong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Dou Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Shaozhen Jing
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, 999078, China
| |
Collapse
|
4
|
Kwak J, Woo J, Park S, Lim MH. Rational design of photoactivatable metal complexes to target and modulate amyloid-β peptides. J Inorg Biochem 2023; 238:112053. [PMID: 36347209 DOI: 10.1016/j.jinorgbio.2022.112053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/25/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
Abstract
The accumulation of amyloid-β (Aβ) aggregates is found in the brains of Alzheimer's disease patients. Thus, numerous efforts have been made to develop chemical reagents capable of targeting Aβ peptides and controlling their aggregation. In particular, tunable coordination and photophysical properties of transition metal complexes, with variable oxidation and spin states on the metal centers, can be utilized to probe Aβ aggregates and alter their aggregation profiles. In this review, we illustrate some rational strategies for designing photoactivatable metal complexes as chemical sensors for Aβ peptides or modulators against their aggregation pathways, with some examples.
Collapse
Affiliation(s)
- Jimin Kwak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhyeok Woo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seongmin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
5
|
Sun PP, Han BL, Li HG, Zhang CK, Xin X, Dou JM, Gao ZY, Sun D. Real-Time Fluorescent Monitoring of Kinetically Controlled Supramolecular Self-Assembly of Atom-Precise Cu 8 Nanocluster. Angew Chem Int Ed Engl 2022; 61:e202200180. [PMID: 35191142 DOI: 10.1002/anie.202200180] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Kinetically stable and long-lived intermediates are crucial in monitoring the progress and understanding of supramolecular self-assembly of diverse aggregated structures with collective functions. Herein, the complex dynamics of an atomically precise CuI nanocluster [Cu8 (t BuC6 H4 S)8 (PPh3 )4 ] (Cu8a) is systematically investigated. Remarkably, by monitoring the aggregation-induced emission (AIE) and electron microscopy of the kinetically stable intermediates in real time, the directed self-assembly (DSA) process of Cu8a is deduced. The polymorphism and different emission properties of Cu NCs aggregates were successfully captured, allowing the structure-optical property relationship to be established. More importantly, the utilization of a mathematical "permutation and combination" ideology by introducing a heterogeneous luminescent agent of a carbon dot (CD) to Cu8a aggregates enriches the "visualization" fluorescence window, which offers great potential in real time application for optical sensing of materials.
Collapse
Affiliation(s)
- Pan-Pan Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P.R. China
| | - Bao-Liang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P.R. China
| | - Hong-Guang Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P.R. China
| | - Cheng-Kai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P.R. China
| | - Xia Xin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P.R. China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P.R. China
| |
Collapse
|
6
|
Real‐Time Fluorescent Monitoring of Kinetically Controlled Supramolecular Self‐Assembly of Atom‐Precise Cu
8
Nanocluster. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Jiang B, Martí AA. Probing Amyloid Nanostructures Using Photoluminescent Metal Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Bo Jiang
- Department of Chemistry Rice University 6100 Main St, Chemistry MS60 Houston Texas 77005 United States
| | - Angel A. Martí
- Department of Chemistry Department of Bioengineering, and Department of Material Science & NanoEngineering Rice University 6100 Main St, Chemistry MS60 Houston Texas 77005 United States
| |
Collapse
|
8
|
Johnson J, Yardily A. Co(II), Ni(II), Cu(II), and Zn(II) metal complexes of chalcone: Synthesis, characterization, thermal, antimicrobial, photocatalytic degradation of dye and molecular modeling studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jino Johnson
- Department of Chemistry and Research Centre Scott Christian College (Autonomous) Nagercoil India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India)
| | - Amose Yardily
- Department of Chemistry and Research Centre Scott Christian College (Autonomous) Nagercoil India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India)
| |
Collapse
|
9
|
Manna SL, Florio D, Iacobucci I, Napolitano F, Benedictis ID, Malfitano AM, Monti M, Ravera M, Gabano E, Marasco D. A Comparative Study of the Effects of Platinum (II) Complexes on β-Amyloid Aggregation: Potential Neurodrug Applications. Int J Mol Sci 2021; 22:ijms22063015. [PMID: 33809522 PMCID: PMC7998721 DOI: 10.3390/ijms22063015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/21/2023] Open
Abstract
Herein the effects of three platinum complexes, namely (SP-4-2)-(2,2'-bipyridine)dichloridoplatinum(II), Pt-bpy, (SP-4-2)-dichlorido(1,10-phenanthroline) platinum(II), Pt-phen, and (SP-4-2)-chlorido(2,2':6',2''-terpyridine)platinum(II) chloride, Pt-terpy, on the aggregation of an amyloid model system derived from the C-terminal domain of Aβ peptide (Aβ21-40) were investigated. Thioflavin T (ThT) binding assays revealed the ability of Pt(II) compounds to repress amyloid aggregation in a dose-dependent way, whereas the ability of Aβ21-40 peptide to interfere with ligand field of metal complexes was analyzed through UV-Vis absorption spectroscopy and electrospray ionization mass spectrometry. Spectroscopic data provided micromolar EC50 values and allowed to assess that the observed inhibition of amyloid aggregation is due to the formation of adducts between Aβ21-40 peptide and complexes upon the release of labile ligands as chloride and that they can explore different modes of coordination toward Aβ21-40 with respect to the entire Aβ1-40 polypeptide. In addition, conformational studies through circular dichroism (CD) spectroscopy suggested that Pt-terpy induces soluble β-structures of monomeric Aβ21-40, thus limiting self-recognition. Noticeably, Pt-terpy demonstrated the ability to reduce the cytotoxicity of amyloid peptide in human SH-SY5Y neuroblastoma cells. Presented data corroborate the hypothesis to enlarge the application field of already known metal-based agents to neurodegenerative diseases, as potential neurodrugs.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.); (I.D.B.)
| | - Daniele Florio
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.); (I.D.B.)
| | - Ilaria Iacobucci
- Department of Chemical Sciences, CEINGE Biotecnologie Avanzate S.c.a r.l., “University of Naples Federico II”, 80131 Naples, Italy; (I.I.); (M.M.)
| | - Fabiana Napolitano
- Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (F.N.); (A.M.M.)
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.); (I.D.B.)
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (F.N.); (A.M.M.)
| | - Maria Monti
- Department of Chemical Sciences, CEINGE Biotecnologie Avanzate S.c.a r.l., “University of Naples Federico II”, 80131 Naples, Italy; (I.I.); (M.M.)
| | - Mauro Ravera
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy; (M.R.); (E.G.)
| | - Elisabetta Gabano
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy; (M.R.); (E.G.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy; (S.L.M.); (D.F.); (I.D.B.)
- Correspondence: ; Tel.: +39-081-2534512; Fax: +39-081-2534574
| |
Collapse
|
10
|
Li J, Gao G, Tang X, Yu M, He M, Sun T. Isomeric Effect of Nano-Inhibitors on Aβ 40 Fibrillation at The Nano-Bio Interface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4894-4904. [PMID: 33486955 DOI: 10.1021/acsami.0c21906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical and physical properties of nanobio interface substantially affect the conformational transitions of adjacent biomolecules. Previous studies have reported the chiral effect and charge effect of nanobio interface on the misfolding, aggregation, and fibrillation of amyloid protein. However, the isomeric effect of nanobio interface on protein/peptides amyloidosis is still unclear. Here, three isomeric nanobio interfaces were designed and fabricated based on the same sized gold nanoclusters (AuNCs) modified with 4-mercaptobenzoic acid (p-MBA), 3-mercaptobenzoic acid (m-MBA), and 2-mercaptobenzoic acid (o-MBA). Then three isomeric AuNCs were employed as models to explore the isomeric effect on the misfolding, aggregation, and fibrillation of Aβ40 at nanobio interfaces. Site-specific replacement experiments on the basis of theoretical analysis revealed the possible mechanism of Aβ40 interacting with isomeric ligands of AuNCs at the nanobio interfaces. The distance and orientation of -COOH group from the surface of AuNCs can affect the electrostatic interaction between isomeric ligands and the positively charged residues (R5, K16, and K28) of Aβ40, which may affect the inhibition efficiency of isomeric AuNCs on protein amyloidosis. Actually, the amyloid fibrillation kinetics results together with atomic force microscope (AFM) images, dynamic light scattering (DLS) results and circular dichroism (CD) spectra indeed proved that all the three isomeric AuNCs could inhibit the misfolding, aggregation and fibrillation of Aβ40 in a dose-dependent manner, and the inhibition efficiency was definitely different from each other. The inhibition efficiency of o-MBA-AuNCs was higher than that of m-MBA-AuNCs and p-MBA-AuNCs at the same dosage. These results provide an insight for isomeric effect at nanobio interfaces, and open an avenue for structure-based nanodrug design target Alzheimer's disease (AD) and even other protein conformational diseases.
Collapse
Affiliation(s)
- Jianhang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China
| | - Xintong Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China
| | - Meng Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|