1
|
Perveen S, Gonzalez Szwacki N. Structural, Electronic, and Magnetic Properties of Neutral Borometallic Molecular Wheel Clusters. MATERIALS (BASEL, SWITZERLAND) 2025; 18:459. [PMID: 39859930 PMCID: PMC11766989 DOI: 10.3390/ma18020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Atomic clusters exhibit properties that fall between those found for individual atoms and bulk solids. Small boron clusters exhibit planar and quasiplanar structures, which are novel materials envisioned to serve as a platform for designing nanodevices and materials with unique physical and chemical properties. Through past research advancements, experimentalists demonstrated the successful incorporation of transition metals within planar boron rings. In our study, we used first-principles calculations to examine the structure and properties of neutral boron clusters doped with transition metals, denoted as TMBn and TMB2n, where TM = Ti, Cr, Mn, Fe, Co, Nb, or Mo and n=8-10. Our calculations show that the TMB2n structures, which involve sandwiching metal atoms between two rings (called the drum configuration), and clusters with the single ring configuration, TMBn, are stable. These clusters typically have relatively large HOMO-LUMO energy gaps, suggesting high kinetic stability and low chemical reactivity. Moreover, the clusters display interesting magnetic properties, determined not only by the metal atoms but also by the induced magnetism of the boron rings. These structures have potential applications in spintronics and sensing. This work also provides a basis for studying magnetism in the one-dimensional limit.
Collapse
|
2
|
Takano R, Ishida T. Magnetically Diluted Dy 3+ and Yb 3+ Squarates Showing Relaxation Tuning and Matrix Dependence. Molecules 2025; 30:356. [PMID: 39860225 PMCID: PMC11767464 DOI: 10.3390/molecules30020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
A new compound [Y2(sq)3(H2O)4] (Y-sq; sq = squarate (C4O42-)) was prepared and structurally characterized. Since the RE-sq family (RE = Y, Dy, Yb, Lu) gave isostructural crystals, the objective of this study is to explore the effects of diamagnetic dilution on the SIM behavior through systematic investigation and comparison of diamagnetically diluted and undiluted forms. The 1%-Diluted Dy compounds, Dy@Y-sq and Dy@Lu-sq, showed AC magnetic susceptibility peaks without any DC bias field (HDC), whereas undiluted Dy-sq showed no AC out-of-phase response under the same conditions. The Orbach and Raman mechanisms are assumed in the Arrhenius plots, giving Ueff/kB = 139(5) and 135(8) K for Dy@Y-sq and Dy@Lu-sq, respectively, at HDC = 0 Oe. In contrast, Yb@Y-sq and Yb@Lu-sq behaved different; Yb@Y-sq can be regarded as a field-induced SIM because AC out-of-phase response was recorded only when HDC was present. On the other hand, Yb@Lu-sq showed a relaxation independent from temperature around 2 K at HDC = 0 Oe, possibly ascribed to a quantum-tunneling-magnetization mechanism. Applying HDC = 400 Oe afforded Ueff = 61.2(14) and 62.5(16) K for Yb@Y-sq and Yb@Lu-sq, respectively. The Y/Lu matrix dependence may be related to spin-phonon coupling. The dilution technique is a facile and versatile tool for modification of SIM characteristics.
Collapse
Affiliation(s)
| | - Takayuki Ishida
- Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Tokyo, Japan;
| |
Collapse
|
3
|
Sanfui S, Usman M, Roychowdhury A, Pramanik S, Garribba E, Gómez García CJ, Chen PPY, Rath SP. Bridge vs Terminal Cyano-coordination in Binuclear Cobalt Porphyrin Dimers: Interplay of Electrons between Metal and Ligand and Spin-Coupling via Bridge. Inorg Chem 2024; 63:15619-15633. [PMID: 39116010 DOI: 10.1021/acs.inorgchem.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Three cyano-coordinated cobalt porphyrin dimers were synthesized and thoroughly characterized. The X-ray structure of the complexes reveals that cyanide binds in a terminal fashion in both the anti and trans isomers of ethane- and ethylene-bridged cobalt porphyrin dimers, while in the cis ethylene-bridged dimer, cyanides bind in both terminal and bridging modes. The nonconjugated ethane-bridged complex stabilizes exclusively a diamagnetic metal-centered oxidation of type CoIII(por)(CN)2 both in the solid and in solution. In contrast, the complexes with the conjugated ethylene-bridge contain signatures of both paramagnetic ligand-centered oxidation of the type CoII(por•+)(CN)2 and diamagnetic metal-centered oxidation of type CoIII(por)(CN)2 with the metal-centered oxidized species being the major component in the solid state as observed in XPS, while the ligand-centered oxidized species are present in a significant amount in solution. 1H NMR spectrum in solution displays two set of signals corresponding to the simultaneous presence of both the diamagnetic and paramagnetic species. EPR and magnetic investigation reveal that there is a moderate ferromagnetic coupling between the unpaired electrons of the low-spin CoII center and the porphyrin π-cation radical in CoII(por•+)(CN)2 species as well as an antiferromagnetic coupling between the two CoII(por•+) units through the ethylene and CN bridges.
Collapse
Affiliation(s)
- Sarnali Sanfui
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arya Roychowdhury
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Subhadip Pramanik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Viale San Pietro, Università di Sassari, Sassari I-07100, Italy
| | - Carlos J Gómez García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Peter P-Y Chen
- Department of Chemistry, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
4
|
Costa IM, Franco CHJ, Nesterov DS, André V, Pereira LCJ, Kirillov AM. Alkoxy-Bridged Dicopper(II) Cores Meet Tetracyanonickelate Linkers: Structural, Magnetic, and Theoretical Investigation of Cu/Ni Coordination Polymers. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:6053-6064. [PMID: 38629114 PMCID: PMC11017569 DOI: 10.1021/acs.jpcc.3c08112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Two heterometallic Cu(II)/Ni(II) coordination polymers, [Cu2(Hbdea)2Ni(CN)4]n (1) and [Cu2(dmea)2Ni(CN)4]n·nH2O (2), were successfully self-assembled in water by reacting Cu(II) nitrate with H2bdea (N-butyldiethanolamine) and Hdmea (N,N-dimethylethanolamine) in the presence of sodium hydroxide and [Ni(CN)4]2-. These new coordination polymers were investigated by single-crystal and powder X-ray diffraction and fully characterized by FT-IR spectroscopy, thermogravimetry, elemental analysis, variable-temperature magnetic susceptibility measurements, and theoretical DFT and CASSCF calculations. Despite differences in crystal systems, in both compounds, each dinuclear building block [Cu2(μ-aminopolyalcoholate)2]2+ is bridged by diamagnetic [Ni(CN)4]2- linkers, resulting in 1D (1) or 2D (2) metal-organic architectures. Experimental magnetic studies show that both compounds display strong antiferromagnetic coupling (J = -602.1 cm-1 for 1 and -151 cm-1 for 2) between Cu(II) ions within the dimers mediated by the μ-O-alkoxo bridges. These results are corroborated by the broken symmetry DFT studies, which also provide further insight into the electronic structures of copper dimeric units. By reporting a facile self-assembly synthetic protocol, this study can be a model to widen a still limited family of heterometallic Cu/Ni coordination polymer materials with different functional properties.
Collapse
Affiliation(s)
- Inês
F. M. Costa
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centro
de Ciências e Tecnologias Nucleares, Departmento de Engenharia
Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal
| | - Chris H. J. Franco
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Dmytro S. Nesterov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Vânia André
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Laura C. J. Pereira
- Centro
de Ciências e Tecnologias Nucleares, Departmento de Engenharia
Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
5
|
Hruska E, Zhu Q, Biswas S, Fortunato MT, Broderick DR, Morales CM, Herbert JM, Turro C, Baker LR. Water-Mediated Charge Transfer and Electron Localization in a Co 3Fe 2 Cyanide-Bridged Trigonal Bipyramidal Complex. J Am Chem Soc 2024; 146:8031-8042. [PMID: 38478877 DOI: 10.1021/jacs.3c11451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The effects of temperature and chemical environment on a pentanuclear cyanide-bridged, trigonal bipyramidal molecular paramagnet have been investigated. Using element- and oxidation state-specific near-ambient pressure X-ray photoemission spectroscopy (NAP-XPS) to probe charge transfer and second order, nonlinear vibrational spectroscopy, which is sensitive to symmetry changes based on charge (de)localization coupled with DFT, a detailed picture of environmental effects on charge-transfer-induced spin transitions is presented. The molecular cluster, Co3Fe2(tmphen)6(μ-CN)6(t-CN)6, abbrev. Co3Fe2, shows changes in electronic behavior depending on the chemical environment. NAP-XPS shows that temperature changes induce a metal-to-metal charge transfer (MMCT) in Co3Fe2 between a Co and Fe center, while cycling between ultrahigh vacuum and 2 mbar of water at constant temperature causes oxidation state changes not fully captured by the MMCT picture. Sum frequency generation vibrational spectroscopy (SFG-VS) probes the role of the cyanide ligand, which controls the electron (de)localization via the superexchange coupling. Spectral shifts and intensity changes indicate a change from a charge delocalized, Robin-Day class II/III high spin state to a charge-localized, class I low spin state consistent with DFT. In the presence of a H-bonding solvent, the complex adopts a localized electronic structure, while removal of the solvent delocalizes the charges and drives an MMCT. This change in Robin-Day classification of the complex as a function of chemical environment results in reversible switching of the dipole moment, analogous to molecular multiferroics. These results illustrate the important role of the chemical environment and solvation on underlying charge and spin transitions in this and related complexes.
Collapse
Affiliation(s)
- Emily Hruska
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Somnath Biswas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthew T Fortunato
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dustin R Broderick
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christine M Morales
- Department of Chemistry, University of Mount Union, Alliance, Ohio 44601, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Flinn B, Rance GA, Cull WJ, Cardillo-Zallo I, Pitcairn J, Cliffe MJ, Fay MW, Tyler AJ, Weare BL, Stoppiello CT, Davies ES, Mather ML, Khlobystov AN. Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds. ACS NANO 2024; 18:7148-7160. [PMID: 38383159 PMCID: PMC10919078 DOI: 10.1021/acsnano.3c11820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Room-temperature magnetically switchable materials play a vital role in current and upcoming quantum technologies, such as spintronics, molecular switches, and data storage devices. The increasing miniaturization of device architectures produces a need to develop analytical tools capable of precisely probing spin information at the single-particle level. In this work, we demonstrate a methodology using negatively charged nitrogen vacancies (NV-) in fluorescent nanodiamond (FND) particles to probe the magnetic switching of a spin crossover (SCO) metal-organic framework (MOF), [Fe(1,6-naphthyridine)2(Ag(CN)2)2] material (1), and a single-molecule photomagnet [X(18-crown-6)(H2O)3]Fe(CN)6·2H2O, where X = Eu and Dy (materials 2a and 2b, respectively), in response to heat, light, and electron beam exposure. We employ correlative light-electron microscopy using transmission electron microscopy (TEM) finder grids to accurately image and sense spin-spin interacting particles down to the single-particle level. We used surface-sensitive optically detected magnetic resonance (ODMR) and magnetic modulation (MM) of FND photoluminescence (PL) to sense spins to a distance of ca. 10-30 nm. We show that ODMR and MM sensing was not sensitive to the temperature-induced SCO of FeII in 1 as formation of paramagnetic FeIII through surface oxidation (detected by X-ray photoelectron spectroscopy) on heating obscured the signal of bulk SCO switching. We found that proximal FNDs could effectively sense the chemical transformations induced by the 200 keV electron beam in 1, namely, AgI → Ag0 and FeII → FeIII. However, transformations induced by the electron beam are irreversible as they substantially disrupt the structure of MOF particles. Finally, we demonstrate NV- sensing of reversible photomagnetic switching, FeIII + (18-crown-6) ⇆ FeII + (18-crown-6)+ •, triggered in 2a and 2b by 405 nm light. The photoredox process of 2a and 2b proved to be the best candidate for room-temperature single-particle magnetic switching utilizing FNDs as a sensor, which could have applications into next-generation quantum technologies.
Collapse
Affiliation(s)
- Bradley
T. Flinn
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Graham A. Rance
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - William J. Cull
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Ian Cardillo-Zallo
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Jem Pitcairn
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- School
of Chemistry, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Matthew J. Cliffe
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Michael W. Fay
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - Ashley J. Tyler
- Optics
and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - Benjamin L. Weare
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - Craig T. Stoppiello
- Centre
for Microscopy and Microanalysis, University
of Queensland, St. Lucia, 4072, Australia
| | - E. Stephen Davies
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Melissa L. Mather
- Optics
and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| | - Andrei N. Khlobystov
- School
of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham, NG7 2RD, United
Kingdom
| |
Collapse
|
7
|
Cheng Y, Chen ZY, Deng YF, Zhang YZ. 3 nm-wide Cyanometallate Fe-Co Tape Exhibiting Single-Chain Magnet Behavior. Inorg Chem 2024; 63:4063-4071. [PMID: 38364201 DOI: 10.1021/acs.inorgchem.3c03531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Treatment of Co(OTf)2·6H2O, Li[(pzTp)FeIII(CN)3], and H3PMo12O40·nH2O in protic solvents afforded two structurally related Fe-Co cyanometallate complexes: [{(pzTp)Fe(CN)3}3Co3(MeOH)10][PMo12O40]·H2O·11MeOH (1, pzTp- = tetra(pyrazolyl)borate) and {[(pzTp)Fe(CN)3]4Co3(MeOH)5(H2O)3}n[HPMo12O40]n·3 nMeOH·6.5nH2O (2). Complex 1 consists of a cyanide-bridged hexanuclear [Fe3Co3] cage, characterized by the fused conjunction of two mutually perpendicular trigonal bipyramids (TBPs, [Fe2Co3] and [Co2Fe3]), while complex 2 showcases an intricate cyanide-bridged Fe-Co tape comprising a central chain backbone of vertex-sharing [Fe2Co3] TBPs alongside peripheral [Fe2Co2] squares. Complex 2 is among the widest one-dimensional coordination assemblies characterized by the single-crystal X-ray diffraction technique. Magnetic studies revealed that complex 2 behaved as a single chain magnet with an effective energy barrier (Ueff/kB) of 46.8 K. Our findings highlight the possibilities in the development of cyanometallate-POM hybrid materials with captivating magnetic properties.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Zi-Yi Chen
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
8
|
Kharel R, Yadav J, Konar S. Modulation of single-chain magnet behaviour in a heterometallic Fe 2Co cyanide-bridged 2D sheet. Chem Commun (Camb) 2024; 60:839-842. [PMID: 38131359 DOI: 10.1039/d3cc03647b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A cyanide-bridged Fe2Co 2D sheet exhibiting electron transfer coupled spin transition (ETCST) with co-existence of magnetic ordering below 50 K is reported. The complex exhibits single-chain magnet behaviour where the uncoordinated water molecules act as an exchange-breaking impurity by allowing only a fraction of the molecule to undergo a spin state change. The paramagnetic centres prevail throughout the chain on desolvation, thereby increasing the number of correlated units in the chain.
Collapse
Affiliation(s)
- Ranjan Kharel
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, 462066, India.
| | - Jyoti Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, 462066, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
9
|
Cai LZ, Yu XQ, Wang MS, Guo GC. Photoinduced large magnetic change at room temperature and radical-quenched spin glass in a cyanide-bridged Mn II-Fe III compound. Dalton Trans 2023; 52:15677-15681. [PMID: 37888847 DOI: 10.1039/d3dt03080f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
By the coordination assembly of a redox photoactive functional motif and a cyanide-bridged moiety, a cyanide-bridged MnII-FeIII compound with large photoinduced magnetic change at room-temperature due to photoinduced electron transfer was obtanied. This compound also shows unprecedented radical-quenched spin glass in molecule based magnets.
Collapse
Affiliation(s)
- Li-Zhen Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Xiao-Qing Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
10
|
Wang JH, Javed MK, Li JX, Zhang YQ, Li ZY, Yamashita M. Ferromagnetically coupled single-chain magnets exhibiting a magnetic hysteresis of 0.42 Tesla in cyano-bridged FeIII2M II (M = Ni, Fe) coordination polymers. Dalton Trans 2023; 52:15510-15517. [PMID: 37581269 DOI: 10.1039/d3dt01043k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The synthesis, single-crystal structures and magnetic properties of two new double-zigzag-chain cyano-bridged heterobimetallic {[MII(Py-NOH)2][FeIII(Tp*)(CN)3]2}·H2O ([FeIII2MII]) (Py-NOH = 4-pyridinealdoxime, Tp* = tris(3,5-dimethylpyrazol-1-yl)borohydride, M = Ni (1), Fe (2)) compounds are reported. The crystal structures of both compounds were determined by single-crystal X-ray diffraction. Complexes 1 and 2 are isostructural, with the crystal structure comprising neutral double-zigzag (4,2-ribbon-like) bimetallic chains. The FeIII ion is coordinated by three cyanide carbon atoms and three nitrogen atoms of Tp* anions. However, the MII ion is surrounded by four cyanide nitrogen atoms and two nitrogen atoms from two Py-NOH ligands. The crystal structures and magnetic studies demonstrate that both complexes behave as single-chain magnetics (SCMs) with intrachain ferromagnetic coupling. Furthermore, [FeIII2NiII] exhibits an excellent coercive field of 0.42 T at 1.8 K, among cyano-bridged 3d transition-metal-based SCMs reported thus far. Preliminary theoretical calculations provide a deep understanding of the magnetic properties of [FeIII2NiII].
Collapse
Affiliation(s)
- Jin-Hua Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, P. R. China
| | | | - Jia-Xin Li
- School of Physical Science and Technology, Nanjing Normal University, No.1 Wenyuan Road, Qixia District, Nanjing 210023, P. R. China
| | - Yi-Quan Zhang
- School of Physical Science and Technology, Nanjing Normal University, No.1 Wenyuan Road, Qixia District, Nanjing 210023, P. R. China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
11
|
Yang J, You ML, Liu S, Deng YF, Chang XY, Holmes SM, Zhang YZ. Cyanide-Bridged Rope-like Chains Based on Trigonal-Bipyramidal [Fe 2Cu 3] Subunits. Inorg Chem 2023; 62:17530-17536. [PMID: 37801447 DOI: 10.1021/acs.inorgchem.3c02986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Extending a selected cyanometalate block into a higher dimensional framework continues to present intriguing challenges in the fields of chemistry and material science. Here, we prepared two rope-like chain compounds of {[(Tp*Me)Fe(CN)3]2Cu2X2(L)}·sol (1, X = Cl, L = (MeCN)0.5(H2O/MeOH)0.5, sol = 2MeCN·1.5H2O; 2, X = Br, L = MeOH, sol = 2MeCN·0.75H2O; Tp*Me = tris(3, 4, 5-trimethylpyrazole)borate) in which the cyanide-bridged trigonal-bipyramidal [Fe2Cu3] subunits were linked with the adjacent ones via two vertex Cu(II) centers, providing a new cyanometallate chain archetype. Direct current magnetic study revealed the presence of ferromagnetic couplings between Fe(III) and Cu(II) ions and uniaxial anisotropy due to a favorable alignment of the anisotropic tricyanoiron(III) units. Moreover, compound 1 exhibits single-chain magnet behavior with an appreciable energy barrier of 72 K, while 2 behaves as a metamagnet, likely caused by the subtle changes in the interchain interactions.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Mao-Lin You
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Shihao Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Stephen M Holmes
- Department of Chemistry and Biochemistry and Centre for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
12
|
Xu FX, Zhou YT, Zhang CC, Zhang XY, Wei HY, Wang XY. Syntheses, Structures, and Magnetic Properties of Three Cyano-Bridged Fe II-Mo III Single-Molecule Magnets. Inorg Chem 2023; 62:15465-15478. [PMID: 37699414 DOI: 10.1021/acs.inorgchem.3c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Three new cyano-bridged FeII-MoIII complexes assembled from the [MoIII(CN)7]4- unit, FeII ions, and three pentadentate N3O2 ligands, namely {[Fe2H3(dapab)2][Mo(CN)6]}n·2H2O·3.5MeCN (1), [Fe(H2dapb)(H2O)][Fe(Hdapb)(H2O)][Mo(CN)6]·4H2O·3MeCN (2), and [Fe(H2dapba)(H2O)]2[Mo(CN)7]·6H2O (3) (H2dapab = 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone), H2dapb = 2,6-diacetylpyridine bis(benzoylhydrazone), H2dapba = 2,6-diacetylpyridine bis(4-aminobenzoylhydrazone)), have been synthesized and characterized. Single-crystal structure analyses suggest that complex 1 contains a one-dimensional (1D) chain structure where two FeII ions are bridged by the in situ generated [MoIII(CN)6]3- unit through two trans-cyanide groups into trinuclear Fe2IIMoIII clusters that are further linked by the amino of the ligand into an infinite chain. Complexes 2 and 3 are cyano-bridged Fe2IIMoIII trinuclear clusters with two FeII ions connected by the [MoIII(CN)6]3- and [MoIII(CN)7]4- units, respectively. Direct current magnetic studies confirmed the ferromagnetic interactions between the cyano-bridged FeII and MoIII centers and significant easy-axis magnetic anisotropy for all three complexes. Furthermore, complexes 1-3 exhibit slow magnetic relaxation under a zero dc field, with relaxation barriers of 42.3, 21.6, and 14.4 K, respectively, making them the first examples of cyano-bridged FeII-MoIII single-molecule magnets.
Collapse
Affiliation(s)
- Fang-Xue Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Ting Zhou
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Cheng Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Yu Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Yan Wei
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Liu Q, Cheng Y, Liu S, Chen ZY, Zhang YZ. Anthryl-functionalized cyanide-bridged Fe/Co cubes. Dalton Trans 2023; 52:12878-12884. [PMID: 37641912 DOI: 10.1039/d3dt01630g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Two anthryl-functionalized cyanide-bridged [Fe4Co4] cube complexes, [(pzTp)Fe(CN)3Co(TpEtOAn)]4[OTf]4·8MeCN·7Et2O (1) and [NEt4]3[(pzTp)Fe(CN)3Co(TpEtOAn)]4[OTf]7·5MeCN·2Et2O (2) (pzTp- = tetrapyrazolylborate, TpEtOAn = 2,2,2-tris-(pyrazol-1-yl)ethoxy(9-methyl-anthracene)), were synthesized and characterized. The crystallographic study revealed that the [Fe4Co4] cubes are arranged into a linear supramolecular chain through significant anthryl-anthryl π-π stacking interactions in complex 1, whereas a zigzag supramolecular 1D assembly is observed in 2. The magnetic measurements showed that both compounds exhibited incomplete transitions from the paramagnetic {FeIIILS(μ-CN)CoIIHS} state to the diamagnetic {FeIILS(μ-CN)CoIIILS} state at about 200 K. The luminescence measurement of 1 in solution revealed an enhancement of the emission upon dilution or addition of perfluoronaphthalene (PFN) molecules, which could be attributed to the suppression of the aggregation-caused quenching (ACQ) effect, suggesting possible aggregation of the cube units in the solution.
Collapse
Affiliation(s)
- Qi Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Yue Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Shihao Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Zi-Yi Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
14
|
Sunkari SS, Verma A, Pandey O, Gupta S, Wakizaka M, Takaishi S, Kawasoko H, Fukumura T, Yamashita M. Slow magnetic relaxation in a ferromagnetic Cu II chain complex, induced by a phonon bottleneck effect. Dalton Trans 2023; 52:12604-12607. [PMID: 37614169 DOI: 10.1039/d3dt02244g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The first slow magnetic relaxation in a ferromagnetic Cu(II) chain compound, Cu(dipic)(OH2)2 (dipicH2 = pyridine-2,6-dicarboxylic acid), induced by a phonon bottleneck effect under a magnetic field of 0.6 T, with a relaxation time of 2.2 s at 2.8 K, was observed.
Collapse
Affiliation(s)
- Sailaja S Sunkari
- Department of Chemistry, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221 005, India.
| | - Abhineet Verma
- Department of Chemistry, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221 005, India.
| | - Om Pandey
- Department of Chemistry, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221 005, India.
| | - Shraddha Gupta
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Masanori Wakizaka
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Hideyuki Kawasoko
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Tomoteru Fukumura
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
15
|
Georgiev M, Chamati H. Magnetic Behavior of Trigonal (Bi-)pyramidal 3d 8 Mononuclear Nanomagnets: The Case of [Ni(MDABCO) 2Cl 3]ClO 4. ACS OMEGA 2023; 8:28640-28650. [PMID: 37576657 PMCID: PMC10413474 DOI: 10.1021/acsomega.3c03208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023]
Abstract
This paper attempts to shed light on the origin of the magnetic behavior specific to trigonal bi- and pyramidal 3d8 mono- and polynuclear nanomagnets. The focus lies on entirely unraveling the system's intrinsic microscopic mechanisms and fundamental quantum mechanical relations governing the underlying electron dynamics. To this end, we develop a self-consistent approach to characterize, in great detail, all electron correlations and the ensuing fine structure of the energy spectra of a broad class of 3d8 systems. The mathematical framework is based on the multiconfigurational self-consistent field method and is devised to account for prospective quantum mechanical constraints that may confine the electron orbital dynamics while preserving the properties of all measurable quantities. We successfully characterize the experimentally observed magnetic anisotropy properties of a slightly distorted trigonal bipyramidal Ni2+ coordination complex, demonstrating that such compounds do not exhibit intrinsic huge zero-field splitting and inherent giant magnetic anisotropy. We reproduce qualitatively and quantitatively the behavior of the low-field magnetic susceptibility, magnetization, low-, and high-field electron paramagnetic resonance spectroscopy measurements and provide an in-depth analysis of the obtained results.
Collapse
Affiliation(s)
- Miroslav Georgiev
- Bulgarian Academy of Sciences, G Nadjakov Institute of Solid State Physics, Tsarigradsko Chaussée 72, 1784 Sofia, Bulgaria
| | - Hassan Chamati
- Bulgarian Academy of Sciences, G Nadjakov Institute of Solid State Physics, Tsarigradsko Chaussée 72, 1784 Sofia, Bulgaria
| |
Collapse
|
16
|
Li Y, Zeng Z, Guo Y, Liu X, Zhang YQ, Ouyang Z, Wang Z, Liu X, Zheng YZ. Synergy of Magnetic Anisotropy and Ferromagnetic Interaction Triggering a Dimeric Cr(II) Zero-Field Single-Molecule Magnet. Inorg Chem 2023; 62:6297-6305. [PMID: 37040590 DOI: 10.1021/acs.inorgchem.2c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
A novel CrII-dimeric complex, [CrIIN(SiiPr3)2(μ-Cl)(THF)]2 (1), has been successfully constructed using a bulky silyl-amide ligand. Single-crystal structure analysis reveals that complex 1 exhibits a binuclear motif, with a Cr2Cl2 rhombus core, where two equivalent tetra-coordinate CrII centers in the centrosymmetric unit display quasi-square planar geometry. The crystal structure has been well simulated and explored by density functional theory calculations. The axial zero-field splitting parameter (D < 0) with a small rhombic (E) value is unambiguously determined by systematic investigations of magnetic measurements, high-frequency electron paramagnetic resonance spectroscopy, and ab initio calculations. Remarkably, ac magnetic susceptibility data unveil that 1 features slow dynamic magnetic relaxation typical of single-molecule magnet behavior with Ueff = 22 K in the absence of a dc field. This increases up to 35 K under a corresponding static field. Moreover, magnetic studies and theoretical calculations point out that a non-negligible ferromagnetic coupling (FMC) exists in the dimeric Cr-Cr units of 1. The coexistence of magnetic anisotropy and FMC contributes to the first case of CrII-based single-molecule magnets (SMMs) under zero dc field.
Collapse
Affiliation(s)
- Yuzhu Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhaopeng Zeng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xingman Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| |
Collapse
|
17
|
Adhikari S, Sheikh AH, Kansız S, Dege N, Baildya N, Mahmoudi G, Choudhury NA, Butcher RJ, Kaminsky W, Talledo S, Lopato EM, Bernhard S, Kłak J. Supramolecular Co(II) Complexes Based on Dithiolate and Dicarboxylate Ligands: Crystal structures, Theoretical studies, Magnetic Properties, and Catalytic Activity Studies in Photocatalytic Hydrogen Evolution. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
18
|
Interplay of Anisotropic Exchange Interactions and Single-Ion Anisotropy in Single-Chain Magnets Built from Ru/Os Cyanidometallates(III) and Mn(III) Complex. Molecules 2023; 28:molecules28031516. [PMID: 36771182 PMCID: PMC9921754 DOI: 10.3390/molecules28031516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Two novel 1D heterobimetallic compounds {[MnIII(SB2+)MIII(CN)6]·4H2O}n (SB2+ = N,N'-ethylenebis(5-trimethylammoniomethylsalicylideneiminate) based on orbitally degenerate cyanidometallates [OsIII(CN)6]3- (1) and [RuIII(CN)6]3- (2) and MnIII Schiff base complex were synthesized and characterized structurally and magnetically. Their crystal structures consist of electrically neutral, well-isolated chains composed of alternating [MIII(CN)6]3- anions and square planar [MnIII(SB2+)]3+ cations bridged by cyanide groups. These -ion magnetic anisotropy of MnIII centers. These results indicate that the presence of compounds exhibit single-chain magnet (SCM) behavior with the energy barriers of Δτ1/kB = 73 K, Δτ2/kB = 41.5 K (1) and Δτ1/kB = 51 K, Δτ2 = 27 K (2). Blocking temperatures of TB = 2.8, 2.1 K and magnetic hysteresis with coercive fields (at 1.8 K) of 8000, 1600 Oe were found for 1 and 2, respectively. Theoretical analysis of the magnetic data reveals that their single-chain magnet behavior is a product of a complicated interplay of extremely anisotropic triaxial exchange interactions in MIII(4d/5d)-CN-MnIII fragments: -JxSMxSMnx-JySMySMny-JzSMzSMnz, with opposite sign of exchange parameters Jx = -22, Jy = +28, Jz = -26 cm-1 and Jx = -18, Jy = +20, Jz = -18 cm-1 in 1 and 2, respectively) and single orbitally degenerate [OsIII(CN)6]3- and [RuIII(CN)6]3- spin units with unquenched orbital angular momentum in the chain compounds 1 and 2 leads to a peculiar regime of slow magnetic relaxation, which is beyond the scope of the conventional Glaubers's 1D Ising model and anisotropic Heisenberg model.
Collapse
|
19
|
Synthesis and characterization of a novel antiferromagnetic cobalt(II) chain complex. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
20
|
Belov AS, Novikov VV, Vologzhanina AV, Pavlov AA, Bogomyakov AS, Zubavichus YV, Svetogorov RD, Zelinskii GE, Voloshin YZ. Synthesis, crystal polymorphism and spin crossover behavior of adamantylboron-capped cobalt(II) hexachloroclathrochelate and its transformation into the Co IIICo IICo III-bis-macrobicyclic derivative. Dalton Trans 2023; 52:347-359. [PMID: 36511081 DOI: 10.1039/d2dt03300c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Fast crystallization of the monoclathrochelate cobalt(II) intracomplex [Co(Cl2Gm)3(BAd)2] (where Cl2Gm2- is a dichloroglyoxime dianion and BAd is an adamantylboron capping group, 1), initially obtained by the direct template condensation of the corresponding chelating α-dioximate and cross-linking ligand synthons on the Co2+ ion as a matrix, from benzene or dichloromethane afforded its structural triclinic and hexagonal polymorphs. Its prolonged recrystallization from dichloromethane under air atmosphere and sunlight irradiation unexpectedly gave the crystals of the CoIIICoIICoIII-trinuclear dodecachloro-bis-clathrochelate intracomplex [[CoIII(Cl2Gm)3(BAd)]2CoII] (2), the molecule of which consists of two macrobicyclic frameworks with encapsulated low-spin (LS) Co3+ ions, which are cross-linked by a μ3-bridging Co2+ ion as a bifunctional Lewis-acidic center. The most plausible pathway of such a 1 → 2 transformation is based on the photoinitiated radical oxidation of dichloromethane with air oxygen giving the reactive species. Cobalt(II) monoclathrochelate 1 was found to undergo a temperature-induced spin crossover (SCO) both in its solutions and in the solid state. In spite of the conformational rigidity of the corresponding quasiaromatic diboron-capped tris-α-dioximate framework, the main parameters of this SCO transition (i.e., its completeness and gradual character) are strongly affected by the nature of the used solvent (in the case of its solutions) and by the structural polymorphism of its crystals (in the solid state). In the latter case, the LS state (S = 1/2) of this complex is more thermally stable and, therefore, the cobalt(II)-centered 1/2 → 3/2 SCO is more gradual than that in solutions.
Collapse
Affiliation(s)
- Alexander S Belov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Valentin V Novikov
- Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.,National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Artem S Bogomyakov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, 1 Nikolskii pr., 630559 Koltsovo, Russia
| | | | - Genrikh E Zelinskii
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Yan Z Voloshin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| |
Collapse
|
21
|
Bazhina ES, Kiskin MA, Babeshkin KA, Efimov NN, Fedin MV, Eremenko IL. Effect of the solvent on the formation of new oxovanadium(IV) complexes with pentafluorobenzoate anions and 1,10-phenanthroline. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Macek L, Bellamy JC, Faber K, Milson CR, Landee CP, Dickie DA, Turnbull MM. Transition metal halide complexes of 4′-aminoacetophenone: Syntheses, structures, and magnetic behavior. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Petrosyants SP, Ilyukhin AB, Babeshkin KA, Efimov NN, Koroteev PS. New chain polymer [Yb(tpa)(H2O)2Co(CN)6]n · 7n H2O: synthesis, structure, and magnetic characteristics. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Sasnovskaya VD, Zorina LV, Simonov SV, Talantsev AD, Yagubskii EB. [M II(H 2dapsc)]-[Cr(CN) 6] (M = Mn, Co) Chain and Trimer Complexes: Synthesis, Crystal Structure, Non-Covalent Interactions and Magnetic Properties. Molecules 2022; 27:8518. [PMID: 36500611 PMCID: PMC9737345 DOI: 10.3390/molecules27238518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Four new heterometallic complexes combining [MII(H2dapsc)]2+ cations with the chelating H2dapsc {2,6-diacetylpyridine-bis(semicarbazone)} Schiff base ligand and [Cr(CN)6]3- anion were synthesized: {[MII(H2dapsc)]CrIII(CN)6K(H2O)2.5(EtOH)0.5}n·1.2n(H2O), M = Mn (1) and Co (2), {[Mn(H2dapsc)]2Cr(CN)6(H2O)2}Cl·H2O (3) and {[Co(H2dapsc)]2Cr(CN)6(H2O)2}Cl·2EtOH·3H2O (4). In all the compounds, M(II) centers are seven-coordinated by N3O2 atoms of H2dapsc in the equatorial plane and N or O atoms of two apical -CN/water ligands. Crystals 1 and 2 are isostructural and contain infinite negatively charged chains of alternating [MII(H2dapsc)]2+ and [CrIII(CN)6]3- units linked by CN-bridges. Compounds 3 and 4 consist of centrosymmetric positively charged trimers in which two [MII(H2dapsc)]2+ cations are bound through one [CrIII(CN)6]3- anion. All structures are regulated by π-stacking of coplanar H2dapsc moieties as well as by an extensive net of hydrogen bonding. Adjacent chains in 1 and 2 interact also by coordination bonds via a pair of K+ ions. The compounds containing MnII (1, 3) and CoII (2, 4) show a significant difference in magnetic properties. The ac magnetic measurements revealed that complexes 1 and 3 behave as a spin glass and a field-induced single-molecule magnet, respectively, while 2 and 4 do not exhibit slow magnetic relaxation in zero and non-zero dc fields. The relationship between magnetic properties and non-covalent interactions in the structures 1-4 was traced.
Collapse
Affiliation(s)
- Valentina D. Sasnovskaya
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
| | - Leokadiya V. Zorina
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia
| | - Sergey V. Simonov
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia
| | - Artem D. Talantsev
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
| | - Eduard B. Yagubskii
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
| |
Collapse
|
25
|
Li LL, Chen SS, Liu S, Yong ZH, Zhang DK, Zhang SS, Xin YC. Lanthanide metal-organic frameworks containing ferromagnetically coupled metal-carboxylate chains showing slow magnetic relaxation behavior. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Zhou Y, Xiang H, Zhu JY, Shi L, You WJ, Wei XQ, Tian Z, Shao D. Synthesis, structure, magnetism and proton conductivity of a cyanide-bridged NiIICoIII framework. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
|
28
|
Georgiev M, Chamati H. Single-Ion Magnets with Giant Magnetic Anisotropy and Zero-Field Splitting. ACS OMEGA 2022; 7:42664-42673. [PMID: 36467950 PMCID: PMC9713882 DOI: 10.1021/acsomega.2c06119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The design of mononuclear molecular nanomagnets exhibiting a huge energy barrier to the reversal of magnetization have seen a surge of interest during the last few decades due to their potential technological applications. More specifically, single-ion magnets are peculiarly attractive by virtue of their rich quantum behavior and distinct fine structure. These are viable candidates for implementation as single-molecule high-density information storage devices and other applications in future quantum technologies. The present review presents the comprehensive state of the art in the topic of single-ion magnets possessing an eminent magnetization-reversal barrier, very slow magnetic relaxation and high blocking temperature. We turn our attention to the achievements in the synthesis of 3d and 4f single-ion magnets during the last two decades and discuss the observed magnetostructural properties underlying the anisotropy behavior and the ensuing remanence. Furthermore, we highlight the fundamental theoretical aspects to shed light on the complex behavior of these nanosized magnetic entities. In particular, we focus on key notions, such as zero-field splitting, anisotropy energy and quantum tunneling of the magnetization and their interdependence.
Collapse
Affiliation(s)
- Miroslav Georgiev
- G Nadjakov Institute of Solid State
Physics, Bulgarian Academy of Sciences, Tsarigradsko Chaussée 72, 1784Sofia, Bulgaria
| | - Hassan Chamati
- G Nadjakov Institute of Solid State
Physics, Bulgarian Academy of Sciences, Tsarigradsko Chaussée 72, 1784Sofia, Bulgaria
| |
Collapse
|
29
|
Zhang SY, Yao JH, Gao FX, Fan CP, Zhang H, Chen JJ, Tong J, Lin QF, Fang Q, Zhang EL. The syntheses, structures and magnetic properties of coordination clusters: {M20} (M = CoII, NiII) with a distorted hexahedral topology. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Synthesis, spectroscopic, structural characterizations, and catalytic properties of cyanide-bridged heteronuclear metal organic frameworks with imidazole. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Dhingra A, Hu X, Borunda MF, Johnson JF, Binek C, Bird J, N'Diaye AT, Sutter JP, Delahaye E, Switzer ED, Barco ED, Rahman TS, Dowben PA. Molecular transistors as substitutes for quantum information applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:441501. [PMID: 35998608 DOI: 10.1088/1361-648x/ac8c11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Applications of quantum information science (QIS) generally rely on the generation and manipulation of qubits. Still, there are ways to envision a device with a continuous readout, but without the entangled states. This concise perspective includes a discussion on an alternative to the qubit, namely the solid-state version of the Mach-Zehnder interferometer, in which the local moments and spin polarization replace light polarization. In this context, we provide some insights into the mathematics that dictates the fundamental working principles of quantum information processes that involve molecular systems with large magnetic anisotropy. Transistors based on such systems lead to the possibility of fabricating logic gates that do not require entangled states. Furthermore, some novel approaches, worthy of some consideration, exist to address the issues pertaining to the scalability of quantum devices, but face the challenge of finding the suitable materials for desired functionality that resemble what is sought from QIS devices.
Collapse
Affiliation(s)
- Archit Dhingra
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
| | - Xuedong Hu
- Department of Physics, University at Buffalo, Buffalo, NY, 14260-1500, United States of America
| | - Mario F Borunda
- Department of Physics, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Joseph F Johnson
- Department of Mathematics & Statistics, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America
| | - Christian Binek
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
| | - Jonathan Bird
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260-1900, United States of America
| | - Alpha T N'Diaye
- Advanced Light Source (ALS, BL631), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, F-31000 Toulouse, France
| | - Emilie Delahaye
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, F-31000 Toulouse, France
| | - Eric D Switzer
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America
| | - Enrique Del Barco
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America
| | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America
| | - Peter A Dowben
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
| |
Collapse
|
32
|
Synthesis, crystal structure and magnetic properties of mer-tricyanidoiron(III) precursor-based 1D heterobimetallic complexes. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Three new cyanide-bridged heterometallic complexes {{[Cu(S,S-Chxn)2][Fe(bbp)(CN)3]}2·2 H2O}
n
(1), {{[Cu(R,R-Chxn)2][Fe(bbp)(CN)3]}2·2 H2O}
n
(2) and {{[Cu(Cycam)][Fe(bbp)(CN)3]}·CH3OH·2 H2O}
n
(3) (bbp = bis(2-benzimidazolyl)pyridine dianion, Chxn = 1,2-diaminocyclo hexane, cyclam = 1,4,8,11-tetraazacyclodecane) have been assembled from the rarely used mer-tricyanidoiron(III) building block [PPh4]2[Fe(bbp)(CN)3] and three copper(II) compounds. The complexes have been characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction. For the chiral enantiomers 1 and 2, the circular dichroism (CD) spectrum was also investigated. X-ray structural analyses revealed that the structures of the cyanide-bridged Fe-Cu complexes 1 and 2 are characterized by two crystallographically independent but structurally very similar homochiral neutral chains, each consisting of the repeating units {[Cu(S,S-Chxn)2][Fe(bbp)(CN)3]} (1) or {[Cu(R,R-Chxn)2][Fe(bbp)(CN)3]} (2). The crystal structure of 3 likewise is build up of chains consisting of {[Cu(Cyclam)][Fe(bbp)(CN)3]} building blocks. The temperature-dependent magnetic susceptibility and field dependent magnetization of the complexes showed antiferromagnetic interactions in complex 1 between the Fe(III) and Cu(II) ions, while complex 3 is ferromagnetic, indicating that the magnetic coupling through cyanide linkage is very sensitive to the structure parameters around the paramagnetic metal ions. These results have been further confirmed by fitting of the experimental data using a uniform chain model, leading to the coupling constants J = −6.35 cm−1, g = 2.08, R = 4.42 × 10−4 and J = 1.24 cm−1, g = 2.09, R = ∑(χ
obsd
T − χ
cald
T)2/∑(χ
obsd
T)2 = 4.67 × 10−4 for complexes 1 and 3, respectively.
Collapse
|
33
|
Jin PB, Yu KX, Luo QC, Liu YY, Zhai YQ, Zheng YZ. Tetraanionic arachno-Carboranyl Ligand Imparts Strong Axiality to Terbium(III) Single-Molecule Magnets. Angew Chem Int Ed Engl 2022; 61:e202203285. [PMID: 35426226 DOI: 10.1002/anie.202203285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 02/05/2023]
Abstract
A family of fully sandwiched arachno-lanthanacarborane complexes formulated as {η6 -[μ-1,2-[o-C6 H4 (CH2 )2 ]-1,2-C2 B10 H10 ]2 Ln}{Li5 (THF)10 } (Ln=Tb, Dy, Ho, Er, Y) is successfully synthesized, where the "carbons-adjacent" carboranyl ligand (arachno-R2 -C2 B10 H10 4- ) bears four negative charges and coordinates to the central lanthanide ions using the hexagonal η6 C2 B4 face. Thus, the central lanthanide cations are pseudo-twelve-coordinate and have an approximate pseudo-D6h symmetry or hexagonal-prismatic geometry. As the crystal field effect imparted by this geometry is still unknown, we thoroughly investigated the magnetic properties of this series of complexes and found that the crystal field imposed by this ligand causes a relation of Tb>Dy>Ho>Er for the energy gaps between the ground and the first excited states, which is of striking resemblance to the ferrocenophane and phthalocyanine ligands although the latter two ligands give disparate local coordination geometries. Moreover, the effective energy barrier to magnetization reversal of 445(10) K, the observable hysteresis loop up to 4 K and the relaxation time of the yttrium-diluted sample reaching 193(17) seconds at 2 K under an optimized field for the Tb analogue of this family of arachno-lanthanacarborane complexes, render a new benchmark for Tb3+ -based single-molecule magnets.
Collapse
Affiliation(s)
- Peng-Bo Jin
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Ke-Xin Yu
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Qian-Cheng Luo
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Ye-Ye Liu
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Yuan-Qi Zhai
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| |
Collapse
|
34
|
Jin PB, Yu KX, Luo QC, Liu YY, Zhai YQ, Zheng YZ. Tetraanionic arachno‐Carboranyl Ligand Imparts Strong Axiality to Terbium(III) Single‐Molecule Magnets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peng-Bo Jin
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Ke-Xin Yu
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Qian-Cheng Luo
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Ye-Ye Liu
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Yuan-Qi Zhai
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology Center for Applied Chemical Research 99 Yan Xiang LuQujiang Campus of Xi'an Jiaotong UniversityA316 Xi Yi Lou 710054 Xian CHINA
| |
Collapse
|
35
|
Cyano-Bridged Dy(III) and Ho(III) Complexes with Square-Wave Structure of the Chains. INORGANICS 2022. [DOI: 10.3390/inorganics10040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Four new cyano-bridged DyIII-CrIII, DyIII-FeIII, HoIII-CrIII and HoIII-FeIII bimetallic coordination polymers were synthesized by the reaction of [Ln(H2dapsc)(H2O)4](NO3)3 (Ln = Dy, Ho); H2dapsc = 2,6-diacetylpyridinebis(semicarbazone)) with K3[M(CN)6] (M = Cr, Fe) in H2O, resulting in the substitution of two water molecules in the coordination sphere of rare earth by paramagnetic tricharged hexacyanides of Fe and Cr. The complexes are isostructural and consist of alternating [Ln(H2dapsc)(H2O)2]3+ and [M(CN)6]3− units linked by bridges of two cis-cyano ligands of the anion to form square-wave chains. The ac magnetic measurements revealed that the DyCr and DyFe complexes are field-induced single molecule magnets, while their Ho analogs do not exhibit slow magnetic relaxation.
Collapse
|
36
|
Group 10 metal-cyanide scaffolds in complexes and extended frameworks: Properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Avila Y, Acevedo-Peña P, Reguera L, Reguera E. Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Tangoulis V, Nastopoulos V, Panagiotou N, Tasiopoulos A, Itskos G, Athanasiou M, Moreno-Pineda E, Wernsdorfer W, Schulze M, Malina O. High-Performance Luminescence Thermometer with Field-Induced Slow Magnetic Relaxation Based on a Heterometallic Cyanido-Bridged 3d–4f Complex. Inorg Chem 2022; 61:2546-2557. [DOI: 10.1021/acs.inorgchem.1c03432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Nikos Panagiotou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus
| | | | - Grigorios Itskos
- Experimental Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, Nicosia 1678, Cyprus
| | - Modestos Athanasiou
- Experimental Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, Nicosia 1678, Cyprus
| | - Eufemio Moreno-Pineda
- Depto. de Química-Física, Escuela de Química, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá 18233, Panamá
| | - Wolfgang Wernsdorfer
- Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
| | - Michael Schulze
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
| | - Ondřej Malina
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc 771 47, Czech Republic
| |
Collapse
|
39
|
Roy S, Shukla P, Prakash Sahu P, Sun Y, Ahmed N, Chandra Sahoo S, Wang X, Kumar Singh S, Das S. Zero‐field Slow Magnetic Relaxation Behavior of Dy
2
in a Series of Dinuclear {Ln
2
} (Ln=Dy, Tb, Gd and Er) Complexes: A Combined Experimental and Theoretical Study. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Soumalya Roy
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research And Management Near Khokhra Circle, Maninagar East Ahmedabad 380026, Gujarat India
| | - Pooja Shukla
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research And Management Near Khokhra Circle, Maninagar East Ahmedabad 380026, Gujarat India
| | - Prem Prakash Sahu
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi- 502285, Sangareddy Telangana India
| | - Yu‐Chen Sun
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Naushad Ahmed
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi- 502285, Sangareddy Telangana India
| | | | - Xin‐Yi Wang
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Saurabh Kumar Singh
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi- 502285, Sangareddy Telangana India
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research And Management Near Khokhra Circle, Maninagar East Ahmedabad 380026, Gujarat India
| |
Collapse
|
40
|
Liu Q, Yao NT, Sun HY, Hu JX, Meng YS, Liu T. Light actuated single-chain magnet with magnetic coercivity. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyanide-bridged {Fe2Co}-based coordination polymer was synthesized. It showed photo-induced slow relaxation of magnetization and a coercive field of 400 Oe.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
41
|
Ahmed S, Kumar A, Mukhopadhyay N, Lloret F, Mukherjee R. Heterobimetallic cyanide-bridged Fe III(μ-CN)M II complexes (M = Mn and Cu): synthesis, structure and magnetism. NEW J CHEM 2022. [DOI: 10.1039/d2nj00126h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic magneto-structural studies reveal ‘[FeIII(Tp)(CN)2(μ-CN)MnIICl(L1/L2)]′ (both antiferromagnetic) and [FeIII(Tp)(CN)2(μ-CN)CuII(L1/L2)]+′(L1 ferro- and L2 antiferromagnetic).
Collapse
Affiliation(s)
- Sayeed Ahmed
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Akhilesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de València, Polígono de la Coma, s/n, 46980 Paterna, València, Spain
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
42
|
Zhang X, He C, Yang X, Zhang Q, Li Y, Yao J. Fe II, Co II and Ni II complexes based on 1-chloro-3-(pyridin-2-yl)imidazo[1,5- a]pyridine: synthesis, structures, single-molecule magnetic and electrocatalytic properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj03328c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Three complexes [Fe2(L)2Cl4] (1), [Co2(L)2Cl4] (2) and [Ni(L)2Cl2]·CH2Cl2 (3) were synthesized and characterized. Complex 1 exhibits a slow magnetic relaxation behaviour. Complexes 1–3 are catalytically active toward the OER.
Collapse
Affiliation(s)
- Xiamei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chengying He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaohan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yahong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jinlei Yao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
43
|
Sulaiman A, Jiang YZ, Javed MK, Wu SQ, Li ZY, Bu XH. Tuning of spin-crossover behavior in two cyano-bridged mixed-valence FeIII2FeII trinuclear complexes based on a TpR ligand. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01086g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the use of TpR derivatives, we have demonstrated the modulation in the SCO behavior in two analogous trinuclear complexes. Moreover, a change in the spin transition temperature via solvent loss is observed.
Collapse
Affiliation(s)
- Arshia Sulaiman
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yi-Zhan Jiang
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Mohammad Khurram Javed
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
44
|
Zhang Y, Liu ZY, Tang HM, Ding B, Liu ZY, Wang XG, Zhao XJ, Yang EC. Weak interchain interaction-dominated magnetic responses in water-extended cobalt( ii)-chains: from magnetic ordering to single-chain magnet. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01214f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Weak intermolecular interaction-dominated interchain magnetic couplings in water-extended cobalt(ii)-chains are found to be highly responsible for the magnetic evolution from magnetic ordering to single-chain magnet behavior.
Collapse
Affiliation(s)
- Yu Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Zhong-Yi Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Hui-Min Tang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Bo Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Zheng-Yu Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xiu-Guang Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xiao-Jun Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
- Synergetic Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| | - En-Cui Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
45
|
Xie Y, Lin R, Chen B. Old Materials for New Functions: Recent Progress on Metal Cyanide Based Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104234. [PMID: 34825524 PMCID: PMC8728855 DOI: 10.1002/advs.202104234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Cyanide is the simplest ligand with strong basicity to construct open frameworks including some of the oldest compounds reported in the history of coordination chemistry. Cyanide can form numerous cyanometallates with different transition metal ions showing diverse geometries. Rational design of robust extended networks is enabled by the strong bonding nature and high directionality of cyanide ligand. By virtue of a combination of cyanometallates and/or organic linkers, multifunctional framework materials can be targeted and readily synthesized for various applications, ranging from molecular adsorptions/separations to energy conversion and storage, and spin-crossover materials. External guest- and stimuli-responsive behaviors in cyanide-based materials are also highlighted for the development of the next-generation smart materials. In this review, an overview of the recent progress of cyanide-based multifunctional materials is presented to demonstrate the great potential of cyanide ligands in the development of modern coordination chemistry and material science.
Collapse
Affiliation(s)
- Yi Xie
- Department of ChemistryUniversity of Texas at San AntonioOne UTSA CircleSan AntonioTX78249‐0698USA
| | - Rui‐Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Banglin Chen
- Department of ChemistryUniversity of Texas at San AntonioOne UTSA CircleSan AntonioTX78249‐0698USA
| |
Collapse
|
46
|
Chen ZY, Cheng Y, Liu Q, Deng YF, Zhang YZ. Polyoxometalate-Assisted Assembly of Pearl-Chain-Like Cyanide-Bridged Single-Chain Magnets. Inorg Chem 2021; 61:931-938. [PMID: 34962120 DOI: 10.1021/acs.inorgchem.1c02922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The introduction of Keggin-type POMs of [PMo12O40]3- or [SiW12O40]4- as counteranions into the FeIII-MII cyanometalate system afforded three chain complexes: [(Tp*)Fe(CN)3Ni(DMF)4]2{[(Tp*)Fe(CN)3Ni(DMF)3(H2O)]2Ni(DMF)4}[PMo12O40]2·14DMF (1, Tp*= hydridotris(3,5-dimethylpyrazol-1-yl)borate) and {[(Tp*)Fe(CN)3M(DMF)3(H2O)]2M(DMF)4}[SiW12O40]·3DMF (2, M = NiII; 3, M = CoII). Complex 1 contains both discrete cationic [Fe2Ni2]2+ squares and less-studied {Fe2Ni3}n pearl chains, namely 3,2-chains, while 2 and 3 consist of pure 3,2-chains due to the replacement of [PMo12O40]3- with [SiW12O40]4- bearing one more negative charge. Magnetic studies revealed that all of the complexes exhibit single-chain-magnet (SCM) behaviors with the effective thermal barriers of Δτ1/kB = 61.6 K (infinite regime) and Δτ2/kB = 36.5 K (finite regime) for 1, Δτ/kB = 46.9 K for 2 (finite), and Δτ/kB = 30.6 K for 3 (finite). The POM moieties may play a pivotal role for the realization of this promising archetype of favoring SCM property: (1) the highly negatively charged POMs may facilitate the formation of the uncommon highly positive "pearl chain"; (2) the nanosized POMs necessarily led to the good isolation of the chains in the title complexes, and (3) the employment of POMs with different charges may regulate the resultant complexes in both structure and magnetism.
Collapse
Affiliation(s)
- Zi-Yi Chen
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Yue Cheng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Qi Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| |
Collapse
|
47
|
Liu Y, Dong R, Wu K, Qiao S, Zhou H. Trinuclear, octanuclear, and one-dimensional chain of cyanido-bridged complexes based on Cu(II), Gd(III)/Pr(III) and Co(III): Synthesis, structures and magnetic properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Cheng Y, Liu Q, Chen ZY, Zhang YZ. A cyanide-bridged Fe-Co pearl-chain-like single-chain magnet containing 4-coordinate cobalt(II) ions. Dalton Trans 2021; 50:17372-17377. [PMID: 34792060 DOI: 10.1039/d1dt02844h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of CoCl2·6H2O and tris(pyrazolyl-1-yl)borate tricyanoiron(III) anions at an elevated temperature (55 °C) afforded two less-common pearl-chain-like compounds, {[(TpR)Fe(CN)3CoCl2]2Co(DMF)4}·nDMF (1, TpR = Tp4-Me = hydridotris(4-methylpyrazol-1-yl)borate, n = 1 and 2, TpR = Tp*Me = hydridotris(3,4,5-trimethylpyrazol-1-yl)borate, n = 4.5), in which the 4-coordinate Co(II) ions and [(TpR)FeIII(CN)3]- units are alternately bridged by cyanide groups into squares, which are further linked with the 6-coordinate Co(II) ions into an infinite chain. Interestingly, the magnetic study revealed that 1 exhibits a typical single-chain magnet behaviour with an effective energy barrier of 28.0 K, while surprisingly no Glauber dynamics was observed for 2 despite their very similar structures. The variations of the local coordination environments of the cobalt ions and the cyanide linkages were evidenced, and they may account for the significant difference in their magnetic properties related to the global magnetic anisotropy and magnetic exchange of the chain.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Qi Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Zi-Yi Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| |
Collapse
|
49
|
Li Y, Sun X, Chen P, Liu HT, Li J, Liu D, Li D, Dou J, Tian H. Modulating the relaxation dynamics of the Na 2Mn 3 system via an auxiliary anion change. Dalton Trans 2021; 50:14774-14781. [PMID: 34591053 DOI: 10.1039/d1dt01237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports two closely related heteropentanuclear manganese complexes, namely, {Na2Mn3(opch)3(μ4-O)(μ2-N3) (μ2-AcO)(μ2-MeO)}·6CH3OH·0.5H2O (1) and {Na2Mn3(opch)3(μ4-O)(μ2-N3)2(μ2-AcO)}·2.5CH3OH·2H2O (2), where H2opch is (E)-N'-(2-hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide. Single-crystal X-ray diffraction analysis reveals that the trigonal bipyramidal skeletons in both complexes are comparable, where a perfect triangular Mn3 motif occupies the equatorial plane. Magnetic investigations suggest that overall antiferromagnetic coupling is present within the triangles of 1 and 2. However, their dynamic magnetic properties are drastically distinct. Indeed, complexes 1 and 2 show two kinds of dual slow magnetic relaxation processes that correspond to anisotropy barriers (Δ) of 9.2 cm-1 (11.4 cm-1 for 2) and 12.8 cm-1 (30.0 cm-1 for 2) for the low- and high-frequency domains, respectively. More importantly, a further comparative study of the structure and magnetism indicates that the coordination sphere of these two model complexes with the homologous hydrazone-based coordination sites undergoes an alteration from methoxide-O to azide-N upon a subtle change of the auxiliary anion accompanied by modulating octahedron geometries, leading to a further influence on different relaxation dynamics.
Collapse
Affiliation(s)
- Yongfei Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Peiqiong Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Jing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Dan Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
| | - Dacheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| |
Collapse
|
50
|
Houard F, Gendron F, Suffren Y, Guizouarn T, Dorcet V, Calvez G, Daiguebonne C, Guillou O, Le Guennic B, Mannini M, Bernot K. Single-chain magnet behavior in a finite linear hexanuclear molecule. Chem Sci 2021; 12:10613-10621. [PMID: 34447554 PMCID: PMC8356920 DOI: 10.1039/d1sc02033a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022] Open
Abstract
The careful monitoring of crystallization conditions of a mixture made of a TbIII building block and a substituted nitronyl-nitroxide that typically provides infinite coordination polymers (chains), affords a remarkably stable linear hexanuclear molecule made of six TbIII ions and five NIT radicals. The hexanuclear units are double-bridged by water molecules but ab initio calculations demonstrate that this bridge is inefficient in mediating any magnetic interaction other than a small dipolar antiferromagnetic coupling. Surprisingly the hexanuclears, despite being finite molecules, show a single-chain magnet (SCM) behavior. This results in a magnetic hysteresis at low temperature whose coercive field is almost doubled when compared to the chains. We thus demonstrate that finite linear molecules can display SCM magnetic relaxation, which is a strong asset for molecular data storage purposes because 1D magnetic relaxation is more robust than the relaxation mechanisms observed in single-molecule magnets (SMMs) where under-barrier magnetic relaxation can operate.
Collapse
Affiliation(s)
- Felix Houard
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 F 35000 Rennes France
| | - Frederic Gendron
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 F 35000 Rennes France
| | - Yan Suffren
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 F 35000 Rennes France
| | - Thierry Guizouarn
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 F 35000 Rennes France
| | - Vincent Dorcet
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 F 35000 Rennes France
| | - Guillaume Calvez
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 F 35000 Rennes France
| | - Carole Daiguebonne
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 F 35000 Rennes France
| | - Olivier Guillou
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 F 35000 Rennes France
| | - Boris Le Guennic
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 F 35000 Rennes France
| | - Matteo Mannini
- LAboratory for Molecular Magnetism (LA.M.M.), Dipartimento di Chimica "Ugo Schiff"(DICUS), Università degli Studi di Firenze, INSTM, UdR Firenze Via della Lastruccia n. 3, Sesto Fiorentino (FI) 50019 Italy
| | - Kevin Bernot
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 F 35000 Rennes France
- Institut Universitaire de France 1 rue Descartes 75005 Paris France
| |
Collapse
|