1
|
Liu J, Dong S, Gai S, Li S, Dong Y, Yu C, He F, Yang P. Four Birds with One Stone: A Bandgap-Regulated Multifunctional Schottky Heterojunction for Robust Synergistic Antitumor Therapy upon Endo-/Exogenous Stimuli. ACS NANO 2024; 18:23579-23598. [PMID: 39150904 DOI: 10.1021/acsnano.4c07904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Considering the profound impact of structure on heterojunction catalysts, the rational design of emerging catalysts with optimized energy band structures is required for antitumor efficiency. Herein, we select titanium nitride (TiN) and Pt to develop a multifunctional Schottky heterojunction named Pt/H-TiN&SRF (PHTS) nanoparticles (NPs) with a narrowed bandgap to accomplish "four birds with one stone" involving enzyo/sono/photo three modals and additional ferroptosis. The in situ-grown Pt NPs acted as electron traps that can cause the energy band to bend upward and form a Schottky barrier, thereby facilitating the separation of electron/hole pairs in exogenous stimulation catalytic therapy. In addition, endogenous catalytic reactions based on peroxidase (POD)- and catalase (CAT)-mimicking activities can also be amplified, triggering intense oxidative stress, in which CAT-like activity decomposes endogenous H2O2 into O2 alleviating hypoxia and provides reactants for sonodynamic therapy. Moreover, PHTS NPs can elicit mild photothermal therapy with boosted photothermal properties as well as ferroptosis with loaded ferroptosis inducer sorafenib for effective tumor ablation and apoptosis-ferroptosis synergistic tumor inhibitory effect. In summary, this paper proposes an attractive design for antitumor strategies and highlights findings for heterojunction catalytic therapy with potential in tumor theranostics.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuyao Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Chenghao Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
2
|
Shi Y, Wang L, Song S, Liu M, Zhang P, Zhong D, Wang Y, Niu Y, Xu Y. Controllable Silver Release for Efficient Treatment of Drug-Resistant Bacterial-Infected Wounds. Chembiochem 2024; 25:e202400406. [PMID: 38850275 DOI: 10.1002/cbic.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/10/2024]
Abstract
The use of traditional Ag-based antibacterial agents is usually accompanied by uncontrollable silver release, which makes it difficult to find a balance between antibacterial performance and biosafety. Herein, we prepared a core-shell system of ZIF-8-derived amorphous carbon-coated Ag nanoparticles (Ag@C) as an ideal research model to reveal the synergistic effect and structure-activity relationship of the structural transformation of carbon shell and Ag core on the regulation of silver release behavior. It is found that Ag@C prepared at 600 °C (AC6) exhibits the best ion release kinetics due to the combination of relatively simple shell structure and lower crystallinity of the Ag core, thereby exerting stronger antibacterial properties (>99.999 %) at trace doses (20 μg mL-1) compared with most other Ag-based materials. Meanwhile, the carbon shell prevents the metal Ag from being directly exposed to the organism and thus endows AC6 with excellent biocompatibility. In animal experiments, AC6 can effectively promote wound healing by inactivating drug-resistant bacteria while regulating the expression of TNF-α and CD31. This work provides theoretical support for the scientific design and clinical application of controllable ion-releasing antibacterial agents.
Collapse
Affiliation(s)
- Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Siqi Song
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Miao Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Pengfei Zhang
- Department of Urology, Key Laboratory of Urinary System Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical School, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yanjing Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| |
Collapse
|
3
|
Gu J, Cheng D, Li H, Yu T, Zhang Z, Liu Y, Wang X, Lu X, Li J. Radioactive hybrid semiconducting polymer nanoparticles for imaging-guided tri-modal therapy of breast cancer. J Mater Chem B 2024; 12:6091-6101. [PMID: 38828732 DOI: 10.1039/d4tb00834k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Due to the rapid progression and aggressive metastasis of breast cancer, its diagnosis and treatment remain a great challenge. The simultaneous inhibition of tumor growth and metastasis is necessary for breast cancer to obtain ideal therapeutic outcomes. We herein report the development of radioactive hybrid semiconducting polymer nanoparticles (SPNH) for imaging-guided tri-modal therapy of breast cancer. Two semiconducting polymers are used to form SPNH with a diameter of around 60 nm via nano-coprecipitation and they are also labeled with iodine-131 (131I) to enhance the imaging functions. The formed SPNH show good radiolabeling stability and excellent photodynamic and photothermal effects under 808 nm laser irradiation to produce singlet oxygen (1O2) and heat. Moreover, SPNH can generate 1O2 with ultrasound irradiation via their sonodynamic properties. After intravenous tail vein injection, SPNH can effectively accumulate in the subcutaneous 4T1 tumors of living mice as verified via fluorescence and single photon emission computed tomography (SPECT) imaging. With the irradiation of tumors using an 808 nm laser and US, SPNH mediate photodynamic therapy (PDT), photothermal therapy (PTT) and sonodynamic therapy (SDT) to kill tumor cells. Such a tri-modal therapy leads to an improved efficacy in inhibiting tumor growth and suppressing tumor metastasis compared to the sole SDT and combinational PDT-PTT. This study thus demonstrates the applications of SPNH to diagnose tumors and combine different therapies for effective breast cancer treatment.
Collapse
Affiliation(s)
- Junhao Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Danling Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Haiyan Li
- Department of Nuclear Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, P. R. China.
| | - Tao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Zhenghe Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Yue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Xiaoying Wang
- Office of Hospital Infection and Disease Control and Prevention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China.
| | - Xia Lu
- Department of Nuclear Medicine, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, P. R. China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
4
|
Chang L, Liu C, Jin Z, Li K, Ling X. Inhomogeneous Au 2S for Photoacoustic Imaging and Photodynamic Tumor Therapy Based on Different Forms of Energy Dissipation. ACS NANO 2024; 18:14925-14937. [PMID: 38808608 DOI: 10.1021/acsnano.3c13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Nanomaterials with unique structures and components play a crucial role in nanomedicine. In this study, we discovered that the inhomogeneous Au2S constructed by cation exchange and acid etching could dissipate energy in different forms after absorbing multichromatic light, which could be used to achieve the integrated diagnosis and treatment of tumors, respectively. Folic acid modified Au2S ringed nanoparticles (FA-Au2S RNs) with an assembly-like structure were demonstrated to result in better PA imaging performance and generate more reactive oxygen species (O2·-, ·OH, and 1O2) than folic acid modified Au2S triangular nanoparticles (FA-Au2S TNs). Finite element analyses determined the reason for the high absorbance properties and synergistic enhancement of plasma resonance in the assembly-like structure of Au2S RNs. Both FA-Au2S nanostructures were modified with folic acid and injected into 4T1 tumor-bearing mice via the tail vein. The best PA imaging contrast was obtained under 700 nm laser illumination, and the most effective PDT antitumor activity was achieved under 1064 nm laser illumination. The PA average of the tumor in the FA-Au2S RN group was approximately 2 times higher than that of the FA-Au2S TN group at 24 h of injection. The PA imaging results of intratumorally injected FA-Au2S RNs proved that they were still able to show better PA signal enhancement at 24 h postinjection. Our study demonstrates that FA-Au2S nanomaterials with unique structures and special properties can be reliably produced using strictly controlled chemical synthesis. It further provides a strategy for the construction of highly sensitive PA imaging platforms and efficient PDT antitumor agents that exploit wavelength-dependent energy dissipation mechanisms.
Collapse
Affiliation(s)
- Ling Chang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen 518060, China
| | - Chao Liu
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182, China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiang Ling
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Chen X, Cheng D, Yu N, Feng J, Li J, Lin L. Tumor-targeting polymer nanohybrids with amplified ROS generation for combined photodynamic and chemodynamic therapy. J Mater Chem B 2024; 12:1296-1306. [PMID: 38193142 DOI: 10.1039/d3tb02341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Reactive oxygen species (ROS) generating strategies have been widely adopted for cancer therapy, but therapeutic efficacies are often low due to the complicated tumor microenvironment. In this study, we present the development of tumor-targeting polymer nanohybrids that amplify ROS generation by combining photodynamic therapy (PDT) and chemodynamic therapy (CDT) for cancer treatment. Such polymer nanohybrids contained three main components: a semiconducting polymer (SP) that acted as the photosensitizer for PDT, manganese dioxide (MnO2) that acted as the catalyst for CDT, and transferrin that mediated tumor targeting via binding to transferrin receptors overexpressed on the surface of tumor cells. The formed nanohybrids (TSM) showed obviously enhanced accumulation efficacy in tumor sites because of their targeting ability. In tumor sites, TSM produced singlet oxygen (1O2) under near-infrared (NIR) laser irradiation and a hydroxyl radical (˙OH) via reacting with hydrogen peroxide (H2O2), which resulted in amplified generation of ROS to achieve PDT/CDT combinational therapy. The growth of subcutaneous 4T1 tumors was remarkably inhibited via TSM-mediated treatment. In addition, this therapeutic efficacy could suppress tumor metastasis in the liver and lungs. This study presents a targeting hybrid nanoplatform to combine different ROS generating strategies for effective cancer therapy.
Collapse
Affiliation(s)
- Xiaodan Chen
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Danling Cheng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Ningyue Yu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jian Feng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jingchao Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Lin Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
6
|
Gennari A, Simon R, Benvenutti EV, Nicolodi S, Renard G, Chies JM, Volpato G, Volken de Souza CF. Magnetic core-shell cellulose system for the oriented immobilization of a recombinant β-galactosidase with a protein tag. Int J Biol Macromol 2024; 256:128418. [PMID: 38029902 DOI: 10.1016/j.ijbiomac.2023.128418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
The objective of this study was to immobilize a recombinant β-galactosidase (Gal) tagged with a cellulose-binding domain (CBD) onto a magnetic core-shell (CS) cellulose system. After 30 min of reaction, 4 U/capsule were immobilized (CS@Gal), resulting in levels of yield and efficiency exceeding 80 %. The optimal temperature for β-galactosidase-CBD activity increased from 40 to 50 °C following oriented immobilization. The inhibitory effect of galactose decreased in the enzyme reactions catalyzed by CS@Gal, and Mg2+ increased the immobilized enzyme activity by 40 % in the magnetic CS cellulose system. The relative enzyme activity of the CS@Gal was 20 % higher than that of the soluble enzyme activity after 20 min at 50 °C. The CS support and CS@Gal capsules exhibited an average size of 8 ± 1 mm, with the structure of the shell (alginate-pectin-cellulose) enveloping and isolating the magnetic core. The immobilized β-galactosidase-CBD within the magnetic CS cellulose system retained ∼80 % of its capacity to hydrolyze lactose from skim milk after 10 reuse cycles. This study unveils a novel and promising support for the oriented immobilization of recombinant β-galactosidase using a magnetic CS system and a CBD tag. This support facilitates β-galactosidase reuse and efficient separation, consequently enhancing the catalytic properties of the enzyme.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Sabrina Nicolodi
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Quatro G Pesquisa & Desenvolvimento Ltda, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
7
|
Lancel M, Lindgren M, Monnereau C, Amara Z. Kinetic effects in singlet oxygen mediated oxidations by immobilized photosensitizers on silica. Photochem Photobiol Sci 2024; 23:79-92. [PMID: 38066378 DOI: 10.1007/s43630-023-00502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/04/2023] [Indexed: 02/02/2024]
Abstract
Singlet oxygen (1O2) mediated photo-oxidations are important reactions involved in numerous processes in chemical and biological sciences. While most of the current research works have aimed at improving the efficiencies of these transformations either by increasing 1O2 quantum yields or by enhancing its lifetime, we establish herein that immobilization of a molecular photosensitizer onto silica surfaces affords significant, substrate dependant, enhancement in the reactivity of 1O2. Probing a classical model reaction (oxidation of Anthracene-9, 10-dipropionic acid, ADPA or dimethylanthracene, DMA) with various spectrofluorimetric techniques, it is here proposed that an interaction between polar substrates and the silica surface is responsible for the observed phenomenon. This discovery could have a direct impact on the design of future photosensitized 1O2 processes in various applications ranging from organic photochemistry to photobiology.
Collapse
Affiliation(s)
- Maxime Lancel
- Equipe Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA 7528, Conservatoire national des arts et metiers, HESAM université, 75003, Paris, France
| | - Mikaël Lindgren
- Faculty of Natural Sciences, Department of Physics, Norwegian University of Science and Technology, Gløshaugen, 7491, Trondheim, Norway
| | - Cyrille Monnereau
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, University of Lyon, 69364, Lyon, France.
| | - Zacharias Amara
- Equipe Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA 7528, Conservatoire national des arts et metiers, HESAM université, 75003, Paris, France.
| |
Collapse
|
8
|
Agwa MM, Elmotasem H, Moustafa RI, Abdelsattar AS, Mohy-Eldin MS, Fouda MMG. Advent in proteins, nucleic acids, and biological cell membranes functionalized nanocarriers to accomplish active or homologous tumor targeting for smart amalgamated chemotherapy/photo-therapy: A review. Int J Biol Macromol 2023; 253:127460. [PMID: 37866559 DOI: 10.1016/j.ijbiomac.2023.127460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Conventional cancer mono-therapeutic approaches including radiotherapy, surgery, and chemotherapy don't always achieve satisfactory outcomes and are frequently associated with significant limitations. Although chemotherapy is a vital intervention, its effectiveness is frequently inadequate and is associated with metastasis, multidrug resistance, off-target effect, and normal cells toxicity. Phototherapies are employed in cancer therapy, encompassing photo-dynamic and photo-thermal therapies which under favorable NIR laser light irradiation initiate the included photosensitizers and photo-thermal agents to generate ROS or thermal heat respectively for cancer cells destruction. Photo-therapy is considered noninvasive, posing no resistance, but it still suffers from several pitfalls like low penetration depth and excessive heat generation affecting neighboring tissues. Improved selectivity and tumor-homing capacity could be attained through surface modulation of nanoparticles with targeting ligands that bind to receptors, which are exclusively overexpressed on cancerous cells. Developing novel modified targeted nanoparticulate platforms integrating different therapeutic modalities like photo-therapy and chemotherapy is a topic of active research. This review aimed to highlight recent advances in proteins, nucleic acids, and biological cell membranes functionalized nanocarriers for smart combinatorial chemotherapy/photo-therapy. Nanocarriers decorated with precise targeting ligands, like aptamers, antibody, and lactoferrin, to achieve active tumor-targeting or camouflaging using various biological cell membrane coating are designed to achieve homologous tumor-targeting.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El- Behooth St., Dokki, Giza 12622, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El- Behooth St., Dokki, Giza 12622, Egypt
| | - Rehab I Moustafa
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research and Technology Institute, (TRT) National Research Centre, 33 El- Behooth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
9
|
Yang L, Dong S, Gai S, Yang D, Ding H, Feng L, Yang G, Rehman Z, Yang P. Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes. NANO-MICRO LETTERS 2023; 16:28. [PMID: 37989794 PMCID: PMC10663430 DOI: 10.1007/s40820-023-01224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/23/2023] [Indexed: 11/23/2023]
Abstract
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007, nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity, low cost, mild reaction conditions, good stability, and suitable for large-scale production. Recently, with the cross fusion of nanomedicine and nanocatalysis, nanozyme-based theranostic strategies attract great attention, since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects. Thus, various nanozymes have been developed and used for tumor therapy. In this review, more than 270 research articles are discussed systematically to present progress in the past five years. First, the discovery and development of nanozymes are summarized. Second, classification and catalytic mechanism of nanozymes are discussed. Third, activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory, machine learning, biomimetic and chemical design. Then, synergistic theranostic strategy of nanozymes are introduced. Finally, current challenges and future prospects of nanozymes used for tumor theranostic are outlined, including selectivity, biosafety, repeatability and stability, in-depth catalytic mechanism, predicting and evaluating activities.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Guixin Yang
- Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| |
Collapse
|
10
|
Khan S, Falahati M, Cho WC, Vahdani Y, Siddique R, Sharifi M, Jaragh-Alhadad LA, Haghighat S, Zhang X, Ten Hagen TLM, Bai Q. Core-shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv Colloid Interface Sci 2023; 321:103007. [PMID: 37812992 DOI: 10.1016/j.cis.2023.103007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
It is well known that metal-organic framework (MOF) nanostructures have unique characteristics such as high porosity, large surface areas and adjustable functionalities, so they are ideal candidates for developing drug delivery systems (DDSs) as well as theranostic platforms in cancer treatment. Despite the large number of MOF nanostructures that have been discovered, conventional MOF-derived nanosystems only have a single biofunctional MOF source with poor colloidal stability. Accordingly, developing core-shell MOF nanostructures with good colloidal stability is a useful method for generating efficient drug delivery, multimodal imaging and synergistic therapeutic systems. The preparation of core-shell MOF nanostructures has been done with a variety of materials, but inorganic nanoparticles (NPs) are highly effective for drug delivery and imaging-guided tumor treatment. Herein, we aimed to overview the synthesis of core-shell inorganic NP@MOF nanostructures followed by the application of core-shell MOFs derived from magnetic, quantum dots (QDs), gold (Au), and gadolinium (Gd) NPs in drug delivery and imaging-guided tumor treatment. Afterward, we surveyed different factors affecting prolonged drug delivery and cancer therapy, cellular uptake, biocompatibility, biodegradability, and enhanced permeation and retention (EPR) effect of core-shell MOFs. Last but not least, we discussed the challenges and the prospects of the field. We envision this article may hold great promise in providing valuable insights regarding the application of hybrid nanostructures as promising and potential candidates for multimodal imaging-guided combination cancer therapy.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Yasaman Vahdani
- Department of Biochemistry and Molecular Medicine, University of Montreal, Canada
| | - Rabeea Siddique
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Ünlü S, Yaşa Atmaca G, Tuncel Elmalı F, Erdoğmuş A. Comparing Singlet Oxygen Generation of Schiff Base Substituted Novel Silicon Phthalocyanines by Sonophotochemical and Photochemical Applications. Photochem Photobiol 2023; 99:1233-1239. [PMID: 36691298 DOI: 10.1111/php.13782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023]
Abstract
Although the sonophotodynamic method has an effective therapeutic outcome for anticancer treatment compared with the photodynamic method, there are not enough related studies in the literature and this study aims to contribute to the development of sonophotodynamic studies. For this purpose, the Schiff base substituted silicon phthalocyanines were designed and synthesized as effective sensitizer candidates and the photophysicochemical and sonophotochemical features of the phthalocyanines were examined to increase singlet oxygen efficiency. The calculated ΦΔ values indicate that the contribution of substituent groups improved the production of singlet oxygen compared with silicon (IV) phthalocyanine dichloride (SiPcCI2 ) and also the sonophotochemical applications increased the singlet oxygen yields. The ΦΔ values (ΦΔ = 0.76 for axially bis-{4-[(E)-(pyridin-3-ylimino)methyl]phenol} substituted silicon (IV) phthalocyanine (2a), 0.68 for axially bis-4-[(E)-{[(pyridin-3-yl)methyl]imino}methyl]phenol substituted silicon (IV) phthalocyanine (2b) in photochemical study) reached to ΦΔ = 0.98 for 2a, 0.94 for 2b in sonophotochemical study. This article will enrich the literature on increasing singlet oxygen yield.
Collapse
Affiliation(s)
- Seda Ünlü
- Department of Chemistry, Istanbul Medeniyet University, Istanbul, Turkey
| | | | | | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
12
|
Wang Y, Li S, Ren X, Yu S, Meng X. Nano-engineering nanomedicines with customized functions for tumor treatment applications. J Nanobiotechnology 2023; 21:250. [PMID: 37533106 PMCID: PMC10399036 DOI: 10.1186/s12951-023-01975-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Nano-engineering with unique "custom function" capability has shown great potential in solving technical difficulties of nanomaterials in tumor treatment. Through tuning the size and surface properties controllablly, nanoparticles can be endoewd with tailored structure, and then the characteristic functions to improve the therapeutic effect of nanomedicines. Based on nano-engineering, many have been carried out to advance nano-engineering nanomedicine. In this review, the main research related to cancer therapy attached to the development of nanoengineering nanomedicines has been presented as follows. Firstly, therapeutic agents that target to tumor area can exert the therapeutic effect effectively. Secondly, drug resistance of tumor cells can be overcome to enhance the efficacy. Thirdly, remodeling the immunosuppressive microenvironment makes the therapeutic agents work with the autoimmune system to eliminate the primary tumor and then prevent tumor recurrence and metastasis. Finally, the development prospects of nano-engineering nanomedicine are also outlined.
Collapse
Affiliation(s)
- Yuxin Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shimei Li
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Shiping Yu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
13
|
Wang H, Qiao C, Guan Q, Wei M, Li Z. Nanoparticle-mediated synergistic anticancer effect of ferroptosis and photodynamic therapy: Novel insights and perspectives. Asian J Pharm Sci 2023; 18:100829. [PMID: 37588992 PMCID: PMC10425855 DOI: 10.1016/j.ajps.2023.100829] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 07/02/2023] [Indexed: 08/18/2023] Open
Abstract
Current antitumor monotherapy has many limitations, highlighting the need for novel synergistic anticancer strategies. Ferroptosis is an iron-dependent form of nonapoptotic cell death that plays a pivotal regulatory role in tumorigenesis and treatment. Photodynamic therapy (PDT) causes irreversible chemical damage to target lesions and is widely used in antitumor therapy. However, PDT's effectiveness is usually hindered by several obstacles, such as hypoxia, excess glutathione (GSH), and tumor resistance. Ferroptosis improves the anticancer efficacy of PDT by increasing oxygen and reactive oxygen species (ROS) or reducing GSH levels, and PDT also enhances ferroptosis induction due to the ROS effect in the tumor microenvironment (TME). Strategies based on nanoparticles (NPs) can subtly exploit the potential synergy of ferroptosis and PDT. This review explores recent advances and current challenges in the landscape of the underlying mechanisms regulating ferroptosis and PDT, as well as nano delivery system-mediated synergistic anticancer activity. These include polymers, biomimetic materials, metal organic frameworks (MOFs), inorganics, and carrier-free NPs. Finally, we highlight future perspectives of this novel emerging paradigm in targeted cancer therapies.
Collapse
Affiliation(s)
- Haiying Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chu Qiao
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qiutong Guan
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhenhua Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
14
|
Mezghrani B, Ali LMA, Cubedo N, Rossel M, Hesemann P, Durand JO, Bettache N. Periodic Mesoporous Ionosilica Nanoparticles for Dual Cancer Therapy: Two-Photon Excitation siRNA Gene Silencing in Cells and Photodynamic Therapy in Zebrafish Embryos. Int J Pharm 2023:123083. [PMID: 37245740 DOI: 10.1016/j.ijpharm.2023.123083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Photodynamic therapy (PDT) and photochemical internalization (PCI) are two methods that use light to provoke cell death or disturbance of cellular membranes, respectively, via excitation of a photosensitizer and the formation of reactive oxygen species (ROS). In this context, two-photon excitation (TPE) is of high interest for PCI and/or PDT due to spatiotemporal resolution of two-photon light and deeper penetration of near-infrared light in biological tissues. Here, we report that Periodic Mesoporous Ionosilica Nanoparticles (PMINPs) containing porphyrin groups allow the complexation of pro-apoptotic siRNA. These nano-objects were incubated with MDA-MB-231 breast cancer cells, and TPE-PDT led to significant cell death. Finally, MDA-MB-231 breast cancer cells were pre-incubated with the nanoparticles and then injected in the pericardial cavity of zebrafish embryos. After 24 hours, the xenografts were irradiated with femtosecond pulsed laser and the size monitoring by imaging showed a decrease 24 h after irradiation. Pro-apoptotic siRNA was complexed with the nanoparticles and incubation with MDA-MB-231 cells did not lead to cancer cell death in dark conditions, but with two-photon irradiation, TPE-PCI was observed and a synergic effect between pro-apoptotic siRNA and TPE-PDT was noticed, leading to 90% of cancer cell death. Therefore, PMINPs represent an interesting system for nanomedicine applications.
Collapse
Affiliation(s)
- Braham Mezghrani
- ICGM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France; IBMM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Lamiaa M A Ali
- IBMM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France; Department of Biochemistry, Medical Research Institute, Alexandria University, 21561 Alexandria, Egypt
| | - Nicolas Cubedo
- MMDN, Inserm U1198, Univ Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Mireille Rossel
- MMDN, Inserm U1198, Univ Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Peter Hesemann
- ICGM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Jean-Olivier Durand
- ICGM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Nadir Bettache
- IBMM, Univ Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293 Montpellier Cedex 05, France.
| |
Collapse
|
15
|
Li Z, Li Z, Wang J. Visualization of Phototherapy Evolution by Optical Imaging. Molecules 2023; 28:molecules28103992. [PMID: 37241733 DOI: 10.3390/molecules28103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a non-invasive and effective approach used for cancer treatment, in which phototherapeutic agents are irradiated with an appropriate light source to produce cytotoxic reactive oxygen species (ROS) or heat to ablate cancer cells. Unfortunately, traditional phototherapy lacks a facile imaging method to monitor the therapeutic process and efficiency in real time, usually leading to severe side effects due to high levels of ROS and hyperthermia. To realize precise cancer treatment methods, it is highly desired to develop phototherapeutic agents possessing an imaging ability to evaluate the therapeutic process and efficacy in real time during cancer phototherapy. Recently, a series of self-reporting phototherapeutic agents were reported to monitor PDT and PTT processes by combining optical imaging technologies with phototherapy. Due to the real-time feedback provided by optical imaging technology, therapeutic responses or dynamic changes in the tumor microenvironment could be evaluated in a timely manner, thereby achieving personalized precision treatment and minimizing toxic side effects. In this review, we focus on the advances in the development of self-reporting phototherapeutic agents for a cancer phototherapy evaluation based on optical imaging technology to realize precision cancer treatments. Additionally, we propose the current challenges and future directions of self-reporting agents for precision medicine.
Collapse
Affiliation(s)
- Zhiheng Li
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Zheng Li
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Tang S, Li G, Zhang H, Bao Y, Wu X, Yan R, Wang Z, Jin Y. Organic disulfide-modified folate carbon dots for tumor-targeted synergistic chemodynamic/photodynamic therapy. Biomater Sci 2023; 11:3128-3143. [PMID: 36919663 DOI: 10.1039/d3bm00124e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Carbon dots (CDs) have great potential for cancer diagnosis and treatment. Photodynamic therapy and chemodynamic therapy are promising treatments mediated by reactive oxygen species (ROS), which have the advantages of being minimally invasive, having no multi-drug resistance, and having no systemic toxic side effects. However, the tumor microenvironment (TME) and poor targetability often reduce the therapeutic effect. In this work, we have successfully prepared folate-based carbon dots (FCP-CDs) from folic acid (FA), citric acid (CA), and polyethyleneimine (PEI) for tumor-targeting. The surface of FCP-CDs was modified using organic disulfide, 3,3'-dithiodipropionic acid (DTPA), and a photosensitizer (PS) pyropheophorbide-a (PPa) to form a tumor microenvironment-responsive nanoplatform, FCP-CDs@DTPA@PPa (named FCPPD), for synergistic cancer therapy. The results showed that FCPPD effectively preserved the tumor target specificity of folic acid and the photodynamic therapeutic (PDT) activity of PPa, and could provide additional chemodynamic therapeutic (CDT) function by reacting with hydrogen peroxide (H2O2) to generate ˙OH. The introduction of DTPA, which contains disulfide bonds, endows FCPPD with an excellent ability to deplete glutathione (GSH) in tumors via intracellular redox reactions, amplifying intracellular oxidative strain and enhancing ROS-based therapeutic effects. Systematic in vitro and in vivo studies under various conditions have shown that the obtained FCPPD nanoparticles have good biocompatibility and could be a promising therapeutic agent for imaging-guided PDT/CDT combination therapy.
Collapse
Affiliation(s)
- Sihan Tang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Guanghao Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China. .,Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
17
|
Devendrapandi G, I Sahay M, Padmanaban D, Panneerselvam A, Palraj R, Thanikasalam R, kuppan S, Sadaiyandi V, Balu R, Rajendiran N. Biogenic Synthesis of Gold Nanoparticles using Bael Fruit Juice and its efficacy against human A-549 lung cancer cell line. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
18
|
Novel silicon phthalocyanines with improved singlet oxygen generation by Sono-photochemical applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Ünlü S, Elmalı FT, Atmaca GY, Erdoğmuş A. Synthesis of axially Schiff base new substituted silicon phthalocyanines and investigation of photochemical and sono-photochemical properties. Photodiagnosis Photodyn Ther 2022; 40:103192. [PMID: 36336321 DOI: 10.1016/j.pdpdt.2022.103192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Sono-photodynamic therapy, which show a very high therapeutic effect compared to photodynamic therapy, is a newer method for anticancer treatments. However, unlike Photodynamic therapy (PDT), the number of studies measuring the efficiency of singlet oxygen for the Sono-photodynamic therapy (SPDT) method is quite insufficient in the literature. Therefore, this study aimed to synthesis novel axially substituted silicon (IV) phthalocyanines containing imine groups with improved photochemical properties and then reported the efficiency of singlet oxygen by both of photochemical and sono-photochemical studies. According to the results, the substituent group increased the singlet oxygen yield of silicon (IV) phthalocyanine dichloride and the sono-photochemical effect increased the singlet oxygen yields (ΦΔ=0.35 for 2a, 0.69 for 2b in photochemical study, 0.78 for 2a, 0.97 for 2b in sono-photochemical study).This article may pave the way to achieve high singlet oxygen efficiency.
Collapse
Affiliation(s)
- Seda Ünlü
- Department of Chemistry, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Fikriye Tuncel Elmalı
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey.
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul 34210, Turkey
| |
Collapse
|
21
|
Li Y, Wang Y, Shang H, Wu J. Graphene Quantum Dots Modified Upconversion Nanoparticles for Photodynamic Therapy. Int J Mol Sci 2022; 23:ijms232012558. [PMID: 36293415 PMCID: PMC9604409 DOI: 10.3390/ijms232012558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT), as a novel technique, has been extensively employed in cancer treatment by utilizing reactive oxygen species (ROS) to kill malignant cells. However, most photosensitizers (PSs) are short of ROS yield and affect the therapeutic effect of PDT. Thus, there is a substantial demand for the development of novel PSs for PDT to advance its clinical translation. In this study, we put forward a new strategy for PS synthesis via modifying graphene quantum dots (GQDs) on the surface of rare-earth elements doped upconversion nanoparticles (UCNPs) to produce UCNPs@GQDs with core-shell structure. This new type of PSs combined the merits of UCNPs and GQDs and produced ROS efficiently under near-infrared light excitation to trigger the PDT process. UCNPs@GQDs exhibited high biocompatibility and obvious concentration-dependent PDT efficiency, shedding light on nanomaterials-based PDT development.
Collapse
Affiliation(s)
| | | | - Hong Shang
- Correspondence: (H.S.); (J.W.); Tel.: +86-10-8232-2758 (H.S. & J.W.)
| | - Jing Wu
- Correspondence: (H.S.); (J.W.); Tel.: +86-10-8232-2758 (H.S. & J.W.)
| |
Collapse
|
22
|
Bu J, Wan Q, Deng Z, Liu H, Li T, Zhou C, Zhong S. Waste coal cinder catalyst enhanced electrocatalytic oxidation and persulfate advanced oxidation for the degradation of sulfadiazine. CHEMOSPHERE 2022; 303:134880. [PMID: 35584712 DOI: 10.1016/j.chemosphere.2022.134880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Waste coal cinder, a kind of waste cinder discharged from coal combustion of thermal power plants, industrial and civil boilers, and other equipment, was rich in metal oxides with catalytic activity. In this work, waste coal cinder was used to enhance electrochemical coupling peroxymonosulfate (PMS) advanced oxidation degradation of sulfadiazine (SD). The surface morphology, elemental composition, and electrocatalytic activity of waste coal cinder were characterized by various characterization instruments. The results show that compared with simple electrocatalytic oxidation, electrocatalytic oxidation + waste coal cinder and electrocatalytic coupled persulfate oxidation, electrocatalytic oxidation + PMS advanced oxidation + waste coal cinder has the largest removal efficiency (99.95%) and mineralization rates (90.16%) of SD in 90 min, indicating that the introduction of waste coal cinder greatly increases the degradation efficiency. •OH and SO4-• were detected during the process of degradation. The optimal degradation process parameters were explored through different voltage, pH, plate spacing, aeration flow rate, potassium peroxymonosulfate sulfate complex salt dose, and Na2SO4 dosage. Cycling experiments show waste coal cinder has good structural stability. Through the analysis of triple quadrupole liquid chromatography-mass spectrometry (LC-MS), we put forward three possible ways of SD degradation. This research will provide a novel vision for water treatment.
Collapse
Affiliation(s)
- Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Qingqing Wan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Tianhao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
23
|
Lin YS, Lin KS, Mdlovu NV, Weng MT, Tsai WC, Jeng US. De novo synthesis of a MIL-125(Ti) carrier for thermal- and pH-responsive drug release. BIOMATERIALS ADVANCES 2022; 140:213070. [PMID: 35961189 DOI: 10.1016/j.bioadv.2022.213070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Microporous round cake-like (diameter: 900 ± 100 nm) MIL-125(Ti) carrier with a central metal (Ti) exhibiting bio-affinity and possessing a great potential to be used as drug release platform, has been synthesized in the present study. The thermal and pH responsiveness of drug delivery systems (DDS) are the most important parameters for drug release and can be provided through polymer coating techniques. The Pluronic F127 (F127) and chitosan (CH) monomers were inserted into the crystal lattice of MIL-125(Ti) carrier during the de novo synthesis process, which were subsequently loaded with doxorubicin (DOX). The results reveal particle size changes (ranged between 30 and 50 %) from the original size of the MIL-125(Ti) carrier in response to temperature and pH when the carrier reaches acid environment. The drug release profiles have been completed through self-design device, which provides for the real-time release in the DOX amounts via UV-Vis spectra. The kinetics analysis was used to evaluate the R2 values of first order, Higuchi, Korsmeyer-peppas, and Weibull fitting equations, where the Weibull fitting indicated the best R2. An increase by 59.3 % of DOX released under the acid status (pH = 5.4) was observed, indicating that the CH-MIL-125(Ti) carrier is temperature and pH responsive. Moreover, the lattice explosion resulting from the temperature increase in the range of 25-42 °C caused an increase in F127-MIL-125(Ti) by 30.8-38.3 %. The simulated SAXS/WAXS studies for the microstructures of MIL-125(Ti) based DDS at different temperatures after polymer coating (F127-MIL-125(Ti)) provide the possible mechanism of lattice explosion. As such, the responsive Ti-MOF has a highly potential for use in the applications of cancer treatment.
Collapse
Affiliation(s)
- You-Sheng Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Ndumiso Vukile Mdlovu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100233, Taiwan; Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan
| | - Wei-Chin Tsai
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Science-Based Industrial Park, Hsinchu 30077, Taiwan
| |
Collapse
|
24
|
Guo Y, Zhu W, Tao M, Wu X, Chen J, Peng X, Zheng S, Zhao Z, Cao Z. Delicate and Independent Manipulation of Dynamic Fluorescence Behavior of Polymer Nanoparticles Based on a Core-Shell Strategy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39384-39395. [PMID: 35972915 DOI: 10.1021/acsami.2c11279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescent polymer nanomaterials with dynamic fluorescence properties hold great potential in many advanced applications, including but not limited to information encryption, adaptive camouflage, and biosensors. The key to improving the application value of materials is to establish an accurate control strategy for dynamic fluorescence behavior. Herein, we develop a core-shell engineering strategy to precisely and independently manipulate the dynamic fluorescence behavior through the shell polymeric matrix. The core-shell fluorescent polymer nanoparticles (CS-FPNPs) are constructed through a sequential process of miniemulsion polymerization and seeded emulsion polymerization. Taking advantage of the core-shell structure, the rigid core matrix ensures the strong initial emission of AIE units, while the photoisomerization behavior of spiropyrane (SP) units is delicately and independently regulated by the rigidness of the shell matrix. Thereby, CS-FPNPs exhibit bright time-dependent reversible dynamic fluorescence behavior under alternating UV/vis irradiation. Benefited from the excellent processability and film formation ability, we have successfully applied CS-FPNPs to dynamic decorative painting, warning labels, and dynamic QR code security. Impressively, the fluorescence manipulation strategy based on core-shell engineering allows the independent regulation of specific luminescent units in complicated emission systems to accurately embody designed emission behavior.
Collapse
Affiliation(s)
- Yalong Guo
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Meng Tao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinlei Wu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Province Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Province Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Sijia Zheng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Province Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zhihai Cao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|