1
|
Zhang SR, Zou YH, Wang HN, Xu GJ, Xie W, Xu N, Xu YH, Lan YQ. Varied CO 2 photoreduction activities of UiO-66-NH 2 MOFs with different aggregation morphologies. Chem Commun (Camb) 2024; 60:14641-14644. [PMID: 39569594 DOI: 10.1039/d4cc04919e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Several kinds of UiO-66-NH2 with different aggregation morphologies were prepared to verify that the morphology of the photocatalyst could influence charge transfer. That showing poor aggregation exhibits superior CO2 photoreduction performance, attributed to the small particle size related to the poor aggregation and to the resulting high efficiency of separation of photogenerated electrons and holes.
Collapse
Affiliation(s)
- Shu-Ran Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, Jilin, People's Republic of China.
- The Joint Laboratory of Intelligent Manufacturing of Energy and Environmental Materials, Changchun, 130103, Jilin, People's Republic of China
| | - Yan-Hong Zou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China.
| | - Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China.
| | - Guang-Juan Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, Jilin, People's Republic of China.
| | - Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, Jilin, People's Republic of China.
| | - Na Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, Jilin, People's Republic of China.
| | - Yan-Hong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, Jilin, People's Republic of China.
| | - Ya-Qian Lan
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education) Key Lab. of ETESPG(GHEI), South China Normal University Guangzhou, 510006, P. R. China.
| |
Collapse
|
2
|
Li WL, Shuai Q, Yu J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402783. [PMID: 39115100 DOI: 10.1002/smll.202402783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Indexed: 11/08/2024]
Abstract
The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.
Collapse
Affiliation(s)
- Wen-Liang Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qi Shuai
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiamei Yu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
3
|
Lei Y, Wang S, Jiang Y, Li Z, Liu N, Xu Y, Yu J, Cui M, Li Y, Zhao L. A robust triphenylamine-based monolithic polymer network for selective sieving of CO 2 and PM from flue gas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174463. [PMID: 38964385 DOI: 10.1016/j.scitotenv.2024.174463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The increasingly urgent issue of climate change is driving the development of carbon dioxide (CO2) capture and separation technologies in flue gas after combustion. The monolithic adsorbent stands out in practical adsorption applications for its simplified powder compaction process while maintaining the inherent balance between energy consumption for regeneration and selectivity for adsorption. However, optimizing the adsorption capacity and selectivity of CO2 separation materials remains a significant challenge. Herein, we synthesized monolithic polymer networks (N-CMPs) with triphenylamine adsorption sites, acid-base environment tolerance, and precise narrow microchannel pore systems for the selective sieving of CO2 and particulate matter (PM) in flue gas. The inherent continuous covalent bonding of N-CMPs, along with their highly delocalized π-π conjugated porous framework, ensures the stability of the monolithic polymer network's adsorption and separation capabilities under wet and acid-base conditions. Specifically, under the conditions of 1 bar at 273 K, the CO2 adsorption capacity of N-CMP-1 is 3.35 mmol/g. Attributed to the highly polar environment generated by triphenylamine and the inherent high micropore/mesopore ratio, N-CMPs exhibit an excellent ideal adsorbed solution theory (IAST) selectivity for CO2/N2 under simulated flue gas conditions (CO2/N2 = 15:85). Dynamic breakthrough experiments further visualize the high separation efficiency of N-CMPs in practical adsorption applications. Moreover, under acid-base conditions, N-CMPs achieve a capture efficiency exceeding 99.76 % for PM0.3, enabling the selective separation of CO2 and PM in flue gas. In fact, the combined capture of hazardous PM and CO2 from the exhaust gases produced by the combustion of fossil fuels will play a pivotal role in mitigating climate change and environmental issues until low-carbon and alternative energy technologies are widely adopted.
Collapse
Affiliation(s)
- Yang Lei
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Shaozhen Wang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanli Jiang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Nana Liu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuan Xu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiao Yu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Mengjiao Cui
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Li Zhao
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
4
|
Zong L, Li X, Cai P, Zhou HC, Huang N. β-Ketoenamine Porous Organic Polymers for High-Efficiency Carbon Dioxide Adsorption and Separation. CHEMSUSCHEM 2024:e202401500. [PMID: 39180755 DOI: 10.1002/cssc.202401500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
To mitigate the greenhouse effect, a number of porous organic polymers (POPs) has been developed for carbon capture. Considering the permanent quadrupole of symmetrical CO2 molecules, the integration of electron-rich groups into POPs is a feasible way to enhance the dipole-quadrupole interactions between host and guest. To comprehensively explore the effect of pore environment, including specific surface area, pore size, and number of heteroatoms, on carbon dioxide adsorption capacity, we synthesized a series of microporous POPs with different content of β-ketoenamine structures via Schiff-base condensation reactions. These materials exhibit high BET specific surface areas, high stability, and excellent CO2 adsorption capacity. It is worth mentioning that the CO2 adsorption capacity and CO2/N2 selectivity of TAPPy-TFP reaches 3.87 mmol g-1 and 27. This work demonstrates that the introduction of β-ketoenamine sites directly through condensation reaction is an effective strategy to improve the carbon dioxide adsorption performance of carbon dioxide.
Collapse
Affiliation(s)
- Lina Zong
- Departmentof Polymer Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyu Li
- Dalian Ecological and Environmental Affairs Service Center, Dalian Municipal Bureau of Ecological Environment, Dalian, 116023, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Ning Huang
- Departmentof Polymer Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Dai H, Gao X, Liu C, Dai H, Zhang L. Lean-rich combustion characteristics of methane and ammonia in the combined porous structures for carbon reduction and alternative fuel development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173375. [PMID: 38797416 DOI: 10.1016/j.scitotenv.2024.173375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Ammonia as a carbon-free alternative fuel has received much attention with the consumption of fossil fuels. In order to explore the mixed combustion of methane and ammonia, a combined porous media burner was designed with pellets embedded in annular ceramic foam. And the effects of operating parameters on combustion characteristics were investigated. The results showed that the ammonia addition increased the combustion temperature and reduced carbon dioxide emissions at the equivalence ratio of <1. And the ammonia promoted the conversion of CO2 to CO for an equivalence ratio of >1. With the increasing of the ammonia ratio, the CO selectivity increased but the CO2 selectivity decreased. In addition, the mixed combustion of ammonia and methane improved the hydrogen production. The fuel ratio of methane to ammonia (0.80: 0.20) resulted in higher syngas production and lower CO2 mole fraction. The flame propagated faster in ceramic foam with lower pore densities (20 PPI) so the preheating time was greatly reduced. Moreover, the 40 PPI ceramic foam was conducive to the stability of the flame position in the upstream zone, and the H2 mole fraction achieved 10.60 % at the inlet velocity of 14 cm/s.
Collapse
Affiliation(s)
- Huaming Dai
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiaojie Gao
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Chun Liu
- Marine Design & Research Institute of China, Shanghai 200011, China
| | - Hongchao Dai
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Lijun Zhang
- Marine Design & Research Institute of China, Shanghai 200011, China
| |
Collapse
|
6
|
Weng J, Zhu C, Zhao B, Tang W, Lu X, Liu F, Wu M, Ding Y, Gao PX. Enhancing sorption kinetics by oriented and single crystalline array-structured ZSM-5 film on monoliths. Nat Commun 2024; 15:5541. [PMID: 38956044 PMCID: PMC11220059 DOI: 10.1038/s41467-024-49672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
To enhance the reaction kinetics without sacrificing activity in porous materials, one potential solution is to utilize the anisotropic distribution of pores and channels besides enriching active centers at the reactive surfaces. Herein, by designing a unique distribution of oriented pores and single crystalline array structures in the presence of abundant acid sites as demonstrated in the ZSM-5 nanorod arrays grown on monoliths, both enhanced dynamics and improved capacity are exhibited simultaneously in propene capture at low temperature within a short duration. Meanwhile, the ZSM-5 array also helps mitigate the long-chain HCs and coking formation due to the enhanced diffusion of reactants in and reaction products out of the array structures. Further integrating the ZSM-5 array with Co3O4 nanoarray enables comprehensive propene removal throughout a wider temperature range. The array structured film design could offer energy-efficient solutions to overcome both sorption and reaction kinetic restrictions in various solid porous materials for various energy and chemical transformation applications.
Collapse
Affiliation(s)
- Junfei Weng
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Chunxiang Zhu
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Binchao Zhao
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Wenxiang Tang
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Xingxu Lu
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Fangyuan Liu
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Mudi Wu
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Pu-Xian Gao
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
7
|
Huang Q, Xia B, Li M, Guan H, Antonietti M, Chen S. Single-zinc vacancy unlocks high-rate H 2O 2 electrosynthesis from mixed dioxygen beyond Le Chatelier principle. Nat Commun 2024; 15:4157. [PMID: 38755137 PMCID: PMC11098813 DOI: 10.1038/s41467-024-48256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Le Chatelier's principle is a basic rule in textbook defining the correlations of reaction activities and specific system parameters (like concentrations), serving as the guideline for regulating chemical/catalytic systems. Here we report a model system breaking this constraint in O2 electroreduction in mixed dioxygen. We unravel the central role of creating single-zinc vacancies in a crystal structure that leads to enzyme-like binding of the catalyst with enhanced selectivity to O2, shifting the reaction pathway from Langmuir-Hinshelwood to an upgraded triple-phase Eley-Rideal mechanism. The model system shows minute activity alteration of H2O2 yields (25.89~24.99 mol gcat-1 h-1) and Faradaic efficiencies (92.5%~89.3%) in the O2 levels of 100%~21% at the current density of 50~300 mA cm-2, which apparently violate macroscopic Le Chatelier's reaction kinetics. A standalone prototype device is built for high-rate H2O2 production from atmospheric air, achieving the highest Faradaic efficiencies of 87.8% at 320 mA cm-2, overtaking the state-of-the-art catalysts and approaching the theoretical limit for direct air electrolysis (~345.8 mA cm-2). Further techno-economics analyses display the use of atmospheric air feedstock affording 21.7% better economics as comparison to high-purity O2, achieving the lowest H2O2 capital cost of 0.3 $ Kg-1. Given the recent surge of demonstrations on tailoring chemical/catalytic systems based on the Le Chatelier's principle, the present finding would have general implications, allowing for leveraging systems "beyond" this classical rule.
Collapse
Affiliation(s)
- Qi Huang
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Baokai Xia
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Ming Li
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Hongxin Guan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Potsdam, 214476, Germany
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China.
- Max Planck Institute of Colloids and Interfaces, Potsdam, 214476, Germany.
| |
Collapse
|
8
|
Yang C, Wang K, Lyu W, Liu H, Li J, Wang Y, Jiang R, Yuan J, Liao Y. Nanofibrous Porous Organic Polymers and Their Derivatives: From Synthesis to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400626. [PMID: 38476058 PMCID: PMC11109660 DOI: 10.1002/advs.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Engineering porous organic polymers (POPs) into 1D morphology holds significant promise for diverse applications due to their exceptional processability and increased surface contact for enhanced interactions with guest molecules. This article reviews the latest developments in nanofibrous POPs and their derivatives, encompassing porous organic polymer nanofibers, their composites, and POPs-derived carbon nanofibers. The review delves into the design and fabrication strategies, elucidates the formation mechanisms, explores their functional attributes, and highlights promising applications. The first section systematically outlines two primary fabrication approaches of nanofibrous POPs, i.e., direct bulk synthesis and electrospinning technology. Both routes are discussed and compared in terms of template utilization and post-treatments. Next, performance of nanofibrous POPs and their derivatives are reviewed for applications including water treatment, water/oil separation, gas adsorption, energy storage, heterogeneous catalysis, microwave absorption, and biomedical systems. Finally, highlighting existent challenges and offering future prospects of nanofibrous POPs and their derivatives are concluded.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Kexiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiaqiang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Ruyu Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiayin Yuan
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
9
|
Zhao L, Wang S, Li Z, Jiang Y, Liu X, Ouyang H, Xiong Z, Guo Y, Li Y, Lei Y. Ultra-stable hollow nanotube conjugated microporous polymer incorporating fluorenyl moieties for Co-capture of PM and CO 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133826. [PMID: 38377916 DOI: 10.1016/j.jhazmat.2024.133826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Conjugated microporous polymers have a highly delocalized π-π conjugated porous skeleton connected by covalent bonds, which can combine their excellent stability with high adsorption, in order to be applied to the study of co-capture of harmful particulate matter (PM) and carbon dioxide (CO2) under high temperature and high humidity conditions. In this paper, fluorene-based coupled conjugated microporous polymers (D-CMPs) with functionalized hollow nanotubes and abundant microporous structures were proposed. Through mechanism exploration and molecular electrostatic potential (MESP) calculation, the capture efficiency, adsorption capacity and selectivity of PM and CO2 in the waste gas stream of carbon-based combustion were analyzed. The results indicate that D-CMPs, with their rigid carbon-based π-conjugated framework, exhibit excellent tolerance under prolonged high-humidity conditions, with a capture efficiency exceeding 99.87% for PM0.3 and exceeding 99.99% for PM2.5. Meanwhile, based on its chemical/thermal stability, it can realize the recycling of adsorption-regeneration. On this basis, the "slip effect" induced by the open three-dimensional hierarchical porous structure of D-CMPs significantly enhances airflow dispersion and improves gas throughput (with a minimal permeation resistance of only 15 Pa). At a pressure of 1 bar and a temperature of 273.15 K, D-CMP-2 exhibited a CO2 adsorption capacity of up to 2.69 mmol g-1. The fitting results of three isothermal adsorption models demonstrate that D-CMPs exhibit an outstanding equilibrium selectivity towards CO2. Therefore, prior to the widespread adoption of low-carbon and clean energy technologies, porous solid materials exhibiting excellent structural stability, equilibrium selectivity, environmental tolerance, and high adsorption capacity emerge as optimal candidates for the treatment of industrial waste gases.
Collapse
Affiliation(s)
- Li Zhao
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shaozhen Wang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanli Jiang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xinrui Liu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hang Ouyang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zhengshao Xiong
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yu Guo
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Lei
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
10
|
Karatayeva U, Al Siyabi SA, Brahma Narzary B, Baker BC, Faul CFJ. Conjugated Microporous Polymers for Catalytic CO 2 Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308228. [PMID: 38326090 PMCID: PMC11005716 DOI: 10.1002/advs.202308228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 02/09/2024]
Abstract
Rising carbon dioxide (CO2) levels in the atmosphere are recognized as a threat to atmospheric stability and life. Although this greenhouse gas is being produced on a large scale, there are solutions to reduction and indeed utilization of the gas. Many of these solutions involve costly or unstable technologies, such as air-sensitive metal-organic frameworks (MOFs) for CO2 capture or "non-green" systems such as amine scrubbing. Conjugated microporous polymers (CMPs) represent a simpler, cheaper, and greener solution to CO2 capture and utilization. They are often easy to synthesize at scale (a one pot reaction in many cases), chemically and thermally stable (especially in comparison with their MOF and covalent organic framework (COF) counterparts, owing to their amorphous nature), and, as a result, cheap to manufacture. Furthermore, their large surface areas, tunable porous frameworks and chemical structures mean they are reported as highly efficient CO2 capture motifs. In addition, they provide a dual pathway to utilize captured CO2 via chemical conversion or electrochemical reduction into industrially valuable products. Recent studies show that all these attractive properties can be realized in metal-free CMPs, presenting a truly green option. The promising results in these two fields of CMP applications are reviewed and explored here.
Collapse
|
11
|
Lee C, Kang SW. Influence of citric acid concentrations on the porosity and performance of cellulose acetate-based porous membranes: A comprehensive study. Int J Biol Macromol 2024; 263:130243. [PMID: 38378111 DOI: 10.1016/j.ijbiomac.2024.130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
This study investigates the influence of citric acid concentration on the fabrication of porous cellulose acetate (CA) membranes using the Non-Solvent Induced Phase Separation (NIPS) method. A notable aspect is the precise control over membrane properties, particularly pore size and porosity, achieved solely through the adjustment of citric acid concentration, serving as the additive. Higher concentrations of citric acid increase pore size by rendering polymer chains more pliable, whereas lower concentrations lead to smaller, denser pores due to improved dispersion in the CA matrix and altered water interactions during phase separation. A decrease in porosity and Gurley values with reducing citric acid concentrations (from 5 × 10-2 to 1 × 10-3 M ratios) indicates less plasticization of CA chains. However, at very low concentrations (1 × 10-4 and 1 × 10-5), porosity increases, despite the presence of smaller pores, and Gurley values approach those of pure CA in terms of gas permeability. Fourier Transform Infrared (FT-IR) spectroscopy confirms the presence of citric acid and its interaction with carbonyl groups, consistent with the pore size observations from Scanning Electron Microscopy (SEM). Spectral data deconvolution reveals weakened carbonyl bonds due to the reduced presence of citric acid, correlating with the smaller pores observed in SEM. Thermal Gravimetric Analysis (TGA) demonstrates that composite membranes are more thermally stable than pure CA, attributed to the citric acid-induced crosslinking within the polymer chains. Stability increases with decreasing citric acid concentration, with some anomalies at the lowest levels. In conclusion, this study highlights the capability of adjusting citric acid concentration to tailor membrane properties, offering valuable insights for the creation of porous materials across diverse industrial applications.
Collapse
Affiliation(s)
- Chaeyeon Lee
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sang Wook Kang
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
12
|
Wu W, Tong Y, Chen P. Regulation Strategy of Nanostructured Engineering on Indium-Based Materials for Electrocatalytic Conversion of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305562. [PMID: 37845037 DOI: 10.1002/smll.202305562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical carbon dioxide reduction (CO2 RR), as an emerging technology, can combine with sustainable energies to convert CO2 into high value-added products, providing an effective pathway to realize carbon neutrality. However, the high activation energy of CO2 , low mass transfer, and competitive hydrogen evolution reaction (HER) leads to the unsatisfied catalytic activity. Recently, Indium (In)-based materials have attracted significant attention in CO2 RR and a series of regulation strategies of nanostructured engineering are exploited to rationally design various advanced In-based electrocatalysts, which forces the necessary of a comprehensive and fundamental summary, but there is still a scarcity. Herein, this review provides a systematic discussion of the nanostructure engineering of In-based materials for the efficient electrocatalytic conversion of CO2 to fuels. These efficient regulation strategies including morphology, size, composition, defects, surface modification, interfacial structure, alloying, and single-atom structure, are summarized for exploring the internal relationship between the CO2 RR performance and the physicochemical properties of In-based catalysts. The correlation of electronic structure and adsorption behavior of reaction intermediates are highlighted to gain in-depth understanding of catalytic reaction kinetics for CO2 RR. Moreover, the challenges and opportunities of In-based materials are proposed, which is expected to inspire the development of other effective catalysts for CO2 RR.
Collapse
Affiliation(s)
- Wenbo Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yun Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Pengzuo Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
13
|
Liu N, Liu T, Liu G, Mi X, Li Y, Yang L, Zhou Z, Wang S. Two isostructural Zn/Co-MOFs with penetrating structures: multifunctional properties of both luminescence sensing and conversion of CO 2 into cyclic carbonates. Dalton Trans 2024; 53:3654-3665. [PMID: 38289280 DOI: 10.1039/d3dt03466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Two new metal-organic frameworks (MOFs), namely, {[Zn(HL)(bpea)]·DMF}n (Zn-MOF-1) and {[Co(HL)(bpea)]·DMF}n (Co-MOF-2) (H3L = 3-(3,5-dicarboxybenzyloxy)benzoic acid, bpea = 1,2-di(pyridyl)ethane), were obtained by the reaction of H3L and N-containing ligand bpea with Zn(NO3)2·6H2O and Co(NO3)2·6H2O, respectively. The isomorphic Zn-MOF-1 and Co-MOF-2 featured a 3D penetrating framework with different stabilities, luminescence, and catalytic properties. Luminescence measurement indicated that Zn-MOF-1 could be used to detect Al3+ through a turn-on effect with a detection limit of 0.42 μM. The sensing mechanism experiments showed that the enhanced luminescence of Zn-MOF-1 toward Al3+ may be due to the weak interaction between Al3+ and Zn-MOF-1 and the absorbance-caused enhancement (ACE) mechanism. Meanwhile, both Zn-MOF-1 and Co-MOF-2 showed interesting CO2 adsorption properties and could catalyze the cycloaddition of CO2 to epoxides resulting in 96 and 92% ideal products within 12 hours, respectively. They can be cycled up to 5 times without significant loss of catalytic efficiency.
Collapse
Affiliation(s)
- Nana Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Tingting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Guangning Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Xiuna Mi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
| | - Lu Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
14
|
Chen X, Quan H, Yu J, Hu Y, Huang Z. Development of composite amine functionalized polyester microspheres for efficient CO 2 capture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7027-7042. [PMID: 38157164 DOI: 10.1007/s11356-023-31399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
In order to reduce the impact of greenhouse gases on the environment, the development of various new CO2 capture materials has become a hot spot. In this work, a novel composite amine solid adsorbent was prepared by simultaneously using tetraethylenepentamine (TEPA) and 2-[2-(dimethylamino) ethoxy] ethanol (DMAEE) for amine functionalization on the polyester microsphere carrier. The introduction of methyl methacrylate (MMA) with high glass transition temperature into the polyester carrier makes the carrier microspheres have high hardness. At the same time, the carrier also contains active epoxy groups and hydrophobic glycidyl methacrylate (GMA, which can undergo ring-opening reaction with composite amines to achieve high-load and low-energy chemical grafting of amines on the carrier. The composite aminated polyester microspheres were used as an efficient adsorbent for CO2 in simulated flue gas. The results show that the synergistic effect of TEPA-DMAEE composite amine system in the adsorbent is beneficial to the improvement of CO2 capture capacity. When the total amine content in the impregnating solution is 45 wt% and the composite amine ratio is TEPA: DMAEE = 6: 4, the CO2 adsorption capacity can reach the optimal value of 2.45 mmol/ g at 70 °C. In addition, the composite amine microsphere adsorbent has cyclic regeneration performance. Importantly, through kinetic fitting, the Avrami kinetic model fits the CO2 adsorption better than the quasi-first-order and quasi-second-order kinetic models, which proves that physical adsorption and chemical adsorption coexist in the adsorption process. This simple, long-term stable and excellent selective separation performance makes amine-functionalized adsorbents have potential application prospects in CO2 capture.
Collapse
Affiliation(s)
- Xuewen Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Hongping Quan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500, Sichuan, China
- Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu, 610500, People's Republic of China
| | - Jie Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Yuling Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Zhiyu Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500, Sichuan, China.
- Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu, 610500, People's Republic of China.
| |
Collapse
|
15
|
Zou S, Lei J, Gao T, Xu X, Gou Q. C···S Tetrel Bond Favored in the Phenyl Isothiocyanate-CO 2 Complex: A Rotational Study. J Phys Chem A 2023; 127:9959-9965. [PMID: 37979188 DOI: 10.1021/acs.jpca.3c05187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
The rotational spectrum of the phenyl isothiocyanate-CO2 complex was investigated by pulsed-jet Fourier transform microwave spectroscopy complemented by quantum chemical calculations. Only one isomer, with CO2 almost in the plane of phenyl isothiocyanate, has been detected in the pulsed jet, of which the spectrum displays a quadrupole coupling hyperfine structure due to the presence of a 14N nucleus (I = 1). This structure is nearly equal to the lowest energy geometry obtained by B3LYP-D3(BJ)/6-311++G(d,p), which has been dominated by a C···S tetrel bond (n → π* interaction) and one secondary C-H···O hydrogen bond (n → σ* interaction). Molecular electrostatic potential and natural bond orbital analysis were used to characterize the noncovalent interactions of the complex. The results from this study would lay the groundwork for the design and advancement of materials that exhibit high efficiency in capturing CO2.
Collapse
Affiliation(s)
- Siyu Zou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Juncheng Lei
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Tianyue Gao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| |
Collapse
|
16
|
Zhao J, Shen X, Liu YF, Zou RY. (3,3)-Connected Triazine-Based Covalent Organic Frameworks for Efficient CO 2 Separation over N 2 and Dye Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16367-16373. [PMID: 37939229 DOI: 10.1021/acs.langmuir.3c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Covalent organic frameworks (COFs) are a promising class of adsorption and separation materials that can meet the needs of ecological sustainability, such as the removal of carbon dioxide and organic dyes. The two synthesized (3,3)-connected triazine-based COFs demonstrate high specific surface area and good thermal and chemical stability. COFZ1 shows good CO2 adsorption selectivities for different CO2 and N2 volume percentage systems at 273 K and 1 bar, with an ideal adsorbed solution theory (IAST) CO2 selectivity (i.e., separation factor) of 35.09 for the simulated flue gas component and a CO2 adsorption capacity of 24.21 cm3 g-1. In the aqueous dye solutions, both COFs present good adsorption performance for the selected dyes, and the maximum adsorption capacities of COFZ1 for methylene blue (MB) and gentian violet (GV) reach 510 and 564 mg g-1, respectively. Each of the two COFs shows a high anti-interference performance and excellent recyclability. The adsorption capacities of two COFs for RhB (Rhodamine B), MB, and GV hardly vary with pH values and salt concentrations. The adsorption behaviors of the two COFs for dyes follow Langmuir isothermal adsorption and quasi-secondary kinetic adsorption, approaching monolayer adsorption and chemisorption.
Collapse
Affiliation(s)
- Jie Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyu Shen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ru-Yi Zou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Yao S, Li Z, Liu Z, Geng X, Dai L, Wang Y. CuCl 2-Activated Sustainable Microporous Carbons with Tailorable Multiscale Pores for Effective CO 2 Capture. ACS OMEGA 2023; 8:41641-41648. [PMID: 37970063 PMCID: PMC10634235 DOI: 10.1021/acsomega.3c05842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Porosity is the key factor in determining the CO2 capture capacity for porous carbon-based adsorbents, especially narrow micropores of less than 1.0 nm. Unfortunately, this desired feature is still a great challenge to tailor micropores by an effective, low-corrosion, and environmentally friendly activating agent. Herein, we reported a suitable dynamic porogen of CuCl2 to engineer microporous carbons rich in narrow micropores of <1.0 nm for solving the above problem. The porosity can be easily tuned by varying the concentration of the CuCl2 porogen. The resultant porous carbons exhibited a multiscale micropore size, high micropore volume, and suitable surface nitrogen doping content, especially high-proportioned ultromicropores of <0.7 nm. As adsorbents for capturing CO2, the obtained microporous carbons possess satisfactory CO2 uptake, moderate heat of CO2 adsorption, reasonable CO2/N2 selectivity, and easy regeneration. Our work proposes an alternative way to design porous carbon-based adsorbents for efficiently capturing CO2 from the postcombustion flue gases. More importantly, this work opens up an almost-zero cost and industrially friendly route to convert biowaste into high-added-value adsorbents for CO2 capture in an industrial practical application.
Collapse
Affiliation(s)
| | | | - Zhen Liu
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 45002, China
| | - Xiaodong Geng
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 45002, China
| | - Li Dai
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 45002, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 45002, China
| |
Collapse
|
18
|
Hou SL, Dong J, Zhao XY, Li XS, Ren FY, Zhao J, Zhao B. Thermocatalytic Conversion of CO 2 to Valuable Products Activated by Noble-Metal-Free Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202305213. [PMID: 37170958 DOI: 10.1002/anie.202305213] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Dong
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
19
|
Yu X, Gu J, Liu X, Chang Z, Liu Y. Exploring the Effect of Different Secondary Building Units as Lewis Acid Sites in MOF Materials for the CO 2 Cycloaddition Reaction. Inorg Chem 2023; 62:11518-11527. [PMID: 37437191 DOI: 10.1021/acs.inorgchem.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
In order to explore the catalytic effect of different Lewis acid sites (LASs) in the CO2 cycloaddition reaction, different secondary building units and N-rich organic ligand 4,4',4″-s-triazine-1,3,5-triyltri-p-aminobenzoate were assembled to construct six reported MOF materials: [Cu3(tatab)2(H2O)3]·8DMF·9H2O (1), [Cu3(tatab)2(H2O)3]·7.5H2O (2), [Zn4O(tatab)2]·3H2O·17DMF (3), [In3O(tatab)2(H2O)3](NO3)·15DMA (4), [Zr6O4(OH)7(tatab)(Htatab)3(H2O)3]·xGuest (5), and [Zr6O4(OH)4(tatab)4(H2O)3]·xGuest (6) (DMF = N,N-dimethylformamide, and DMA = N,N-dimethylacetamide). Large pore sizes of compound 2 enhance the concentration of substrates, and the multi-active sites inside its framework synergistically promote the process of the CO2 cycloaddition reaction. Such advantages endow compound 2 with the best catalytic performance among the six compounds and surpass many of the reported MOF-based catalysts. Meanwhile, the comparison of the catalytic efficiency indicated that Cu-paddlewheel and Zn4O display better catalytic performances than In3O and Zr6 cluster. The experiments investigate the catalytic effects of LAS types and prove that it is feasible to improve CO2 fixation property by introducing multi-active sites into MOFs.
Collapse
Affiliation(s)
- Xueyue Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaming Gu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, P. R. China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
20
|
Rao ZX, Chen PB, Xu J, Wang Q, Tang HT, Liang Y, Pan YM. Direct Conversion of CO 2 in Lime Kiln Waste Gas Catalyzed by a Copper-Based N-heterocyclic Carbene Porous Polymer. CHEMSUSCHEM 2023; 16:e202300170. [PMID: 36828776 DOI: 10.1002/cssc.202300170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Indexed: 06/10/2023]
Abstract
Industrial waste gas is one of the major sources of atmospheric CO2 , yet the direct conversion of the low concentrations of CO2 in waste gases into high value-added chemicals have been a great challenge. Herein, a copper-based N-heterocyclic carbene porous polymer catalyst (Cu@NHC-1) for the direct conversion of low concentration CO2 into oxazolidinones was successfully fabricated via a facile copolymerization process followed by the complexation with Cu(OAc)2 . A continuous flow device was designed to deliver a continuous and stable carbon source for the reaction. Due to the triple synergistic effect of its porous structure, nitrogen activation sites and catalytic Cu center, Cu@NHC-1 shows highly efficient and selective adsorption, activation, and conversion of the low concentration CO2 (30 vol%). Its practical application potential is demonstrated by the ability to successfully convert the CO2 in lime kiln waste gas into oxazolidinones in satisfactory yields under mild conditions.
Collapse
Affiliation(s)
- Zhi-Xiu Rao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, P. R. China
| | - Pei-Bo Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, P. R. China
| | - Jin Xu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, P. R. China
| | - Qing Wang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, P. R. China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of, Guangxi Normal University, Guilin, 541004, Guangxi, P. R. China
| | - Ying Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, P. R. China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of, Guangxi Normal University, Guilin, 541004, Guangxi, P. R. China
| |
Collapse
|
21
|
Yang L, Shao L, Wu Z, Zhan P, Zhang L. Design and Synthesis of Porous Organic Polymers: Promising Catalysts for Lignocellulose Conversion to 5-Hydroxymethylfurfural and Derivates. Polymers (Basel) 2023; 15:2630. [PMID: 37376276 DOI: 10.3390/polym15122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In the face of the current energy and environmental problems, the full use of biomass resources instead of fossil energy to produce a series of high-value chemicals has great application prospects. 5-hydroxymethylfurfural (HMF), which can be synthesized from lignocellulose as a raw material, is an important biological platform molecule. Its preparation and the catalytic oxidation of subsequent products have important research significance and practical value. In the actual production process, porous organic polymer (POP) catalysts are highly suitable for biomass catalytic conversion due to their high efficiency, low cost, good designability, and environmentally friendly features. Here, we briefly describe the application of various types of POPs (including COFs, PAFs, HCPs, and CMPs) in the preparation and catalytic conversion of HMF from lignocellulosic biomass and analyze the influence of the structural properties of catalysts on the catalytic performance. Finally, we summarize some challenges that POPs catalysts face in biomass catalytic conversion and prospect the important research directions in the future. This review provides valuable references for the efficient conversion of biomass resources into high-value chemicals in practical applications.
Collapse
Affiliation(s)
- Lei Yang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
22
|
Zhang L, Lin S, Liu Y, Zeng X, You J, Xiao T, Feng Y, He Z, Chen S, Hua N, Ye X, Wei ZW, Chen CX. Optimized Pore Nanospace through the Construction of a Cagelike Metal-Organic Framework for CO 2/N 2 Separation. Inorg Chem 2023; 62:8058-8063. [PMID: 37172273 DOI: 10.1021/acs.inorgchem.3c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The development of metal-organic framework (MOF) adsorbents with a potential molecule sieving effect for CO2 capture and separation from flue gas is of critical importance for reducing the CO2 emissions to the atmosphere yet challenging. Herein, a cagelike MOF with a suitable cage window size falling between CO2 and N2 and the cavity has been constructed to evaluate its CO2/N2 separation performance. It is noteworthy that the introduction of coordinated dimethylamine (DMA) and N,N'-dimethylformamide (DMF) molecules not only significantly reduces the cage window size but also enhances the framework-CO2 interaction via C-H···O hydrogen bonds, as proven by molecular modeling, thus leading to an improved CO2 separation performance. Moreover, transient breakthrough experiments corroborate the efficient CO2/N2 separation, revealing that the introduction of DMA and DMF molecules plays a vital role in the separation of a CO2/N2 gas mixture.
Collapse
Affiliation(s)
- Lei Zhang
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Sihan Lin
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yupeng Liu
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Xiayun Zeng
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Jianjun You
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Taotao Xiao
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yongjie Feng
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Ziyu He
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Song Chen
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Nengbin Hua
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Xiaoyun Ye
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Mousa AO, Mohamed MG, Chuang CH, Kuo SW. Carbonized Aminal-Linked Porous Organic Polymers Containing Pyrene and Triazine Units for Gas Uptake and Energy Storage. Polymers (Basel) 2023; 15:polym15081891. [PMID: 37112038 PMCID: PMC10146094 DOI: 10.3390/polym15081891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Porous organic polymers (POPs) have plenteous exciting features due to their attractive combination of microporosity with π-conjugation. Nevertheless, electrodes based on their pristine forms suffer from severe poverty of electrical conductivity, precluding their employment within electrochemical appliances. The electrical conductivity of POPs may be significantly improved and their porosity properties could be further customized by direct carbonization. In this study, we successfully prepared a microporous carbon material (Py-PDT POP-600) by the carbonization of Py-PDT POP, which was designed using a condensation reaction between 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PDA-4NH2) and 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl)tetrabenzaldehyde (Py-Ph-4CHO) in the presence of dimethyl sulfoxide (DMSO) as a solvent. The obtained Py-PDT POP-600 with a high nitrogen content had a high surface area (up to 314 m2 g-1), high pore volume, and good thermal stability based on N2 adsorption/desorption data and a thermogravimetric analysis (TGA). Owing to the good surface area, the as-prepared Py-PDT POP-600 showed excellent performance in CO2 uptake (2.7 mmol g-1 at 298 K) and a high specific capacitance of 550 F g-1 at 0.5 A g-1 compared with the pristine Py-PDT POP (0.24 mmol g-1 and 28 F g-1).
Collapse
Affiliation(s)
- Aya Osama Mousa
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
24
|
Mariella Babu A, Varghese A. Electrochemical Deposition for Metal Organic Frameworks: Advanced Energy, Catalysis, Sensing and Separation Applications. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
25
|
Yuan R, Zhang M, Sun H. Design and Construction of an Azo-Functionalized POP for Reversibly Stimuli-Responsive CO2 Adsorption. Polymers (Basel) 2023; 15:polym15071709. [PMID: 37050323 PMCID: PMC10097301 DOI: 10.3390/polym15071709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
A porous azo-functionalized organic polymer (JJU-2) was designed and prepared via oxidative coupling polymerization promoted by FeCl3. JJU-2 exhibited reversibly stimuli-responsive CO2 adsorption properties as a result of the trans/cis isomerization of the polymer’s azo-functionalized skeleton. Under UV irradiation and heat treatment, this porous material displayed various porous structures and CO2 adsorption properties. The initial Brunauer-Emmett-Teller (BET) surface area of JJU-1 is 888 m2 g−1. After UV irradiation, the BET surface area decreases to 864 m2 g−1, along with the decrease of micropores around 0.50 nm and 1.27 nm during the trans-to-cis isomerization process. In addition, CO2 sorption isotherms demonstrate an 8%t decrease, and the calculated Qst of CO2 has decreased from 29.0 kJ mol−1 to 26.5 kJ mol−1 due to the trans to cis conversion of the azobenzene side group. It is noteworthy that JJU-2′s CO2 uptakes are nearly constant over three cycles of alternating external stimuli. Therefore, this azo-functionalized porous material was a potential carbon capture material that was responsive to stimuli.
Collapse
|
26
|
Xu Z, Zhao YY, Chen L, Zhu CY, Li P, Gao W, Li JY, Zhang XM. Thermally activated bipyridyl-based Mn-MOFs with Lewis acid-base bifunctional sites for highly efficient catalytic cycloaddition of CO 2 with epoxides and Knoevenagel condensation reactions. Dalton Trans 2023; 52:3671-3681. [PMID: 36847359 DOI: 10.1039/d3dt00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Metal-organic frameworks (MOFs) have become preferred heterogeneous catalytic materials for many reactions due to their advantages such as porosity and abundant active sites. Here, a 3D Mn-MOF-1 [Mn2(DPP)(H2O)3]·6H2O (DPP = 2,6-di(2,4-dicarboxyphenyl)-4-(pyridine-4-yl)pyridine) was successfully synthesized under solvothermal conditions. This Mn-MOF-1 possesses a 3D structure constructed by the combination of a 1D chain and the DPP4- ligand and features a micropore with a 1D drum-like shaped channel. Interestingly, Mn-MOF-1 can maintain the structure unchanged by the removal of coordinated and lattice water molecules, whose activated state (denoted as Mn-MOF-1a) contains rich Lewis acid sites (tetra- and pentacoordinated Mn2+ ions) and Lewis base sites (Npyridine atoms). Furthermore, Mn-MOF-1a shows excellent stability, which can be used to catalyze CO2 cycloaddition reactions efficiently under eco-friendly, solvent-free conditions. In addition, the synergistic effect of Mn-MOF-1a resulted in its promising potential in Knoevenagel condensation under ambient conditions. More importantly, the heterogeneous catalyst Mn-MOF-1a can be recycled and reused without an obvious decrease of activity for at least 5 reaction cycles. This work not only paves the way for the construction of Lewis acid-base bifunctional MOFs based on pyridyl-based polycarboxylate ligands but also demonstrates that Mn-based MOFs hold great promise as a heterogeneous catalyst toward both CO2 epoxidation and Knoevenagel condensation reactions.
Collapse
Affiliation(s)
- Zhen Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Ya-Yu Zhao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Le Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Cai-Yong Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Peng Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Wei Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Ji-Yang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiu-Mei Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| |
Collapse
|
27
|
Wan Y, Kong D, Xiong F, Qiu T, Gao S, Zhang Q, Miao Y, Qin M, Wu S, Wang Y, Zhong R, Zou R. Enhancing hydrophobicity via core–shell metal organic frameworks for high-humidity flue gas CO2 capture. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
28
|
Centi G, Perathoner S. The chemical engineering aspects of CO2 capture, combined with its utilisation. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2022.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Ma P, Ding M, Zhang Y, Rong W, Yao J. Integration of lanthanide-imidazole containing polymer with metal-organic frameworks for efficient cycloaddition of CO2 with epoxides. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
30
|
A tailored IL@MOF catalyst for the rapid chemical fixation of CO2 using fixed-bed reactor based on the coupling of reaction and separation under ambient conditions. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2022.106592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
31
|
Yang G, Hou N, Li Z, Huang K, Zhang B, Xu J, Sun J. Pressure Drop Performance of Porous Composites Based on Cotton Cellulose Nanofiber and Aramid Nanofiber for Cigarette Filter Rod. MATERIALS (BASEL, SWITZERLAND) 2023; 16:411. [PMID: 36614750 PMCID: PMC9822306 DOI: 10.3390/ma16010411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Porous composites have been widely used in the adsorption and catalysis field due to their special structure, abundant sites, and light weight. In this work, an environmentally friendly porous composite was successfully prepared via a facile freeze-drying method, in which cotton cellulose nanofiber (CCNF) was adopted as the main framework to construct the connected flue structure, and aramid nanofiber (ANF) was used as a reinforcer to enhance its thermal property. As-prepared porous materials retained a regulated inter-connected hole structure and controllable porosity after ice template evolution and possessed improved resistance to thermal collapse with the introduction of a small amount of aramid nanofiber, as evaluated and verified by FTIR, SEM, and TGA measurements. With the increased addition of cotton cellulose nanofiber and aramid nanofiber, the porous composites exhibited decreased porosity and increased pressure drop performance. For the CCNF/ANF-5 sample, the pressure drop was 1867 Pa with a porosity of 7.46 cm3/g, which best met the required pressure drop value of 1870 Pa. As-prepared porous composite with adjustable interior structure and enhanced thermal property could be a promising candidate in the tobacco field.
Collapse
Affiliation(s)
- Guangyuan Yang
- China Tobacco Hubei Industrial Limited Liability Company, Wuhan 430056, China
| | - Ning Hou
- China Tobacco Hubei Industrial Limited Liability Company, Wuhan 430056, China
| | - Zheming Li
- China Tobacco Hubei Industrial Limited Liability Company, Wuhan 430056, China
| | - Ke Huang
- China Tobacco Hubei Industrial Limited Liability Company, Wuhan 430056, China
| | - Bin Zhang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jie Xu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiuxiao Sun
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
32
|
Recent advances in covalent organic frameworks-based heterogeneous catalysts for high-efficiency chemical transformation of carbon dioxide. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Rusdan NA, Timmiati SN, Isahak WNRW, Yaakob Z, Lim KL, Khaidar D. Recent Application of Core-Shell Nanostructured Catalysts for CO 2 Thermocatalytic Conversion Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3877. [PMID: 36364653 PMCID: PMC9655136 DOI: 10.3390/nano12213877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Carbon-intensive industries must deem carbon capture, utilization, and storage initiatives to mitigate rising CO2 concentration by 2050. A 45% national reduction in CO2 emissions has been projected by government to realize net zero carbon in 2030. CO2 utilization is the prominent solution to curb not only CO2 but other greenhouse gases, such as methane, on a large scale. For decades, thermocatalytic CO2 conversions into clean fuels and specialty chemicals through catalytic CO2 hydrogenation and CO2 reforming using green hydrogen and pure methane sources have been under scrutiny. However, these processes are still immature for industrial applications because of their thermodynamic and kinetic limitations caused by rapid catalyst deactivation due to fouling, sintering, and poisoning under harsh conditions. Therefore, a key research focus on thermocatalytic CO2 conversion is to develop high-performance and selective catalysts even at low temperatures while suppressing side reactions. Conventional catalysts suffer from a lack of precise structural control, which is detrimental toward selectivity, activity, and stability. Core-shell is a recently emerged nanomaterial that offers confinement effect to preserve multiple functionalities from sintering in CO2 conversions. Substantial progress has been achieved to implement core-shell in direct or indirect thermocatalytic CO2 reactions, such as methanation, methanol synthesis, Fischer-Tropsch synthesis, and dry reforming methane. However, cost-effective and simple synthesis methods and feasible mechanisms on core-shell catalysts remain to be developed. This review provides insights into recent works on core-shell catalysts for thermocatalytic CO2 conversion into syngas and fuels.
Collapse
Affiliation(s)
- Nisa Afiqah Rusdan
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Wan Nor Roslam Wan Isahak
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Zahira Yaakob
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kean Long Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Dalilah Khaidar
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
34
|
Gu J, Yuan Y, Zhao T, Liu F, Xu Y, Tao DJ. Ionic-containing hyper-crosslinked polymer: A promising bifunctional material for CO2 capture and conversion. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Dai Z, Long Y, Liu J, Bao Y, Zheng L, Ma J, Liu J, Zhang F, Xiong Y, Lu JQ. Functional Porous Ionic Polymers as Efficient Heterogeneous Catalysts for the Chemical Fixation of CO 2 under Mild Conditions. Polymers (Basel) 2022; 14:2658. [PMID: 35808703 PMCID: PMC9269538 DOI: 10.3390/polym14132658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/23/2023] Open
Abstract
The development of efficient and metal-free heterogeneous catalysts for the chemical fixation of CO2 into value-added products is still a challenge. Herein, we reported two kinds of polar group (-COOH, -OH)-functionalized porous ionic polymers (PIPs) that were constructed from the corresponding phosphonium salt monomers (v-PBC and v-PBH) using a solvothermal radical polymerization method. The resulting PIPs (POP-PBC and POP-PBH) can be used as efficient bifunctional heterogeneous catalysts in the cycloaddition reaction of CO2 with epoxides under relatively low temperature, ambient pressure, and metal-free conditions without any additives. It was found that the catalytic activities of the POP-PBC and POP-PBH were comparable with the homogeneous catalysts of Me-PBC and PBH and were higher than that of the POP-PPh3-COOH that was synthesized through a post-modification method, indicating the importance of the high concentration catalytic active sites in the heterogeneous catalysts. Reaction under low CO2 concentration conditions showed that the activity of the POP-PBC (with a conversion of 53.8% and a selectivity of 99.0%) was higher than that of the POP-PBH (with a conversion of 32.3% and a selectivity of 99.0%), verifying the promoting effect of the polar group (-COOH group) in the porous framework. The POP-PBC can also be recycled at least five times without a significant loss of catalytic activity, indicating the high stability and robustness of the PIPs-based heterogeneous catalysts.
Collapse
Affiliation(s)
- Zhifeng Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China
| | - Yang Long
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Jianliang Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Yuanfei Bao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Liping Zheng
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Jiacong Ma
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Jiayi Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Fei Zhang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yubing Xiong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China
| | - Ji-Qing Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|