1
|
Chen R, Liu G, Xia B, Liu T, Xia Y, Liu S, Talebian-Kiakalaieh A, Ran J. Unveiling the potential of MOF-based single-atom photocatalysts for the production of clean fuel and valuable chemical. Chem Commun (Camb) 2024; 60:10989-10999. [PMID: 39248681 DOI: 10.1039/d4cc03479a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Harnessing solar energy through photocatalysis has excellent potential for powering sustainable chemical production, supporting the United Nations' environmental goals. Single-atoms (SAs) dispersed on catalyst surfaces are gaining attention for their highly active and durable nature. Metal-organic frameworks (MOFs) can provide enough reactive sites to sustain selectivity and durability over time because of their tunable channels and functional groups. Owing to their organized structures, MOFs are ideal platforms for securing individual atoms and promoting solar-driven reactions. Few reviews have, however, reflected the possibility of combining MOFs and SAs to produce potent photocatalysts that may produce clean fuels and valuable chemicals. This review provides a general overview of methods for combining MOFs and SAs to generate photocatalysts. The challenges associated with these MOF-based single-atom systems are also critically examined. Their future development is discussed as continued refinement helps to more fully leverage their advantages for boosting photocatalytic performances - turning sunlight into chemicals in a manner that supports sustainable development. Insights gained here could illuminate pathways toward realizing the profound potential of MOF-based single-atom photocatalysts to empower production driven by renewable solar energy.
Collapse
Affiliation(s)
- Rundong Chen
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, P. R. China.
| | - Gaoxiong Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, P. R. China.
| | - Bingquan Xia
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, P. R. China.
| | - Teng Liu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, P. R. China
| | - Yang Xia
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, P. R. China
| | - Shantang Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, P. R. China.
| | | | - Jingrun Ran
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Liu T, Tao Q, Wang Y, Luo R, Ma J, Lei J. Tailored Cis-Trans Isomeric Metal-Covalent Organic Frameworks for Coordination Configuration-Dependent Electrochemiluminescence. J Am Chem Soc 2024; 146:18958-18966. [PMID: 38952302 DOI: 10.1021/jacs.4c02015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Precise manipulation of the coordination configuration within substances can modulate the band structure and catalytic properties of the target material. Metal-covalent organic frameworks (MCOFs), a crystal material amalgamating the benefits of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), can integrate a predetermined coordination environment into the frameworks for amplifying the catalytic effect. In this study, we delicately synthesize isomeric MCOFs using bis(glycinato)copper as the aminoligand via kinetically and thermodynamically favorable pathways to yield cis-MCOF and trans-MCOF products, respectively, thereby introducing a cis-trans isomeric coordination field into the framework. Moreover, the twisted skeleton derived from the flexibility of amino acid and β-ketoenamine linkages endows trans-MCOF with surprising water dispersibility. Compared to cis-MCOF, the trans isomerism displays a significant enhancement in cathodic electrochemiluminescence via the catalysis of Cu nodes toward K2S2O8. The density of states analysis shows that the d-band center of trans-MCOF is closer to the Fermi level, leading to more stable adsorption binding to promote the catalysis. This study is the first report on constructing predesign coordination configuration MCOFs via an easy-handling method, which gives the guidelines for the design of amino acid-based MCOF materials.
Collapse
Affiliation(s)
- Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiantu Tao
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yufei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Yao B, Li G, Wu X, Sun H, Liu X, Li F, Guo T. Polyimide covalent organic frameworks bearing star-shaped electron-deficient polycyclic aromatic hydrocarbon building blocks: molecular innovations for energy conversion and storage. Chem Commun (Camb) 2024; 60:793-803. [PMID: 38168788 DOI: 10.1039/d3cc05214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Polyimide covalent organic frameworks (PI-COFs) are outstanding functional materials for electrochemical energy conversion and storage owing to their integrated advantages of the high electroactive feature of polyimides and the periodic porous structure of COFs. Nevertheless, only anhydride monomers with C2 symmetry are generally used, and limited selectivity of electron-deficient monomers has become a major obstacle in the development of materials. The introduction of polycyclic aromatic hydrocarbons (PAHs) is a very effective method to regulate the structure-activity relationship of PI-COFs due to their excellent stability and electrical properties. Over the past two years, various star-shaped electron-deficient PAH building blocks possessing different compositions and topologies have been successfully fabricated, greatly improving the monomer selectivity and electrochemical performances of PI-COFs. This paper systematically summarizes the recent highlights in PI-COFs based on these building blocks. Firstly, the preparation of anhydride (or phthalic acid) monomers and PI-COFs related to different star-shaped PAHs is presented. Secondly, the applications of these PI-COFs in energy conversion and storage and the corresponding factors influencing their performance are discussed in detail. Finally, the future development of this meaningful field is briefly proposed.
Collapse
Affiliation(s)
- Bin Yao
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Guowang Li
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Xianying Wu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Hongfei Sun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Xingyan Liu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Tingwang Guo
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| |
Collapse
|
4
|
Wang M, Hu Y, Pu J, Zi Y, Huang W. Emerging Xene-Based Single-Atom Catalysts: Theory, Synthesis, and Catalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303492. [PMID: 37328779 DOI: 10.1002/adma.202303492] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the emergence of novel 2D monoelemental materials (Xenes), e.g., graphdiyne, borophene, phosphorene, antimonene, bismuthene, and stanene, has exhibited unprecedented potentials for their versatile applications as well as addressing new discoveries in fundamental science. Owing to their unique physicochemical, optical, and electronic properties, emerging Xenes have been regarded as promising candidates in the community of single-atom catalysts (SACs) as single-atom active sites or support matrixes for significant improvement in intrinsic activity and selectivity. In order to comprehensively understand the relationships between the structure and property of Xene-based SACs, this review represents a comprehensive summary from theoretical predictions to experimental investigations. Firstly, theoretical calculations regarding both the anchoring of Xene-based single-atom active sites on versatile support matrixes and doping/substituting heteroatoms at Xene-based support matrixes are briefly summarized. Secondly, controlled synthesis and precise characterization are presented for Xene-based SACs. Finally, current challenges and future opportunities for the development of Xene-based SACs are highlighted.
Collapse
Affiliation(s)
- Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
5
|
Shen C, Ma Y, Wu D, Liu P, He Y, Chen K. Preparation of covalent organic framework-based nanofibrous films with temperature-responsive release of thymol for active food packaging. Food Chem 2023; 410:135460. [PMID: 36641909 DOI: 10.1016/j.foodchem.2023.135460] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Thymol (THY) is commonly used in active food packaging, however because of its high volatility, poor water solubility, and strong aromatic odor, the application of THY is facing challenges. Herein, covalent organic frameworks (COFs) were synthesized in room temperature by asymmetric monomer exchange method for THY encapsulation, and solution blow spinning was used to fabricate the THY@COF/polycaprolactone (PCL) nanofibrous films. The synthesized COFs had a large specific surface area, porous structure, and loading capacity of 30.35% for THY, and THY@COFs possessed good thermal stability. Characterization analysis showed that THY@COFs were successfully incorporated into the PCL films and increased the barrier property of the films. Besides, the films showed good biocompatibility and antibacterial activity. Moreover, THY@COF/PCL films exhibited temperature-responsive THY release profiles, which is important for practical preservation applications, especially for preserving food in warm environments. Overall, THY@COF/PCL films possess promising potential in active food packaging.
Collapse
Affiliation(s)
- Chaoyi Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yuting Ma
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou 310027, PR China
| | - Di Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Pingwei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University, Hangzhou 310027, PR China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Kunsong Chen
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
6
|
He H, Wen H, Li H, Li P, Wang J, Yang Y, Li C, Zhang Z, Du M. Hydrophobicity Tailoring of Ferric Covalent Organic Framework/MXene Nanosheets for High-Efficiency Nitrogen Electroreduction to Ammonia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206933. [PMID: 36995064 PMCID: PMC10214235 DOI: 10.1002/advs.202206933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/19/2023] [Indexed: 05/27/2023]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) represents a promising sustainable approach for NH3 synthesis. However, the poor NRR performance of electrocatalysts is a great challenge at this stage, mainly owing to their low activity and the competitive hydrogen evolution reaction (HER). Herein, 2D ferric covalent organic framework/MXene (COF-Fe/MXene) nanosheets with controllable hydrophobic behaviors are successfully prepared via a multiple-in-one synthetic strategy. The boosting hydrophobicity of COF-Fe/MXene can effectively repel water molecules to inhibit the HER for enhanced NRR performances. By virtue of the ultrathin nanostructure, well-defined single Fe sites, nitrogen enrichment effect, and high hydrophobicity, the 1H,1H,2H,2H-perfluorodecanethiol modified COF-Fe/MXene hybrid shows a NH3 yield of 41.8 µg h-1 mgcat. -1 and a Faradaic efficiency of 43.1% at -0.5 V versus RHE in a 0.1 m Na2 SO4 water solution, which are vastly superior to the known Fe-based catalysts and even to the noble metal catalysts. This work provides a universal strategy to design and synthesis of non-precious metal electrocatalysts for high-efficiency N2 reduction to NH3 .
Collapse
Affiliation(s)
- Hongming He
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Hao‐Ming Wen
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Hong‐Kai Li
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Ping Li
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Jiajun Wang
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Yijie Yang
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Cheng‐Peng Li
- College of ChemistryTianjin Key Laboratory of Structure and Performance for Functional MoleculesTianjin Normal UniversityTianjin300387China
| | - Zhihong Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001China
| | - Miao Du
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001China
| |
Collapse
|
7
|
Xia T, Wu Z, Liang Y, Wang W, Li Y, Tian X, Feng L, Sui Z, Chen Q. Sulfonic acid functionalized covalent organic frameworks for lithium-sulfur battery separator and oxygen evolution electrocatalyst. J Colloid Interface Sci 2023; 645:146-153. [PMID: 37148680 DOI: 10.1016/j.jcis.2023.04.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Covalent organic frameworks (COFs) are considered as a class of potential candidates for energy storage and catalysis. In this work, a COF containing sulfonic groups was prepared to be a modified separator in lithium-sulfur batteries (LSBs). Benefiting from the charged sulfonic groups, the COF-SO3 cell exhibited higher ionic conductivity (1.83 mS⋅cm-1). Moreover, the modified COF-SO3 separator not only inhibited the shuttle of polysulfide but also promoted Li+ diffusion, thanks to the electrostatic interaction. The COF-SO3 cell also showed excellent electrochemical performance that the initial specific capacity of the battery was 890 mA h g-1 at 0.5 C and demonstrated 631 mA h g-1 after 200 cycles. In addition, COF-SO3 with satisfactory electrical conductivity was also used as an electrocatalyst toward oxygen evolution reaction (OER) via cation-exchange strategy. The electrocatalyst COF-SO3@FeNi possessed a low overpotential (350 mV at 10 mA cm-2) in an alkaline aqueous electrolyte. Furthermore, COF-SO3@FeNi exhibited exceptional stability, and the overpotential increased about 11 mV at a current density of 10 mA cm-2 after 1000 cycles. This work facilitates the application of versatile COFs in the electrochemistry field.
Collapse
Affiliation(s)
- Tian Xia
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Zhuangzhuang Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Ying Liang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Wenxin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Yongpeng Li
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Lijuan Feng
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, PR China.
| | - Zhuyin Sui
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Qi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
8
|
Chen B, Xie H, Shen L, Xu Y, Zhang M, Zhou M, Li B, Li R, Lin H. Covalent Organic Frameworks: The Rising-Star Platforms for the Design of CO 2 Separation Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207313. [PMID: 36709424 DOI: 10.1002/smll.202207313] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based carbon dioxide (CO2 ) capture and separation technologies have aroused great interest in industry and academia due to their great potential to combat current global warming, reduce energy consumption in chemical separation of raw materials, and achieve carbon neutrality. The emerging covalent organic frameworks (COFs) composed of organic linkers via reversible covalent bonds are a class of porous crystalline polymers with regular and extended structures. The inherent structure and customizable organic linkers give COFs high and permanent porosity, short transport channel, tunable functionality, and excellent stability, thereby enabling them rising-star alternatives for developing advanced CO2 separation membranes. Therefore, the promising research areas ranging from development of COF membranes to their separation applications have emerged. Herein, this review first introduces the main advantages of COFs as the state-of-the-art membranes in CO2 separation, including tunable pore size, modifiable surfaces property, adjustable surface charge, excellent stability. Then, the preparation approaches of COF-based membranes are systematically summarized, including in situ growth, layer-by-layer stacking, blending, and interface engineering. Subsequently, the key advances of COF-based membranes in separating various CO2 mixed gases, such as CO2 /CH4 , CO2 /H2 , CO2 /N2 , and CO2 /He, are comprehensively discussed. Finally, the current issues and further research expectations in this field are proposed.
Collapse
Affiliation(s)
- Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongli Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
9
|
Bu R, Lu Y, Zhang B. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|