1
|
Luo Y, Luo Y, Liu Y, Huang Y, Yu P, Ma H, Li X, Zhang Z, Zhang C, Chen C, Gale PA, Bao G. A hybrid strategy to enhance small-sized upconversion nanocrystals. Biosens Bioelectron 2025; 271:117003. [PMID: 39657555 DOI: 10.1016/j.bios.2024.117003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Upconversion nanoparticles (UCNPs) are characterized by high photostability, narrow spectral bands, excellent tuneability, and low biotoxicity, facilitating a broad range of biomedical applications. However, the small size required in many biological applications implies a lower luminescent brightness, as large surface-to-volume ratio is always accompanied with severe surface quenching. Herein, we introduce a strategy to overcome the surface quenching by incorporating an acceptor dye, sulforhodamine B (SRB) to surpass energy relaxation on long-lived lanthanide excited states. The surface modification of SRB led to up to 98.8% energy transfer efficiency, accompanied with the emergence of an intense SRB emission, with four orders of magnitude of change in the SRB/UCNPs emission ratio. The further structural optimisation led to an 8-fold upconversion emission enhancement. Moreover, the system exhibits excellent photostability, with only a 25% reduction over 2 h under intense irradiation. By incorporating a pH responsive 5-carboxytetramethylrhodamine (5-TAMRA) to the UCNPs, we achieved a self-referencing protochromic sensor that are specific to protons and resistant to interference from various metal ions. This work provides a facile method for enhancing small-sized nanocrystals for potential biomedical sensing and imaging applications.
Collapse
Affiliation(s)
- Yijun Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Yuxia Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China.
| | - Yuxi Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Yin Huang
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Ping Yu
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an, 710123, China.
| | - Hao Ma
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an, 710123, China
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Zhao Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Chaohao Chen
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Philip A Gale
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Guochen Bao
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia; Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia.
| |
Collapse
|
2
|
Aragon-Alberti M, Dyksik M, Brites CDS, Rouquette J, Plochocka P, Carlos LD, Long J. Rethinking Assumptions: Assessing the Impact of Strong Magnetic Fields on Luminescence Thermometry. J Am Chem Soc 2024; 146:33723-33731. [PMID: 39487792 DOI: 10.1021/jacs.4c11584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Luminescence (nano)thermometry has exploded in popularity, offering a remote detection way to measure temperature across diverse fields like nanomedicine, microelectronics, catalysis, and plasmonics. A key advantage is its supposed immunity to strong electromagnetic fields, a crucial feature in many environments. However, this assumption lacks comprehensive experimental verification as most of the proposed luminescent thermometers rely on magnetic ions, such as lanthanides. Here, we address this gap by critically examining the thermometric response of the luminescent molecular thermometer [Tb0.93Eu0.07(bpy)2(NO3)3] (bpy = 2,2'-bipyridine) under high magnetic fields (up to 58 T). Our findings reveal that the conventional intensity-based method for Tb/Eu luminescent thermometers fails even under weak magnetic fields. However, careful data analysis identified specific transitions with minimal magnetic correlation, enabling the thermometer to operate across the entire temperature range up to 20 T, and with larger fields for temperatures exceeding 120 K. This study highlights the strong dependence of thermometric performance on material properties, urging caution, but also offers a path forward for developing robust luminescent thermometers in such environments.
Collapse
Affiliation(s)
| | - Mateusz Dyksik
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Carlos D S Brites
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jérôme Rouquette
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Paulina Plochocka
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse 3, INSA-T, 31400 Toulouse, France
| | - Luís D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jérôme Long
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
3
|
Liu Y, Ning L, Luo Y, Huang Y, He Z, Ma H, Zhao Y, Zhang J, Liu D, Fu L, Langford SJ, Gale PA, Luo Y, Bao G. Stabilizing Dye-Sensitized Upconversion Hybrids by Cyclooctatetraene. NANO LETTERS 2024; 24:12486-12492. [PMID: 39292766 DOI: 10.1021/acs.nanolett.4c03391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) can convert low-energy near-infrared (NIR) light into high-energy visible light, making them valuable for broad applications. UCNPs often suffer from poor light-harvesting capabilities, which can be significantly improved by incorporating organic dye antennas. However, the dye-sensitized upconversion systems are prone to severe photobleaching in an ambient atmosphere. Here, we present a synergistic approach to mitigate photobleaching by introducing triplet state quencher cyclooctatetraene (COT). COT effectively suppresses the generation of singlet oxygen by quenching the triplet states of the dye and consumes the existing singlet oxygen through oxidant reactions. The inclusion of COT extends the half-life of IR806 by 4.7-times by preventing the oxidation of its poly(methylene) chains. Without significantly affecting emission intensity and dynamics, COT effectively stabilized dye-UCNPs, demonstrating a notable 3.9-fold increase in half-life under continuous laser irradiation. Our findings suggest a new strategy to enhance the photostability of near-infrared dyes and dye-sensitized upconversion nanohybrids.
Collapse
Affiliation(s)
- Yuxi Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, P.R. China
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, P.R. China
| | - Yijun Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, P.R. China
| | - Yin Huang
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Zemin He
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, P.R. China
| | - Hao Ma
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, P.R. China
| | - Yuzhen Zhao
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, P.R. China
| | - Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Deming Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences, Changchun 130033, P.R. China
| | - Libing Fu
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Steven J Langford
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Philip A Gale
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yuxia Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, P.R. China
| | - Guochen Bao
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
4
|
Wang M, Wang Y, Fu Q. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo. Mater Today Bio 2024; 26:101027. [PMID: 38525310 PMCID: PMC10959709 DOI: 10.1016/j.mtbio.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Multimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy. These advancements pave the way for precise tumor medicine. This review summarizes various types of magneto-optical nanosystems developed recently and describes their applications as probes for multimodal imaging and agents for image-guided therapeutic interventions. Finally, future research and development prospects of magneto-optical nanosystems are discussed along with an outlook on their further applications in the biomedical field.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
5
|
Wang Q, Shangguan H, Yu H, Rong X, Zhou B, Tang Z, Li C, Liu S, Lu Y, Xu J. Fluorinated Hafnium and Zirconium Coenable the Tunable Biodegradability of Core-Multishell Heterogeneous Nanocrystals for Bioimaging. NANO LETTERS 2024; 24:2876-2884. [PMID: 38385324 DOI: 10.1021/acs.nanolett.3c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Upconversion (UC)/downconversion (DC)-luminescent lanthanide-doped nanocrystals (LDNCs) with near-infrared (NIR, 650-1700 nm) excitation have been gaining increasing popularity in bioimaging. However, conventional NIR-excited LDNCs cannot be degraded and eliminated eventually in vivo owing to intrinsic "rigid" lattices, thus constraining clinical applications. A biodegradability-tunable heterogeneous core-shell-shell luminescent LDNC of Na3HfF7:Yb,Er@Na3ZrF7:Yb,Er@CaF2:Yb,Zr (abbreviated as HZC) was developed and modified with oxidized sodium alginate (OSA) for multimode bioimaging. The dynamic "soft" lattice-Na3Hf(Zr)F7 host and the varying Zr4+ doping content in the outmoster CaF2 shell endowed HZC with tunable degradability. Through elaborated core-shell-shell coating, Yb3+/Er3+-coupled UC red and green and DC second near-infrared (NIR-II) emissions were, respectively, enhanced by 31.23-, 150.60-, and 19.42-fold when compared with core nanocrystals. HZC generated computed tomography (CT) imaging contrast effects, thus enabling NIR-II/CT/UC trimodal imaging. OSA modification not only ensured the exemplary biocompatibility of HZC but also enabled tumor-specific diagnosis. The findings would benefit the clinical imaging translation of LDNCs.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Hang Shangguan
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Hongtao Yu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Xinli Rong
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Boyi Zhou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Zhengyang Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yong Lu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- School of Laboratory Medicine Wannan Medical College, Wuhu, Anhui 241002, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
6
|
Fu H, Jiang Y, Zhang M, Zhong Z, Liang Z, Wang S, Du Y, Yan C. High-entropy rare earth materials: synthesis, application and outlook. Chem Soc Rev 2024; 53:2211-2247. [PMID: 38240305 DOI: 10.1039/d2cs01030e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Recently, high-entropy (HE) materials have attracted increasing interest in various fields due to their unique characteristics. Rare earth (RE) elements have a similar atomic radius and gradually occupied 4f orbitals, endowing them with abundant optical, electric, and magnetic properties. Furthermore, HE-RE materials exhibit good structural and thermal stability and various functional properties, emerging as an important class of HE materials, which are on the verge of rapid development. However, a comprehensive review focusing on the introduction and in-depth understanding of HE-RE materials has not been reported to date. Thus, this review endeavors to provide a comprehensive summary of the development and research status of HE-RE materials, including alloys and ceramics, ranging from their structure, synthesis, and properties to applications. In addition, some distinctive issues of HR-RE materials related to the special electronic structure of RE are also discussed. Finally, we put forward the current challenges and future development directions of HE-RE materials. We hope that this review will provide inspiration for new design ideas and valuable references in this emerging field in the future.
Collapse
Affiliation(s)
- Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziyun Zhong
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Siyuan Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Chunhua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Wang Y, Han Y, Liu R, Duan C, Li H. Excitation-Controlled Host-Guest Multicolor Luminescence in Lanthanide-Doped Calcium Zirconate for Information Encryption. Molecules 2023; 28:7623. [PMID: 38005346 PMCID: PMC10675260 DOI: 10.3390/molecules28227623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Efficient control over lanthanide luminescence by regulating excitations offers a real-time and reversible luminescence-managing strategy, which is of great importance and highly desirable for various applications, including multicolor display and information encryption. Herein, we studied the crystal structure, luminescence properties, and mechanisms of undoped and Tb3+/Eu3+-doped CaZrO3 in detail. The intrinsic purple-blue luminescence from host CaZrO3 and the introduced green/red luminescence from guest dopants Tb3+/Eu3+ were found to have different excitation mechanisms and, therefore, different excitation wavelength ranges. This enables the regulation of luminescent color through controlling the excitation wavelengths of Tb3+/Eu3+-doped CaZrO3. Furthermore, preliminary applications for information encryption with these materials were demonstrated using portable UV lamps of 254 and 302 nm. This study not only promotes the development of multicolor luminescence regulation in fixed-composition materials, but also advances the practical applications of lanthanide luminescent materials in visually readable, high-level anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Yangbo Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yingdong Han
- College of Science, Civil Aviation University of China, Tianjin 300300, China;
| | - Runfa Liu
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Cunping Duan
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Huaiyong Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
8
|
Luo Y, Liu Q, He P, Li L, Zhang Z, Li X, Bao G, Wong K, Tanner PA, Jiang L. Responsive Regulation of Energy Transfer in Lanthanide-Doped Nanomaterials Dispersed in Chiral Nematic Structure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303235. [PMID: 37505484 PMCID: PMC10520692 DOI: 10.1002/advs.202303235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Indexed: 07/29/2023]
Abstract
The responsive control of energy transfer (ET) plays a key role in the broad applications of lanthanide-doped nanomaterials. Photonic crystals (PCs) are excellent materials for ET regulation. Among the numerous materials that can be used to fabricate PCs, chiral nematic liquid crystals are highly attractive due to their good photoelectric responsiveness and biocompatibility. Here, the mechanisms of ET and the photonic effect of chiral nematic structures on ET are introduced; the regulation methods of chiral nematic structures and the resulting changes in ET of lanthanide-doped nanomaterials are highlighted; and the challenges and promising opportunities for ET in chiral nematic structures are discussed.
Collapse
Affiliation(s)
- Yuxia Luo
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Qingdi Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Ping He
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Liang Li
- School of Life SciencesCentral China Normal UniversityWuhan430079China
| | - Zhao Zhang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Xinping Li
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Guochen Bao
- Institute for Biomedical Materials and Devices (IBMD)Faculty of ScienceUniversity of Technology SydneySydneyNSW2007Australia
| | - Ka‐Leung Wong
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR999077China
| | - Peter A. Tanner
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR999077China
| | - Lijun Jiang
- School of Life SciencesCentral China Normal UniversityWuhan430079China
| |
Collapse
|
9
|
Davydova MP, Meng L, Rakhmanova MI, Jia Z, Berezin AS, Bagryanskaya IY, Lin Q, Meng H, Artem'ev AV. Strong Magnetically-Responsive Circularly Polarized Phosphorescence and X-Ray Scintillation in Ultrarobust Mn(II)-Organic Helical Chains. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303611. [PMID: 37358067 DOI: 10.1002/adma.202303611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Over recent years, Mn(II)-organic materials showing circularly polarized luminescence (CPL) have attracted great interest because of their eco-friendliness, cheapness, and room temperature phosphorescence. Using the helicity design strategy, herein, chiral Mn(II)-organic helical polymers are constructed featuring long-lived circularly polarized phosphorescence with exceptionally high glum and ΦPL magnitudes of 0.021% and 89%, respectively, while remaining ultrarobust toward humidity, temperature, and X-rays. Equally important, it is disclosed for the first time that the magnetic field has a remarkably high negative effect on CPL for Mn(II) materials, suppressing the CPL signal by 4.2-times atB ⃗ $\vec{B}$ = 1.6 T. Using the designed materials, UV-pumped CPL light-emitting diodes are fabricated, demonstrating enhanced optical selectivity under right- and left-handed polarization conditions. On top of all this, the reported materials display bright triboluminescence and excellent X-ray scintillation activity with a perfectly linear X-ray dose rate response up to 174 µGyair s-1 . Overall, these observations significantly contribute to the CPL phenomenon for multi-spin compounds and promote the design of highly efficient and stable Mn(II)-based CPL emitters.
Collapse
Affiliation(s)
- Maria P Davydova
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Lingqiang Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Mariana I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Zhenglin Jia
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Irina Yu Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Qianqian Lin
- School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Lavrentiev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
10
|
Li J, Yu J. Biodegradable Microrobots and Their Biomedical Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101590. [PMID: 37242005 DOI: 10.3390/nano13101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
During recent years, microrobots have drawn extensive attention owing to their good controllability and great potential in biomedicine. Powered by external physical fields or chemical reactions, these untethered microdevices are promising candidates for in vivo complex tasks, such as targeted delivery, imaging and sensing, tissue engineering, hyperthermia, and assisted fertilization, among others. However, in clinical use, the biodegradability of microrobots is significant for avoiding toxic residue in the human body. The selection of biodegradable materials and the corresponding in vivo environment needed for degradation are increasingly receiving attention in this regard. This review aims at analyzing different types of biodegradable microrobots by critically discussing their advantages and limitations. The chemical degradation mechanisms behind biodegradable microrobots and their typical applications are also thoroughly investigated. Furthermore, we examine their feasibility and deal with the in vivo suitability of different biodegradable microrobots in terms of their degradation mechanisms; pathological environments; and corresponding biomedical applications, especially targeted delivery. Ultimately, we highlight the prevailing obstacles and perspective solutions, ranging from their manufacturing methods, control of movement, and degradation rate to insufficient and limited in vivo tests, that could be of benefit to forthcoming clinical applications.
Collapse
Affiliation(s)
- Jinxin Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518172, China
| |
Collapse
|
11
|
Gheata A, Spada A, Wittwer M, Dhouib A, Molina E, Mugnier Y, Gerber-Lemaire S. Modulating the Surface Properties of Lithium Niobate Nanoparticles by Multifunctional Coatings Using Water-in-Oil Microemulsions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:522. [PMID: 36770484 PMCID: PMC9921616 DOI: 10.3390/nano13030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Inorganic nanoparticles (NPs) have emerged as promising tools in biomedical applications, owing to their inherent physicochemical properties and their ease of functionalization. In all potential applications, the surface functionalization strategy is a key step to ensure that NPs are able to overcome the barriers encountered in physiological media, while introducing specific reactive moieties to enable post-functionalization. Silanization appears as a versatile NP-coating strategy, due to the biocompatibility and stability of silica, thus justifying the need for robust and well controlled silanization protocols. Herein, we describe a procedure for the silica coating of harmonic metal oxide NPs (LiNbO3, LNO) using a water-in-oil microemulsion (W/O ME) approach. Through optimized ME conditions, the silanization of LNO NPs was achieved by the condensation of silica precursors (TEOS, APTES derivatives) on the oxide surface, resulting in the formation of coated NPs displaying carboxyl (LNO@COOH) or azide (LNO@N3) reactive moieties. LNO@COOH NPs were further conjugated to an unnatural azido-containing small peptide to obtain silica-coated LNO NPs (LNO@Talys), displaying both azide and carboxyl moieties, which are well suited for biomedical applications due to the orthogonality of their surface functional groups, their colloidal stability in aqueous medium, and their anti-fouling properties.
Collapse
Affiliation(s)
- Adrian Gheata
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, 1015 Lausanne, Switzerland
| | - Alessandra Spada
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, 1015 Lausanne, Switzerland
| | - Manon Wittwer
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, 1015 Lausanne, Switzerland
- Département de Chimie, École Normale Supérieure, PSL University, 75005 Paris, France
| | - Ameni Dhouib
- Université Savoie Mont-Blanc, SYMME, 74000 Annecy, France
| | - Emilie Molina
- Université Savoie Mont-Blanc, SYMME, 74000 Annecy, France
| | | | - Sandrine Gerber-Lemaire
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Luo Y, Chen Z, He P, Liu Q, He Z, Zhao Y, Ma H, Li L, Zhang Z, Li X, Han Q. Luminescence regulation of lanthanide-doped nanorods in chiral photonic cellulose nanocrystal films. Int J Biol Macromol 2023; 225:1172-1181. [PMID: 36414081 DOI: 10.1016/j.ijbiomac.2022.11.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
A new design for chiral photonic cellulose nanocrystal films was developed by co-assembling lanthanide-doped nanorods (NRs) into chiral cellulose nanocrystals, in which the photonic band gap (PBG) could be tuned in the visible range by changing the mass fraction of flexible agents, such as polyvinyl alcohol (PVA) and ethylene glycol (EG). Due to the PBG effect, the luminescence modulation in such nanocrystal films had been realized. The down-conversion luminescence from NaGd30Y60F4:5%Tb3+, 5%Eu3+ NRs and up-conversion luminescence from NaGd40Y40F4:18%Yb3+, 2%Er3+ NRs could be enhanced by 28 % and 18 % respectively, on account of the band edge effect. The luminescence would be inhibited when the luminescence overlapped with the stop band of the PBG. These results implied that the biocompatible photonic cellulose nanocrystal films are ideally suited for applications in optical coding, optical resonators and biocompatible lasers.
Collapse
Affiliation(s)
- Yuxia Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, PR China.
| | - Zhuo Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, PR China
| | - Ping He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, PR China
| | - Qingdi Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, PR China
| | - Zemin He
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, PR China
| | - Yuzhen Zhao
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, PR China
| | - Hao Ma
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, PR China
| | - Liyi Li
- Innovative Drug and Imaging Agent R&D Center, Research Institute of Tsinghua, Pearl River Delta, Guangzhou, PR China.
| | - Zhao Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, PR China.
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, PR China.
| | - Qing Han
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, PR China.
| |
Collapse
|
13
|
Yu M, Chen Y, Luo Y, Gong G, Zhang Y, Tan H, Xu L, Xu J. Photoswitchable lanthanide-doped core-multishell nanoparticles for tunable triple-mode information encryption and dynamic anti-counterfeiting patterns. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|