1
|
Xie CX, De Simoni A, Eldridge S, Pinnock H, Relton C. Development of a conceptual framework for defining trial efficiency. PLoS One 2024; 19:e0304187. [PMID: 38781167 PMCID: PMC11115328 DOI: 10.1371/journal.pone.0304187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Globally, there is a growing focus on efficient trials, yet numerous interpretations have emerged, suggesting a significant heterogeneity in understanding "efficiency" within the trial context. Therefore in this study, we aimed to dissect the multifaceted nature of trial efficiency by establishing a comprehensive conceptual framework for its definition. OBJECTIVES To collate diverse perspectives regarding trial efficiency and to achieve consensus on a conceptual framework for defining trial efficiency. METHODS From July 2022 to July 2023, we undertook a literature review to identify various terms that have been used to define trial efficiency. We then conducted a modified e-Delphi study, comprising an exploratory open round and a subsequent scoring round to refine and validate the identified items. We recruited a wide range of experts in the global trial community including trialists, funders, sponsors, journal editors and members of the public. Consensus was defined as items rated "without disagreement", measured by the inter-percentile range adjusted for symmetry through the UCLA/RAND approach. RESULTS Seventy-eight studies were identified from a literature review, from which we extracted nine terms related to trial efficiency. We then used review findings as exemplars in the Delphi open round. Forty-nine international experts were recruited to the e-Delphi panel. Open round responses resulted in the refinement of the initial nine terms, which were consequently included in the scoring round. We obtained consensus on all nine items: 1) four constructs that collectively define trial efficiency containing scientific efficiency, operational efficiency, statistical efficiency and economic efficiency; and 2) five essential building blocks for efficient trial comprising trial design, trial process, infrastructure, superstructure, and stakeholders. CONCLUSIONS This is the first attempt to dissect the concept of trial efficiency into theoretical constructs. Having an agreed definition will allow better trial implementation and facilitate effective communication and decision-making across stakeholders. We also identified essential building blocks that are the cornerstones of an efficient trial. In this pursuit of understanding, we are not only unravelling the complexities of trial efficiency but also laying the groundwork for evaluating the efficiency of an individual trial or a trial system in the future.
Collapse
Affiliation(s)
- Charis Xuan Xie
- Wolfson Institute of Population Health, Queen Mary University of London, London, England, United Kingdom
| | - Anna De Simoni
- Wolfson Institute of Population Health, Queen Mary University of London, London, England, United Kingdom
| | - Sandra Eldridge
- Wolfson Institute of Population Health, Queen Mary University of London, London, England, United Kingdom
| | - Hilary Pinnock
- Usher Institute, Asthma UK Centre for Applied Research, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Clare Relton
- Wolfson Institute of Population Health, Queen Mary University of London, London, England, United Kingdom
| |
Collapse
|
2
|
Vinnat V, Chiche JD, Demoule A, Chevret S. Simulation study for evaluating an adaptive-randomisation Bayesian hybrid trial design with enrichment. Contemp Clin Trials Commun 2023; 33:101141. [PMID: 37397429 PMCID: PMC10313856 DOI: 10.1016/j.conctc.2023.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 07/04/2023] Open
Abstract
Background As we enter the era of precision medicine, the role of adaptive designs, such as response-adaptive randomisation or enrichment designs in drug discovery and development, has become increasingly important to identify the treatment given to a patient based on one or more biomarkers. Tailoring the ventilation supply technique according to the responsiveness of patients to positive end-expiratory pressure is a suitable setting for such a design. Methods In the setting of marker-strategy design, we propose a Bayesian response-adaptive randomisation with enrichment design based on group sequential analyses. This design combines the elements of enrichment design and response-adaptive randomisation. Concerning the enrichment strategy, Bayesian treatment-by-subset interaction measures were used to adaptively enrich the patients most likely to benefit from an experimental treatment while controlling the false-positive rate.The operating characteristics of the design were assessed by simulation and compared to those of alternate designs. Results The results obtained allowed the detection of the superiority of one treatment over another and the presence of a treatment-by-subgroup interaction while keeping the false-positive rate at approximately 5\% and reducing the average number of included patients. In addition, simulation studies identified that the number of interim analyses and the burn-in period may have an impact on the performance of the scheme. Conclusion The proposed design highlights important objectives of precision medicine, such as determining whether the experimental treatment is superior to another and identifying wheter such an efficacy could depend on patient profile.
Collapse
Affiliation(s)
- Valentin Vinnat
- ECSTRRA team, INSERM U1153, Université Paris Cité, Paris, France
| | - Jean-Daniel Chiche
- Service de médecine intensive adulte, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Alexandre Demoule
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service de Médecine Intensive et Réanimation (Département R3S), Paris, France
| | - Sylvie Chevret
- ECSTRRA team, INSERM U1153, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Tang F, Gajewski BJ. Comparative Effectiveness Research using Bayesian Adaptive Designs for Rare Diseases: Response Adaptive Randomization Reusing Participants. Stat Biopharm Res 2021; 15:154-163. [PMID: 36875290 PMCID: PMC9979780 DOI: 10.1080/19466315.2021.1961854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/23/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Slow accrual rate is a major challenge in clinical trials for rare diseases and is identified as the most frequent reason for clinical trials to fail. This challenge is amplified in comparative effectiveness research where multiple treatments are compared to identify the best treatment. Novel efficient clinical trial designs are in urgent need in these areas. Our proposed response adaptive randomization (RAR) reusing participants trial design mimics the real-world clinical practice that allows patients to switch treatments when desired outcome is not achieved. The proposed design increases efficiency by two strategies: 1) Allowing participants to switch treatments so that each participant can have more than one observation and hence it is possible to control for participant specific variability to increase statistical power; and 2) Utilizing RAR to allocate more participants to the promising arms such that ethical and efficient studies will be achieved. Extensive simulations were conducted and showed that, compared with trials where each participant receives one treatment, the proposed participants reusing RAR design can achieve comparable power with a smaller sample size and a shorter trial duration, especially when the accrual rate is low. The efficiency gain decreases as the accrual rate increases.
Collapse
Affiliation(s)
- Fengming Tang
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, 66160
- Saint Luke’s Health System, Kansas City, MO, 64111
| | - Byron J. Gajewski
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, 66160
| |
Collapse
|
4
|
The Evolution of Master Protocol Clinical Trial Designs: A Systematic Literature Review. Clin Ther 2020; 42:1330-1360. [DOI: 10.1016/j.clinthera.2020.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
|
5
|
Dimairo M, Pallmann P, Wason J, Todd S, Jaki T, Julious SA, Mander AP, Weir CJ, Koenig F, Walton MK, Nicholl JP, Coates E, Biggs K, Hamasaki T, Proschan MA, Scott JA, Ando Y, Hind D, Altman DG. The adaptive designs CONSORT extension (ACE) statement: a checklist with explanation and elaboration guideline for reporting randomised trials that use an adaptive design. Trials 2020; 21:528. [PMID: 32546273 PMCID: PMC7298968 DOI: 10.1186/s13063-020-04334-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adaptive designs (ADs) allow pre-planned changes to an ongoing trial without compromising the validity of conclusions and it is essential to distinguish pre-planned from unplanned changes that may also occur. The reporting of ADs in randomised trials is inconsistent and needs improving. Incompletely reported AD randomised trials are difficult to reproduce and are hard to interpret and synthesise. This consequently hampers their ability to inform practice as well as future research and contributes to research waste. Better transparency and adequate reporting will enable the potential benefits of ADs to be realised.This extension to the Consolidated Standards Of Reporting Trials (CONSORT) 2010 statement was developed to enhance the reporting of randomised AD clinical trials. We developed an Adaptive designs CONSORT Extension (ACE) guideline through a two-stage Delphi process with input from multidisciplinary key stakeholders in clinical trials research in the public and private sectors from 21 countries, followed by a consensus meeting. Members of the CONSORT Group were involved during the development process.The paper presents the ACE checklists for AD randomised trial reports and abstracts, as well as an explanation with examples to aid the application of the guideline. The ACE checklist comprises seven new items, nine modified items, six unchanged items for which additional explanatory text clarifies further considerations for ADs, and 20 unchanged items not requiring further explanatory text. The ACE abstract checklist has one new item, one modified item, one unchanged item with additional explanatory text for ADs, and 15 unchanged items not requiring further explanatory text.The intention is to enhance transparency and improve reporting of AD randomised trials to improve the interpretability of their results and reproducibility of their methods, results and inference. We also hope indirectly to facilitate the much-needed knowledge transfer of innovative trial designs to maximise their potential benefits. In order to encourage its wide dissemination this article is freely accessible on the BMJ and Trials journal websites."To maximise the benefit to society, you need to not just do research but do it well" Douglas G Altman.
Collapse
Affiliation(s)
- Munyaradzi Dimairo
- School of Health and Related Research, University of Sheffield, Sheffield, S1 4DA, UK.
| | | | - James Wason
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Institute of Health and Society, Newcastle University, Newcastle, UK
| | - Susan Todd
- Department of Mathematics and Statistics, University of Reading, Reading, UK
| | - Thomas Jaki
- Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - Steven A Julious
- School of Health and Related Research, University of Sheffield, Sheffield, S1 4DA, UK
| | - Adrian P Mander
- Centre for Trials Research, Cardiff University, Cardiff, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Franz Koenig
- Centre for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Marc K Walton
- Janssen Pharmaceuticals, Titusville, New Jersey, USA
| | - Jon P Nicholl
- School of Health and Related Research, University of Sheffield, Sheffield, S1 4DA, UK
| | - Elizabeth Coates
- School of Health and Related Research, University of Sheffield, Sheffield, S1 4DA, UK
| | - Katie Biggs
- School of Health and Related Research, University of Sheffield, Sheffield, S1 4DA, UK
| | | | - Michael A Proschan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - John A Scott
- Division of Biostatistics in the Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, USA
| | - Yuki Ando
- Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Daniel Hind
- School of Health and Related Research, University of Sheffield, Sheffield, S1 4DA, UK
| | - Douglas G Altman
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Dimairo M, Pallmann P, Wason J, Todd S, Jaki T, Julious SA, Mander AP, Weir CJ, Koenig F, Walton MK, Nicholl JP, Coates E, Biggs K, Hamasaki T, Proschan MA, Scott JA, Ando Y, Hind D, Altman DG. The Adaptive designs CONSORT Extension (ACE) statement: a checklist with explanation and elaboration guideline for reporting randomised trials that use an adaptive design. BMJ 2020; 369:m115. [PMID: 32554564 PMCID: PMC7298567 DOI: 10.1136/bmj.m115] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2019] [Indexed: 12/11/2022]
Abstract
Adaptive designs (ADs) allow pre-planned changes to an ongoing trial without compromising the validity of conclusions and it is essential to distinguish pre-planned from unplanned changes that may also occur. The reporting of ADs in randomised trials is inconsistent and needs improving. Incompletely reported AD randomised trials are difficult to reproduce and are hard to interpret and synthesise. This consequently hampers their ability to inform practice as well as future research and contributes to research waste. Better transparency and adequate reporting will enable the potential benefits of ADs to be realised.This extension to the Consolidated Standards Of Reporting Trials (CONSORT) 2010 statement was developed to enhance the reporting of randomised AD clinical trials. We developed an Adaptive designs CONSORT Extension (ACE) guideline through a two-stage Delphi process with input from multidisciplinary key stakeholders in clinical trials research in the public and private sectors from 21 countries, followed by a consensus meeting. Members of the CONSORT Group were involved during the development process.The paper presents the ACE checklists for AD randomised trial reports and abstracts, as well as an explanation with examples to aid the application of the guideline. The ACE checklist comprises seven new items, nine modified items, six unchanged items for which additional explanatory text clarifies further considerations for ADs, and 20 unchanged items not requiring further explanatory text. The ACE abstract checklist has one new item, one modified item, one unchanged item with additional explanatory text for ADs, and 15 unchanged items not requiring further explanatory text.The intention is to enhance transparency and improve reporting of AD randomised trials to improve the interpretability of their results and reproducibility of their methods, results and inference. We also hope indirectly to facilitate the much-needed knowledge transfer of innovative trial designs to maximise their potential benefits.
Collapse
Affiliation(s)
- Munyaradzi Dimairo
- School of Health and Related Research, University of Sheffield, Sheffield S1 4DA, UK
| | | | - James Wason
- MRC Biostatistics Unit, University of Cambridge, UK
- Institute of Health and Society, Newcastle University, UK
| | - Susan Todd
- Department of Mathematics and Statistics, University of Reading, UK
| | - Thomas Jaki
- Department of Mathematics and Statistics, Lancaster University, UK
| | - Steven A Julious
- School of Health and Related Research, University of Sheffield, Sheffield S1 4DA, UK
| | - Adrian P Mander
- Centre for Trials Research, Cardiff University, UK
- MRC Biostatistics Unit, University of Cambridge, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, UK
| | - Franz Koenig
- Centre for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria
| | | | - Jon P Nicholl
- School of Health and Related Research, University of Sheffield, Sheffield S1 4DA, UK
| | - Elizabeth Coates
- School of Health and Related Research, University of Sheffield, Sheffield S1 4DA, UK
| | - Katie Biggs
- School of Health and Related Research, University of Sheffield, Sheffield S1 4DA, UK
| | | | - Michael A Proschan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA
| | - John A Scott
- Division of Biostatistics in the Center for Biologics Evaluation and Research, Food and Drug Administration, USA
| | - Yuki Ando
- Pharmaceuticals and Medical Devices Agency, Japan
| | - Daniel Hind
- School of Health and Related Research, University of Sheffield, Sheffield S1 4DA, UK
| | | |
Collapse
|
7
|
Viele K, Saville BR, McGlothlin A, Broglio K. Comparison of response adaptive randomization features in multiarm clinical trials with control. Pharm Stat 2020; 19:602-612. [DOI: 10.1002/pst.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/27/2020] [Accepted: 03/02/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Kert Viele
- Berry Consultants Austin Texas USA
- Department of Biostatistics University of Kentucky Lexington Kentucky USA
| | - Benjamin R. Saville
- Berry Consultants Austin Texas USA
- Department of Biostatistics Vanderbilt University Nashville Tennessee USA
| | | | | |
Collapse
|
8
|
Ryan EG, Lamb SE, Williamson E, Gates S. Bayesian adaptive designs for multi-arm trials: an orthopaedic case study. Trials 2020; 21:83. [PMID: 31937341 PMCID: PMC6961269 DOI: 10.1186/s13063-019-4021-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Bayesian adaptive designs can be more efficient than traditional methods for multi-arm randomised controlled trials. The aim of this work was to demonstrate how Bayesian adaptive designs can be constructed for multi-arm phase III clinical trials and assess potential benefits that these designs offer. METHODS We constructed several alternative Bayesian adaptive designs for the Collaborative Ankle Support Trial (CAST), which was a randomised controlled trial that compared four treatments for severe ankle sprain. These designs incorporated response adaptive randomisation (RAR), arm dropping, and early stopping for efficacy or futility. We studied the operating characteristics of the Bayesian designs via simulation. We then virtually re-executed the trial by implementing the Bayesian adaptive designs using patient data sampled from the CAST study to demonstrate the practical applicability of the designs. RESULTS We constructed five Bayesian adaptive designs, each of which had high power and recruited fewer patients on average than the original designs target sample size. The virtual executions showed that most of the Bayesian designs would have led to trials that declared superiority of one of the interventions over the control. Bayesian adaptive designs with RAR or arm dropping were more likely to allocate patients to better performing arms at each interim analysis. Similar estimates and conclusions were obtained from the Bayesian adaptive designs as from the original trial. CONCLUSIONS Using CAST as an example, this case study shows how Bayesian adaptive designs can be constructed for phase III multi-arm trials using clinically relevant decision criteria. These designs demonstrated that they can potentially generate earlier results and allocate more patients to better performing arms. We recommend the wider use of Bayesian adaptive approaches in phase III clinical trials. TRIAL REGISTRATION CAST study registration ISRCTN, ISRCTN37807450. Retrospectively registered on 25 April 2003.
Collapse
Affiliation(s)
- Elizabeth G Ryan
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Sarah E Lamb
- Centre for Rehabilitation Research, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences (NDORMS), Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK
| | - Esther Williamson
- Centre for Rehabilitation Research, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences (NDORMS), Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - Simon Gates
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
9
|
Viele K, Broglio K, McGlothlin A, Saville BR. Comparison of methods for control allocation in multiple arm studies using response adaptive randomization. Clin Trials 2019; 17:52-60. [PMID: 31630567 DOI: 10.1177/1740774519877836] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND/AIMS Response adaptive randomization has many polarizing properties in two-arm settings comparing control to a single treatment. The generalization of these features to the multiple arm setting has been less explored, and existing comparisons in the literature reach disparate conclusions. We investigate several generalizations of two-arm response adaptive randomization methods relating to control allocation in multiple arm trials, exploring how critiques of response adaptive randomization generalize to the multiple arm setting. METHODS We perform a simulation study to investigate multiple control allocation schemes within response adaptive randomization, comparing the designs on metrics such as power, arm selection, mean square error, and the treatment of patients within the trial. RESULTS The results indicate that the generalization of two-arm response adaptive randomization concerns is variable and depends on the form of control allocation employed. The concerns are amplified when control allocation may be reduced over the course of the trial but are mitigated in the methods considered when control allocation is maintained or increased during the trial. In our chosen example, we find minimal advantage to increasing, as opposed to maintaining, control allocation; however, this result reflects an extremely limited exploration of methods for increasing control allocation. CONCLUSION Selection of control allocation in multiple arm response adaptive randomization has a large effect on the performance of the design. Some disparate comparisons of response adaptive randomization to alternative paradigms may be partially explained by these results. In future comparisons, control allocation for multiple arm response adaptive randomization should be chosen to keep in mind the appropriate match between control allocation in response adaptive randomization and the metric or metrics of interest.
Collapse
Affiliation(s)
| | | | | | - Benjamin R Saville
- Berry Consultants LLC, Austin, TX, USA.,Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
10
|
Ryan EG, Bruce J, Metcalfe AJ, Stallard N, Lamb SE, Viele K, Young D, Gates S. Using Bayesian adaptive designs to improve phase III trials: a respiratory care example. BMC Med Res Methodol 2019; 19:99. [PMID: 31088354 PMCID: PMC6515675 DOI: 10.1186/s12874-019-0739-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/22/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Bayesian adaptive designs can improve the efficiency of trials, and lead to trials that can produce high quality evidence more quickly, with fewer patients and lower costs than traditional methods. The aim of this work was to determine how Bayesian adaptive designs can be constructed for phase III clinical trials in critical care, and to assess the influence that Bayesian designs would have on trial efficiency and study results. METHODS We re-designed the High Frequency OSCillation in Acute Respiratory distress syndrome (OSCAR) trial using Bayesian adaptive design methods, to allow for the possibility of early stopping for success or futility. We constructed several alternative designs and studied their operating characteristics via simulation. We then performed virtual re-executions by applying the Bayesian adaptive designs using the OSCAR data to demonstrate the practical applicability of the designs. RESULTS We constructed five alternative Bayesian adaptive designs and identified a preferred design based on the simulated operating characteristics, which had similar power to the original design but recruited fewer patients on average. The virtual re-executions showed the Bayesian sequential approach and original OSCAR trial yielded similar trial conclusions. However, using a Bayesian sequential design could have led to a reduced sample size and earlier completion of the trial. CONCLUSIONS Using the OSCAR trial as an example, this case study found that Bayesian adaptive designs can be constructed for phase III critical care trials. If the OSCAR trial had been run using one of the proposed Bayesian adaptive designs, it would have terminated at a smaller sample size with fewer deaths in the trial, whilst reaching the same conclusions. We recommend the wider use of Bayesian adaptive approaches in phase III clinical trials. TRIAL REGISTRATION OSCAR Trial registration ISRCTN, ISRCTN10416500 . Retrospectively registered 13 June 2007.
Collapse
Affiliation(s)
- Elizabeth G. Ryan
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, CV4 7AL UK
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Julie Bruce
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, CV4 7AL UK
| | - Andrew J. Metcalfe
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, CV4 7AL UK
- Department of Trauma and Orthopaedic Surgery, University Hospital Coventry & Warwick, Coventry, UK
| | - Nigel Stallard
- Statistics and Epidemiology, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Sarah E. Lamb
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, CV4 7AL UK
- Centre for Rehabilitation Research and Centre for Statistics in Medicine, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | | | - Duncan Young
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Simon Gates
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, CV4 7AL UK
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Jiang Y, Zhao W, Durkalski-Mauldin V. Time-trend impact on treatment estimation in two-arm clinical trials with a binary outcome and Bayesian response adaptive randomization. J Biopharm Stat 2019; 30:69-88. [PMID: 31017843 DOI: 10.1080/10543406.2019.1607368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Clinical trial design and analysis often assume study population homogeneity, although patient baseline profile and standard of care may evolve over time, especially in trials with long recruitment periods. The time-trend phenomenon can affect the treatment estimation and the operating characteristics of trials with Bayesian response adaptive randomization (BRAR). The mechanism of time-trend impact on BRAR is increasingly being studied but some aspects remain unclear. The goal of this research is to quantify the bias in treatment effect estimation due to the use of BRAR in the presence of time-trend. In addition, simulations are conducted to compare the performance of three commonly used BRAR algorithms under different time-trend patterns with and without early stopping rules. The results demonstrate that using these BRAR methods in a two-arm trial with time-trend may cause type I error inflation and treatment effect estimation bias. The magnitude and direction of the bias are affected by the parameters of the BRAR algorithm and the time-trend pattern.
Collapse
Affiliation(s)
- Yunyun Jiang
- Department of Epidemiology and Biostatistics, George Washington University, Rockville, Maryland, USA
| | - Wenle Zhao
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Valerie Durkalski-Mauldin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
12
|
Sim J. Outcome-adaptive randomization in clinical trials: issues of participant welfare and autonomy. THEORETICAL MEDICINE AND BIOETHICS 2019; 40:83-101. [PMID: 30778720 PMCID: PMC6478640 DOI: 10.1007/s11017-019-09481-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Outcome-adaptive randomization (OAR) has been proposed as a corrective to certain ethical difficulties inherent in the traditional randomized clinical trial (RCT) using fixed-ratio randomization. In particular, it has been suggested that OAR redresses the balance between individual and collective ethics in favour of the former. In this paper, I examine issues of welfare and autonomy arising in relation to OAR. A central issue in discussions of welfare in OAR is equipoise, and the moral status of OAR is crucially influenced by the way in which this concept is construed. If OAR is based on a model of equipoise that demands strict indifference between competing interventions throughout the trial, such equipoise is disturbed by accruing data favouring one treatment over another; OAR seeks to redress this by weighting randomization to the seemingly superior treatment. However, this is a partial response, as patients continue to be allocated to the inferior therapy. Moreover, it rests upon considerations of aggregate harms and benefits, and does not therefore uphold individual ethics. Issues of fairness also arise, as early and late enrollees are randomized on a different basis. Fixed-ratio randomization represents a fuller and more consistent response to a loss of equipoise, as so construed. With regard to consent, the complexity of OAR poses challenges to adequate disclosure and comprehension. Additionally, OAR does not offer a remedy to the therapeutic misconception-participants' tendency to attribute treatment allocation in an RCT to individual clinical judgments, rather than to scientific considerations-and, if anything, accentuates rather than alleviates this misconception. In relation to these issues, OAR fails to offer ethical advantages over fixed-ratio randomization. More broadly, the ethical basis of OAR can be seen to lie more in collective than in individual ethics, and overall it fares worse in this territory than fixed-ratio randomization.
Collapse
Affiliation(s)
- Julius Sim
- Institute for Primary Care and Health Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|