1
|
Solovyeva O, Dimairo M, Weir CJ, Hee SW, Espinasse A, Ursino M, Patel D, Kightley A, Hughes S, Jaki T, Mander A, Evans TRJ, Lee S, Hopewell S, Rantell KR, Chan AW, Bedding A, Stephens R, Richards D, Roberts L, Kirkpatrick J, de Bono J, Yap C. Development of consensus-driven SPIRIT and CONSORT extensions for early phase dose-finding trials: the DEFINE study. BMC Med 2023; 21:246. [PMID: 37408015 PMCID: PMC10324137 DOI: 10.1186/s12916-023-02937-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Early phase dose-finding (EPDF) trials are crucial for the development of a new intervention and influence whether it should be investigated in further trials. Guidance exists for clinical trial protocols and completed trial reports in the SPIRIT and CONSORT guidelines, respectively. However, both guidelines and their extensions do not adequately address the characteristics of EPDF trials. Building on the SPIRIT and CONSORT checklists, the DEFINE study aims to develop international consensus-driven guidelines for EPDF trial protocols (SPIRIT-DEFINE) and reports (CONSORT-DEFINE). METHODS The initial generation of candidate items was informed by reviewing published EPDF trial reports. The early draft items were refined further through a review of the published and grey literature, analysis of real-world examples, citation and reference searches, and expert recommendations, followed by a two-round modified Delphi process. Patient and public involvement and engagement (PPIE) was pursued concurrently with the quantitative and thematic analysis of Delphi participants' feedback. RESULTS The Delphi survey included 79 new or modified SPIRIT-DEFINE (n = 36) and CONSORT-DEFINE (n = 43) extension candidate items. In Round One, 206 interdisciplinary stakeholders from 24 countries voted and 151 stakeholders voted in Round Two. Following Round One feedback, one item for CONSORT-DEFINE was added in Round Two. Of the 80 items, 60 met the threshold for inclusion (≥ 70% of respondents voted critical: 26 SPIRIT-DEFINE, 34 CONSORT-DEFINE), with the remaining 20 items to be further discussed at the consensus meeting. The parallel PPIE work resulted in the development of an EPDF lay summary toolkit consisting of a template with guidance notes and an exemplar. CONCLUSIONS By detailing the development journey of the DEFINE study and the decisions undertaken, we envision that this will enhance understanding and help researchers in the development of future guidelines. The SPIRIT-DEFINE and CONSORT-DEFINE guidelines will allow investigators to effectively address essential items that should be present in EPDF trial protocols and reports, thereby promoting transparency, comprehensiveness, and reproducibility. TRIAL REGISTRATION SPIRIT-DEFINE and CONSORT-DEFINE are registered with the EQUATOR Network ( https://www.equator-network.org/ ).
Collapse
Affiliation(s)
| | - Munyaradzi Dimairo
- Clinical Trials Research Unit, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Siew Wan Hee
- University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
- University of Warwick, Coventry, UK
| | | | - Moreno Ursino
- Inserm, Centre de Recherche Des Cordeliers, Sorbonne UniversitéUniversité Paris Cité, 75006, Paris, France
- HeKA, Inria Paris, 75015, Paris, France
- Unit of Clinical Epidemiology, AP-HP, CHU Robert Debré, CIC-EC 1426, Paris, France
- RECaP/F-CRIN, Inserm, 5400, Nancy, France
| | | | - Andrew Kightley
- Patient and Public Involvement and Engagement (PPIE) Lead, Lichfield, UK
| | | | - Thomas Jaki
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- University of Regensburg, Regensburg, Germany
| | | | | | - Shing Lee
- Columbia University, Mailman School of Public Health, New York, USA
| | - Sally Hopewell
- Oxford Clinical Trials Research Unit, University of Oxford, Oxford, UK
| | | | - An-Wen Chan
- Department of Medicine, Women's College Research Institute, University of Toronto, Toronto, Canada
| | | | | | | | | | | | - Johann de Bono
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | |
Collapse
|
2
|
Zhou Y, Zhao Y, Cicconetti G, Mu Y, Yuan Y, Wang L, Penugonda S, Salman Z. AIDE: Adaptive intrapatient dose escalation designs to accelerate Phase I clinical trials. Pharm Stat 2023; 22:300-311. [PMID: 36333972 DOI: 10.1002/pst.2272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022]
Abstract
Designing Phase I clinical trials is challenging when accrual is slow or sample size is limited. The corresponding key question is: how to efficiently and reliably identify the maximum tolerated dose (MTD) using a sample size as small as possible? We propose model-assisted and model-based designs with adaptive intrapatient dose escalation (AIDE) to address this challenge. AIDE is adaptive in that the decision of conducting intrapatient dose escalation depends on both the patient's individual safety data, as well as other enrolled patient's safety data. When both data indicate reasonable safety, a patient may perform intrapatient dose escalation, generating toxicity data at more than one dose. This strategy not only provides patients the opportunity to receive higher potentially more effective doses, but also enables efficient statistical learning of the dose-toxicity profile of the treatment, which dramatically reduces the required sample size. Simulation studies show that the proposed designs are safe, robust, and efficient to identify the MTD with a sample size that is substantially smaller than conventional interpatient dose escalation designs. Practical considerations are provided and R code for implementing AIDE is available upon request.
Collapse
Affiliation(s)
- Yanhong Zhou
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Illinois, USA
| | - Yujie Zhao
- AbbVie Inc., North Chicago, Illinois, USA
| | | | - Yunming Mu
- AbbVie Inc., North Chicago, Illinois, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Wang
- AbbVie Inc., North Chicago, Illinois, USA
| | | | | |
Collapse
|