1
|
Zhang M, Sun Y, Zhang L, Xu Y, Liu Y, Li K. The application of mass defect percentage in the evaluation of acute coronary syndrome. Nucl Med Commun 2024:00006231-990000000-00348. [PMID: 39363632 DOI: 10.1097/mnm.0000000000001907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
OBJECTIVES White blood cells, neutrophils, lymphocytes, and neutrophil-to-lymphocyte ratio (NLR) distribution patterns in patients with anatomic coronary disease have previously been associated with cardiac events such as myocardial infarct size, complications, and prognosis. However, it remains unknown whether myocardial perfusion mass defect percentage (MDP) obtained from gated myocardial perfusion imaging (G-MPI) correlates with these hematological parameters. Therefore, our research aimed to investigate the application of MDP in the evaluation of acute coronary syndrome (ACS). METHODS Thirty-six patients with ACS underwent single-photon emission computed tomography/computed tomography using retrospective electrocardiography gating during the resting state. The primary outcome was the percentage of left ventricular mass with abnormal myocardial perfusion (i.e. MDP) in G-MPI. Furthermore, the correlation between myocardial perfusion MDP and lymphocyte count, neutrophil count, white blood cell count, and NLR was calculated. In addition, we explored the relationship of myocardial perfusion MDP with other cardiac function parameters obtained from G-MPI, such as summed rest score, left ventricular ejection fraction, end-systolic volume, and end-diastolic volume. RESULTS Myocardial perfusion MDP significantly correlated with white blood cell count, neutrophil count, and NLR (P < 0.01). Furthermore, these hematological parameters were significantly different between low and high MDP groups. Additionally, myocardial perfusion MDP negatively correlated with end-systolic volume (r = -0.615) and left ventricular ejection fraction (r = -0.657). CONCLUSION Myocardial perfusion MDP has a high correlation with inflammatory cell counts and cardiac function parameters obtained from G-MPI in ACS; this may be of help in the evaluation and treatment of these patients.
Collapse
Affiliation(s)
- Man Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, China
| | | | | | | | | | | |
Collapse
|
2
|
Friess JO, Stiffler S, Mikasi J, Erdoes G, Nagler M, Gräni C, Weiss S, Fischer K, Guensch DP. Perioperative hyperoxia- impact on myocardial biomarkers, strain and outcome in high-risk patients undergoing non-cardiac surgery: Protocol for a prospective randomized controlled trial. Contemp Clin Trials 2024; 140:107512. [PMID: 38537904 DOI: 10.1016/j.cct.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/21/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Supplemental oxygen is used during every general anesthesia. However, for the maintenance phase of a general anesthesia, in most cases the longest part of anesthesia, only scarce evidence of dosing supplemental oxygen exists. Oxygen is a well-known coronary vasoconstrictor and thus may contribute to cardiovascular complications especially in vulnerable high-risk patients with coronary artery disease undergoing major non-cardiac surgery. Myocardial biomarkers are early indicators of myocardial injury. Oxygen supply demand mismatches due to coronary artery disease aggravated by hyperoxia might be displayed by changes from the biomarker's baseline-values. This study is designed to detect changes in myocardial biomarkers levels associated with perioperative hyperoxia. METHODS This prospective randomized controlled interventional trial investigates the impact of maintaining perioperative high oxygen supplementation in high-risk patients undergoing non-cardiac vascular surgery on cardiac biomarkers, myocardial strain and outcome in 110 patients. Patients are allocated to be supplemented with either 0.3 (normal) or 0.8 (high) fraction of inspired oxygen (FiO2) perioperatively. Included is a short crossover phase during which transesophageal echocardiography is used to evaluate myocardial function at FiO2 0.3 and 0.8 by strain analysis in each patient. Patients will be followed up for complications at 30 days and 1 year. CONCLUSION The trial is designed to evaluate perioperative changes from baseline myocardial biomarkers associated with perioperative FiO2. Furthermore, exploration and correlation of changes in biomarkers, acute early changes in myocardial function and clinical outcomes induced by different FiO2 may be possible.
Collapse
Affiliation(s)
- Jan O Friess
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Sandra Stiffler
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Mikasi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gabor Erdoes
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Nagler
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Salome Weiss
- Department of Vascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kady Fischer
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominik P Guensch
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Friess JO, Mikasi J, Baumann R, Ranjan R, Fischer K, Levis A, Terbeck S, Hirschi T, Gerber D, Erdoes G, Schoenhoff FS, Carrel TP, Madhkour R, Eberle B, Guensch DP. Hyperoxia-induced deterioration of diastolic function in anaesthetised patients with coronary artery disease - Randomised crossover trial. BJA OPEN 2023; 6:100135. [PMID: 37588173 PMCID: PMC10430862 DOI: 10.1016/j.bjao.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 08/18/2023]
Abstract
Background There are no current recommendations for oxygen titration in patients with stable coronary artery disease. This study investigates the effect of iatrogenic hyperoxia on cardiac function in patients with coronary artery disease undergoing general anaesthesia. Methods Patients scheduled for elective coronary artery bypass graft surgery were prospectively recruited into this randomised crossover clinical trial. All patients were exposed to inspired oxygen fractions of 0.3 (normoxaemia) and 0.8 (hyperoxia) in randomised order. A transoesophageal echocardiographic imaging protocol was performed during each exposure. Primary analysis investigated changes in 3D peak strain, whereas secondary analyses investigated other systolic and diastolic responses. Results There was no statistical difference in systolic function between normoxaemia and hyperoxia. However, the response in systolic function to hyperoxia was dependent on ventricular function at normoxaemia. Patients with a normoxaemic left ventricular (LV) global longitudinal strain (GLS) poorer than the derived cut-off (>-15.4%) improved with hyperoxia (P<0.01), whereas in patients with normoxaemic LV-GLS <-15.4%, LV-GLS worsened with transition to hyperoxia (P<0.01). The same was seen for right ventricular GLS with a cut-off at -24.1%. Diastolic function worsened during hyperoxia indicated by a significant increase of averaged E/e' (8.6 [2.6]. vs 8.2 [2.4], P=0.01) and E/A ratio (1.4 (0.4) vs 1.3 (0.4), P=0.01). Conclusions Although the response of biventricular systolic variables is dependent on systolic function at normoxaemia, diastolic function consistently worsens under hyperoxia. In coronary artery disease, intraoperative strain analysis may offer guidance for oxygen titration. Clinical trial registration NCT04424433.
Collapse
Affiliation(s)
- Jan O. Friess
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jan Mikasi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rico Baumann
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rajevan Ranjan
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kady Fischer
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anja Levis
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sandra Terbeck
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Trevor Hirschi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Gerber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gabor Erdoes
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Florian S. Schoenhoff
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thierry P. Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raouf Madhkour
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Balthasar Eberle
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominik P. Guensch
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Spicher B, Fischer K, Zimmerli ZA, Yamaji K, Ueki Y, Bertschinger CN, Jung B, Otsuka T, Bigler MR, Gräni C, von Tengg-Kobligk H, Räber L, Eberle B, Guensch DP. Combined Analysis of Myocardial Deformation and Oxygenation Detects Inducible Ischemia Unmasked by Breathing Maneuvers in Chronic Coronary Syndrome. Front Cardiovasc Med 2022; 9:800720. [PMID: 35282374 PMCID: PMC8907543 DOI: 10.3389/fcvm.2022.800720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Introduction In patients with chronic coronary syndromes, hyperventilation followed by apnea has been shown to unmask myocardium susceptible to inducible deoxygenation. The aim of this study was to assess whether such a provoked response is co-localized with myocardial dysfunction. Methods A group of twenty-six CAD patients with a defined stenosis (quantitative coronary angiography > 50%) underwent a cardiovascular magnetic resonance (CMR) exam prior to revascularization. Healthy volunteers older than 50 years served as controls (n = 12). Participants hyperventilated for 60s followed by brief apnea. Oxygenation-sensitive images were analyzed for changes in myocardial oxygenation and strain. Results In healthy subjects, hyperventilation resulted in global myocardial deoxygenation (-10.2 ± 8.2%, p < 0.001) and augmented peak circumferential systolic strain (-3.3 ± 1.6%, p < 0.001). At the end of apnea, myocardial signal intensity had increased (+9.1 ± 5.3%, p < 0.001) and strain had normalized to baseline. CAD patients had a similar global oxygenation response to hyperventilation (−5.8 ± 9.6%, p = 0.085) but showed no change in peak strain from their resting state (-1.3 ± 1.6%), which was significantly attenuated in comparison the strain response observed in controls (p = 0.008). With apnea, the CAD patients showed an attenuated global oxygenation response to apnea compared to controls (+2.7 ± 6.2%, p < 0.001). This was accompanied by a significant depression of peak strain (3.0 ± 1.7%, p < 0.001), which also differed from the control response (p = 0.025). Regional analysis demonstrated that post-stenotic myocardium was most susceptible to de-oxygenation and systolic strain abnormalities during respiratory maneuvers. CMR measures at rest were unable to discriminate post-stenotic territory (p > 0.05), yet this was significant for both myocardial oxygenation [area under the curve (AUC): 0.88, p > 0.001] and peak strain (AUC: 0.73, p = 0.023) measured with apnea. A combined analysis of myocardial oxygenation and peak strain resulted in an incrementally higher AUC of 0.91, p < 0.001 than strain alone. Conclusion In myocardium of patients with chronic coronary syndromes and primarily intermediate coronary stenoses, cine oxygenation-sensitive CMR can identify an impaired vascular and functional response to a vasoactive breathing maneuver stimulus indicative of inducible ischemia.
Collapse
Affiliation(s)
- Barbara Spicher
- Department of Anaesthesiology and Pain Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Kady Fischer
- Department of Anaesthesiology and Pain Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Zoe A. Zimmerli
- Department of Anaesthesiology and Pain Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Kyohei Yamaji
- Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Yasushi Ueki
- Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Carina N. Bertschinger
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Bernd Jung
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Tatsuhiko Otsuka
- Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Marius R. Bigler
- Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Hendrik von Tengg-Kobligk
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Balthasar Eberle
- Department of Anaesthesiology and Pain Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Dominik P. Guensch
- Department of Anaesthesiology and Pain Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- *Correspondence: Dominik P. Guensch
| |
Collapse
|