1
|
Kiani-Zadeh M, Rezvany MR, Namjoo S, Barati M, Mohammadi MH, Ghasemi B, Tabatabaei T, Ghavamzadeh A, Zaker F, Teimoori-Toolabi L. Studying the potential of upregulated PTGS2 and VEGF-C besides hyper-methylation of PTGS2 promoter as biomarkers of Acute myeloid leukemia. Mol Biol Rep 2022; 49:7849-7862. [PMID: 35733068 DOI: 10.1007/s11033-022-07615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Hereby, we aimed to investigate the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and Vascular Endothelial Factor-C (VEGF-C) besides the methylation of PTGS2 in AML patients. VEGF-C and PTGS2 expression analysis were evaluated in newly diagnosed AML patients and healthy controls by quantitative Reverse Transcriptase PCR method. Also, PTGS2 methylation status was evaluated by Methylation-Sensitive High-Resolution Melting Curve Analysis (MS-HRM). While 34% of patients were female, the mean age of the patients was 43.41 ± 17.60 years suffering mostly from M4 (48.21%) type of AML. Although methylation level between patients and controls was not significantly different, none of the normal controls showed methylation in the PTGS2 promoter. PTGS2 and VEGF-C levels were elevated in AML cases and correlated with WBC, Platelet, and Hemoglobin levels. The survival of patients with overexpressed VEGF-C and PTGS2 was poorer than others. It can be concluded that PTGS2 and especially VEGF-C expression but not PTGS2 methylation can be considered as diagnostic biomarkers for AML.
Collapse
Affiliation(s)
- Masoumeh Kiani-Zadeh
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rezvany
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran.,Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.,Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, 17176, Stockholm, Sweden
| | - Soodeh Namjoo
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran.,Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mohammadi
- Department of HSCT research center, Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Ghasemi
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
| | - Tahere Tabatabaei
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street Kargar Avenue, 1316943551, Tehran, Iran.
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Pidsley R, Lawrence MG, Zotenko E, Niranjan B, Statham A, Song J, Chabanon RM, Qu W, Wang H, Richards M, Nair SS, Armstrong NJ, Nim HT, Papargiris M, Balanathan P, French H, Peters T, Norden S, Ryan A, Pedersen J, Kench J, Daly RJ, Horvath LG, Stricker P, Frydenberg M, Taylor RA, Stirzaker C, Risbridger GP, Clark SJ. Enduring epigenetic landmarks define the cancer microenvironment. Genome Res 2018; 28:625-638. [PMID: 29650553 PMCID: PMC5932604 DOI: 10.1101/gr.229070.117] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022]
Abstract
The growth and progression of solid tumors involves dynamic cross-talk between cancer epithelium and the surrounding microenvironment. To date, molecular profiling has largely been restricted to the epithelial component of tumors; therefore, features underpinning the persistent protumorigenic phenotype of the tumor microenvironment are unknown. Using whole-genome bisulfite sequencing, we show for the first time that cancer-associated fibroblasts (CAFs) from localized prostate cancer display remarkably distinct and enduring genome-wide changes in DNA methylation, significantly at enhancers and promoters, compared to nonmalignant prostate fibroblasts (NPFs). Differentially methylated regions associated with changes in gene expression have cancer-related functions and accurately distinguish CAFs from NPFs. Remarkably, a subset of changes is shared with prostate cancer epithelial cells, revealing the new concept of tumor-specific epigenome modifications in the tumor and its microenvironment. The distinct methylome of CAFs provides a novel epigenetic hallmark of the cancer microenvironment and promises new biomarkers to improve interpretation of diagnostic samples.
Collapse
Affiliation(s)
- Ruth Pidsley
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, New South Wales 2052, Australia
| | - Mitchell G Lawrence
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia.,Prostate Cancer Translational Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Elena Zotenko
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, New South Wales 2052, Australia
| | - Birunthi Niranjan
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Aaron Statham
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Jenny Song
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Roman M Chabanon
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Wenjia Qu
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Hong Wang
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle Richards
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Shalima S Nair
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, New South Wales 2052, Australia
| | - Nicola J Armstrong
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia.,Mathematics and Statistics, Murdoch University, Perth, Western Australia 6150, Australia
| | - Hieu T Nim
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia.,Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Melissa Papargiris
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Preetika Balanathan
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Hugh French
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Timothy Peters
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Sam Norden
- Tissupath Pathology, Mount Waverley, Victoria 3149, Australia
| | - Andrew Ryan
- Tissupath Pathology, Mount Waverley, Victoria 3149, Australia
| | - John Pedersen
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia.,Tissupath Pathology, Mount Waverley, Victoria 3149, Australia
| | - James Kench
- Cancer Research Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Darlinghurst, New South Wales 2010, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales 2050, Australia
| | - Roger J Daly
- Signalling Network Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Lisa G Horvath
- Cancer Research Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Darlinghurst, New South Wales 2010, Australia.,Chris O'Brien Lifehouse, Missenden Road, Camperdown, New South Wales 2050, Australia.,University of Sydney, Sydney, New South Wales 2050, Australia
| | - Phillip Stricker
- Cancer Research Division, Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Darlinghurst, New South Wales 2010, Australia.,Department of Urology, St. Vincent's Prostate Cancer Centre, Sydney, New South Wales 2050, Australia
| | - Mark Frydenberg
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia
| | - Renea A Taylor
- Prostate Cancer Translational Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Prostate Research Group, Cancer Program-Biomedicine Discovery Institute Department of Physiology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, New South Wales 2052, Australia
| | - Gail P Risbridger
- Prostate Research Group, Cancer Program-Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Victoria 3800, Australia.,Prostate Cancer Translational Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia.,St. Vincent's Clinical School, UNSW Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Su HJ, Zhang Y, Zhang L, Ma JL, Li JY, Pan KF, You WC. Methylation status of COX-2 in blood leukocyte DNA and risk of gastric cancer in a high-risk Chinese population. BMC Cancer 2015; 15:979. [PMID: 26674784 PMCID: PMC4682260 DOI: 10.1186/s12885-015-1962-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/30/2015] [Indexed: 01/27/2023] Open
Abstract
Background Methylation is a common epigenetic modification which may play a crucial role in cancer development. To investigate the association between methylation of COX-2 in blood leukocyte DNA and risk of gastric cancer (GC), a nested case–control study was conducted in Linqu County, Shandong Province, a high risk area of GC in China. Methods Association between blood leukocyte DNA methylation of COX-2 and risk of GC was investigated in 133 GCs and 285 superficial gastritis (SG)/ chronic atrophic gastritis (CAG). The temporal trend of COX-2 methylation level during GC development was further explored in 74 pre-GC and 95 post-GC samples (including 31 cases with both pre- and post-GC samples). In addition, the association of DNA methylation and risk of progression to GC was evaluated in 74 pre-GC samples and their relevant intestinal metaplasia (IM)/dysplasia (DYS) controls. Methylation level was determined by quantitative methylation-specific PCR (QMSP). Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated by unconditional logistic regression analysis. Results The medians of COX-2 methylation levels were 2.3 % and 2.2 % in GC cases and controls, respectively. No significant association was found between COX-2 methylation and risk of GC (OR, 1.15; 95 % CI: 0.70-1.88). However, the temporal trend analysis showed that COX-2 methylation levels were elevated at 1–4 years ahead of clinical GC diagnosis compared with the year of GC diagnosis (3.0 % vs. 2.2 %, p = 0.01). Further validation in 31 GCs with both pre- and post-GC samples indicated that COX-2 methylation levels were significantly decreased at the year of GC diagnosis compared with pre-GC samples (1.5 % vs. 2.5 %, p = 0.02). No significant association between COX-2 methylation and risk of progression to GC was found in subjects with IM (OR, 0.50; 95 % CI: 0.18–1.42) or DYS (OR, 0.70; 95 % CI: 0.23–2.18). Additionally, we found that elder people had increased risk of COX-2 hypermethylation (OR, 1.55; 95 % CI: 1.02–2.36) and subjects who ever infected with H. pylori had decreased risk of COX-2 hypermethylation (OR, 0.54; 95 % CI: 0.34–0.88). Conclusions COX-2 methylation exists in blood leukocyte DNA but at a low level. COX-2 methylation levels in blood leukocyte DNA may change during GC development.
Collapse
Affiliation(s)
- Hui-juan Su
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Lian Zhang
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Jun-ling Ma
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Ji-You Li
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Kai-feng Pan
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Wei-cheng You
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| |
Collapse
|