1
|
Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging Therapeutic Strategies to Overcome Drug Resistance in Cancer Cells. Cancers (Basel) 2024; 16:2478. [PMID: 39001539 PMCID: PMC11240358 DOI: 10.3390/cancers16132478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The rise of drug resistance in cancer cells presents a formidable challenge in modern oncology, necessitating the exploration of innovative therapeutic strategies. This review investigates the latest advancements in overcoming drug resistance mechanisms employed by cancer cells, focusing on emerging therapeutic modalities. The intricate molecular insights into drug resistance, including genetic mutations, efflux pumps, altered signaling pathways, and microenvironmental influences, are discussed. Furthermore, the promising avenues offered by targeted therapies, combination treatments, immunotherapies, and precision medicine approaches are highlighted. Specifically, the synergistic effects of combining traditional cytotoxic agents with molecularly targeted inhibitors to circumvent resistance pathways are examined. Additionally, the evolving landscape of immunotherapeutic interventions, including immune checkpoint inhibitors and adoptive cell therapies, is explored in terms of bolstering anti-tumor immune responses and overcoming immune evasion mechanisms. Moreover, the significance of biomarker-driven strategies for predicting and monitoring treatment responses is underscored, thereby optimizing therapeutic outcomes. For insights into the future direction of cancer treatment paradigms, the current review focused on prevailing drug resistance challenges and improving patient outcomes, through an integrative analysis of these emerging therapeutic strategies.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, India
| | - Jyoti Malhotra
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Dilenko H, Bartoň Tománková K, Válková L, Hošíková B, Kolaříková M, Malina L, Bajgar R, Kolářová H. Graphene-Based Photodynamic Therapy and Overcoming Cancer Resistance Mechanisms: A Comprehensive Review. Int J Nanomedicine 2024; 19:5637-5680. [PMID: 38882538 PMCID: PMC11179671 DOI: 10.2147/ijn.s461300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive therapy that has made significant progress in treating different diseases, including cancer, by utilizing new nanotechnology products such as graphene and its derivatives. Graphene-based materials have large surface area and photothermal effects thereby making them suitable candidates for PDT or photo-active drug carriers. The remarkable photophysical properties of graphene derivates facilitate the efficient generation of reactive oxygen species (ROS) upon light irradiation, which destroys cancer cells. Surface functionalization of graphene and its materials can also enhance their biocompatibility and anticancer activity. The paper delves into the distinct roles played by graphene-based materials in PDT such as photosensitizers (PS) and drug carriers while at the same time considers how these materials could be used to circumvent cancer resistance. This will provide readers with an extensive discussion of various pathways contributing to PDT inefficiency. Consequently, this comprehensive review underscores the vital roles that graphene and its derivatives may play in emerging PDT strategies for cancer treatment and other medical purposes. With a better comprehension of the current state of research and the existing challenges, the integration of graphene-based materials in PDT holds great promise for developing targeted, effective, and personalized cancer treatments.
Collapse
Affiliation(s)
- Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kateřina Bartoň Tománková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Válková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hošíková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Markéta Kolaříková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukáš Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolářová
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
3
|
Bezie MM, Asmare ZA, Asebe HA, Lombebo AA, Fentie BM, Asnake AA, Seifu BL. Factors associated with the use of antibiotics for children presenting with illnesses with fever and cough obtained from prescription and non-prescription sources: a cross-sectional study of data for 37 sub-Saharan African countries. BMC Public Health 2024; 24:1089. [PMID: 38641808 PMCID: PMC11031913 DOI: 10.1186/s12889-024-18490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/30/2024] [Indexed: 04/21/2024] Open
Abstract
INTRODUCTION Fever and cough in under-five children are common and predominately self-limiting illnesses. Inappropriate prescribing of antibiotics in sub-Saharan Africa is a significant public health concern. However, prescription sources and use among children with fever or cough have not been explored. Therefore, we explored the factors associated with the use of antibiotics obtained from prescription and non-prescription sources for children with illnesses associated with fever and cough. METHODS A secondary data analysis was conducted based on the Demographic and Health Survey (DHS) data from 37 sub-Saharan African countries. A total weighted sample of 18,866 under-five children who had a fever/cough and took antibiotics were considered for this study. Given the hierarchical nature of DHS data and the use of antibiotics prescribed from the formal healthcare setting (> 10%), a multilevel modified poisson regression model was fitted. Deviance was used for model comparison and the model with the lowest deviance value was chosen as the best-fitted model. Variables with p ≤ 0.2 in the bivariable analysis were considered for the multivariable modified poisson regression model. In the multivariable multilevel modified poisson regression model, the Adjusted Prevalence Odds Ratio (APOR) with a 95% Confidence Interval (CI) and p-value < 0.05 were reported to declare a significant association with taking antibiotics for fever/cough prescribed from formal healthcare setting. RESULTS In sub-Saharan Africa, the proportion of use of antibiotics from informal healthcare setting for fever and cough among under-five children was 67.19% (95% CI: 66.51%, 67.85%). In the multilevel modified poisson regression analysis; residing in a rural area (APOR = 1.08, 95% CI: 1.04, 1.12), a child aged 36-47 months (APOR = 0.94, 95% CI: 0.90, 0.98), a child aged 48-59 months (APOR = 0.89, 95% CI: 0.84, 0.94), maternal primary education (APOR = 0.96, 95% CI: 0.93, 0.99), maternal secondary education (APOR = 0.95, 95% CI: 0.92, 0.99), belonged the middle household wealth status (APOR = 1.07, 95% CI: 1.02, 1.11), maternal exposure to news/electronic media (APR = 1.06, 95% CI: 1.02, 1.10), being from a household with 2 under-five children (APR = 0.94, 95% CI: 0.91, 0.97), being from a household with 3 under-five children (APR = 0.89, 95% CI: 0.85, 0.93), being from a household with 4 under-five children (APR = 0.90, 95% CI: 0.83, 0.98), and children of caregivers who were not involved in decision-making for their child health issues were significantly associated with taking antibiotics prescribed from formal healthcare setting for fever/cough among under-five children. CONCLUSION Only two-thirds of the antibiotics used for children under five who had fever and cough were prescribed from formal healthcare setting. Our findings underscore the significance of addressing healthcare disparities, improving access to qualified healthcare providers, promoting maternal education, and empowering mothers in healthcare decision-making to ensure appropriate antibiotic use in this vulnerable population. Further research and interventions targeted at these factors are warranted to optimize antibiotic prescribing practices and promote responsible antibiotic use in the management of fever and cough in under-five children.
Collapse
Affiliation(s)
- Meklit Melaku Bezie
- Departmnet of Public Health Officer, College of Medicine and Health Sciences and Comprehensive Specialized Hospital, University of Gondar, Gondar, Ethiopia.
| | - Zufan Alamrie Asmare
- Department of Ophthalmology, School of Medicine and Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Hiwot Altaye Asebe
- Department of Public Health, College of Medicine and Health Sciences, Samara University, Afar, Ethiopia
| | - Afework Alemu Lombebo
- School of Medicine, College of Health Science and Medicine, Wolaita Sodo University, Soddo, Ethiopia
| | - Bezawit Melak Fentie
- Department of General Midwifery, School of Midwifery, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Angwach Abrham Asnake
- Department of Epidemiology and Biostatistics, School of Public Health, College of Health Sciences and Medicine, Wolaita Sodo University, Soddo, Ethiopia
| | - Beminate Lemma Seifu
- Department of Public Health, College of Medicine and Health Sciences, Samara University, Samara, Ethiopia
| |
Collapse
|
4
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
5
|
Pérez Jorge G, Gontijo MTP, Brocchi M. Salmonella enterica and outer membrane vesicles are current and future options for cancer treatment. Front Cell Infect Microbiol 2023; 13:1293351. [PMID: 38116133 PMCID: PMC10728604 DOI: 10.3389/fcimb.2023.1293351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Conventional cancer therapies have many limitations. In the last decade, it has been suggested that bacteria-mediated immunotherapy may circumvent the restrictions of traditional treatments. For example, Salmonella enterica is the most promising bacteria for treating cancer due to its intrinsic abilities, such as killing tumor cells, targeting, penetrating, and proliferating into the tumor. S. enterica has been genetically modified to ensure safety and increase its intrinsic antitumor efficacy. This bacterium has been used as a vector for delivering anticancer agents and as a combination therapy with chemotherapy, radiotherapy, or photothermic. Recent studies have reported the antitumor efficacy of outer membrane vesicles (OMVs) derived from S. enterica. OMVs are considered safer than attenuated bacteria and can stimulate the immune system as they comprise most of the immunogens found on the surface of their parent bacteria. Furthermore, OMVs can also be used as nanocarriers for antitumor agents. This review describes the advances in S. enterica as immunotherapy against cancer and the mechanisms by which Salmonella fights cancer. We also highlight the use of OMVs as immunotherapy and nanocarriers of anticancer agents. OMVs derived from S. enterica are innovative and promising strategies requiring further investigation.
Collapse
Affiliation(s)
- Genesy Pérez Jorge
- Universidade Estadual de Campinas (UNICAMP), Departamento de Genética, Evolução, Microbiologia e Imunologia, Laboratório de Doenças Tropicais, Instituto de Biologia, Campinas, Brazil
| | - Marco Túlio Pardini Gontijo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Marcelo Brocchi
- Universidade Estadual de Campinas (UNICAMP), Departamento de Genética, Evolução, Microbiologia e Imunologia, Laboratório de Doenças Tropicais, Instituto de Biologia, Campinas, Brazil
| |
Collapse
|
6
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Yavuz M, Ütkür M, Kehribar EŞ, Yağız E, Sarıtaş EÜ, Şeker UÖŞ. Engineered Bacteria with Genetic Circuits Accumulating Nanomagnets as MRI Contrast Agents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200537. [PMID: 35567331 DOI: 10.1002/smll.202200537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The demand for highly efficient cancer diagnostic tools increases alongside the high cancer incidence nowadays. Moreover, there is an imperative need for novel cancer treatment therapies that lack the side effects of conventional treatment options. Developments in this aspect employ magnetic nanoparticles (MNPs) for biomedical applications due to their stability, biocompatibility, and magnetic properties. Certain organisms, including many bacteria, can synthesize magnetic nanocrystals, which help their spatial orientation and survival by sensing the earth's geomagnetic field. This work aims to convert Escherichia coli to accumulate magnetite, which can further be coupled with drug delivery modules. The authors design magnetite accumulating bacterial machines using genetic circuitries hiring Mms6 with iron-binding activity and essential in magnetite crystal formation. The work demonstrates that the combinatorial effect of Mms6 with ferroxidase, iron transporter protein, and material binding peptide enhances the paramagnetic behavior of the cells in magnetic resonance imaging (MRI) measurements. Cellular machines are also engineered to display Mms6 peptide on the cell surface via an autotransporter protein that shows augmented MRI performance. The findings are promising for endowing a probiotic bacterium, able to accumulate magnetite intracellularly or extracellularly, serving as a theranostics agent for cancer diagnostics via MRI scanning and hyperthermia treatment.
Collapse
Affiliation(s)
- Merve Yavuz
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Mustafa Ütkür
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, 06800, Turkey
| | - Ebru Şahin Kehribar
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Ecrin Yağız
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, 06800, Turkey
| | - Emine Ülkü Sarıtaş
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, 06800, Turkey
- Neuroscience Graduate Program, Bilkent University, Ankara, 06800, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Neuroscience Graduate Program, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
8
|
Progress of engineered bacteria for tumor therapy. Adv Drug Deliv Rev 2022; 185:114296. [PMID: 35439571 DOI: 10.1016/j.addr.2022.114296] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/25/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023]
Abstract
Recently, with the rapid development of bioengineering technology and nanotechnology, natural bacteria were modified to change their physiological activities and therapeutic functions for improved therapeutic efficiency of diseases. These engineered bacteria were equipped to achieve directed genetic reprogramming, selective functional reorganization and precise spatio-temporal control. In this review, research progress in the basic modification methodologies of engineered bacteria were summarized, and representative researches about their therapeutic performances for tumor treatment were illustrated. Moreover, the strategies for the construction of engineered colonies based on engineering of individual bacteria were summarized, providing innovative ideas for complex functions and efficient anti-tumor treatment. Finally, current limitation and challenges of tumor therapy utilizing engineered bacteria were discussed.
Collapse
|
9
|
Bacteria as Nanoparticle Carriers for Immunotherapy in Oncology. Pharmaceutics 2022; 14:pharmaceutics14040784. [PMID: 35456618 PMCID: PMC9027800 DOI: 10.3390/pharmaceutics14040784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/05/2023] Open
Abstract
The use of nanocarriers to deliver antitumor agents to solid tumors must overcome biological barriers in order to provide effective clinical responses. Once within the tumor, a nanocarrier should navigate into a dense extracellular matrix, overcoming intratumoral pressure to push it out of the diseased tissue. In recent years, a paradigm change has been proposed, shifting the target of nanomedicine from the tumoral cells to the immune system, in order to exploit the natural ability of this system to capture and interact with nanometric moieties. Thus, nanocarriers have been engineered to interact with immune cells, with the aim of triggering specific antitumor responses. The use of bacteria as nanoparticle carriers has been proposed as a valuable strategy to improve both the accumulation of nanomedicines in solid tumors and their penetration into the malignancy. These microorganisms are capable of propelling themselves into biological environments and navigating through the tumor, guided by the presence of specific molecules secreted by the diseased tissue. These capacities, in addition to the natural immunogenic nature of bacteria, can be exploited to design more effective immunotherapies that yield potent synergistic effects to induce efficient and selective immune responses that lead to the complete eradication of the tumor.
Collapse
|
10
|
Bacteria therapeutics for cancer oncology: a crossroads for new paradigms. Drug Discov Today 2022; 27:2043-2050. [PMID: 35304339 DOI: 10.1016/j.drudis.2022.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 12/23/2022]
Abstract
A promising treatment for cancer remains challenging owing to insufficient tumor targeting and predictable resistance. Current therapies have their drawbacks and there is a need for innovative treatment that can overcome all the limitations with the traditional approaches. One of the novel treatments is bacteria-mediated cancer therapy, which has shown a beneficial impact on tumor regression and metastasis inhibition. It can selectively target cancer cells and potentially serve as a therapeutic-gene-drug delivery approach. In their original form, genetically or chemically modified, or combined with conventional therapeutic approaches, bacteria produce safe and effective cancer with minimized cytotoxicity. This review discusses the key benefits, applicability and further implementations in the clinical translation of bacteriotherapy for cancer treatments.
Collapse
|
11
|
Jiménez-Jiménez C, Moreno VM, Vallet-Regí M. Bacteria-Assisted Transport of Nanomaterials to Improve Drug Delivery in Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:288. [PMID: 35055305 PMCID: PMC8781131 DOI: 10.3390/nano12020288] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Currently, the design of nanomaterials for the treatment of different pathologies is presenting a major impact on biomedical research. Thanks to this, nanoparticles represent a successful strategy for the delivery of high amounts of drugs for the treatment of cancer. Different nanosystems have been designed to combat this pathology. However, the poor penetration of these nanomaterials into the tumor tissue prevents the drug from entering the inner regions of the tumor. Some bacterial strains have self-propulsion and guiding capacity thanks to their flagella. They also have a preference to accumulate in certain tumor regions due to the presence of different chemo-attractants factors. Bioconjugation reactions allow the binding of nanoparticles in living systems, such as cells or bacteria, in a simple way. Therefore, bacteria are being used as a transport vehicle for nanoparticles, facilitating their penetration and the subsequent release of the drug inside the tumor. This review would summarize the literature on the anchoring methods of diverse nanosystems in bacteria and, interestingly, their advantages and possible applications in cancer therapy.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
| | - Víctor M. Moreno
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| | - María Vallet-Regí
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| |
Collapse
|
12
|
Al-Samydai A, Alshaer W, Al-Dujaili EAS, Azzam H, Aburjai T. Preparation, Characterization, and Anticancer Effects of Capsaicin-Loaded Nanoliposomes. Nutrients 2021; 13:3995. [PMID: 34836251 PMCID: PMC8620281 DOI: 10.3390/nu13113995] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Medicinal plants have proven their value as a source of molecules with therapeutic potential, and recent studies have shown that capsaicin has profound anticancer effects in several types of human cancers. However, its clinical use is handicapped due to its poor pharmacokinetics. This study aims to enhance capsaicin's pharmacokinetic properties by loading the molecule into nanoliposomes model and testing its anticancer activity. METHODS Nanoliposomes were prepared using the thin-film method, and characteristics were examined followed by qualitative and quantitative analyses of encapsulation efficiency and drug loading using HPLC at different lipid/capsaicin ratios. Cell viability assay (MTT) was used to determine IC50. RESULTS Capsaicin-loaded nanoliposomes showed optimum characteristics of morphology, particle size, zeta potential, and stability. In vitro anticancer activity of capsaicin and capsaicin-loaded nanoliposomes were compared against MCF7, MDA-MB-231, K562, PANC1, and A375 cell lines. Capsaicin-loaded nanoliposomes showed significant improvement in anticancer activity against cancers cell lines studied (p < 0.001), with increased selectivity against cancer cells compared to capsaicin. CONCLUSION The encapsulated capsaicin nanoliposomes produced an improvement in pharmacokinetics properties, enhancing the anticancer activity and selectivity compared with capsaicin. This model seems to offer a potential for developing capsaicin formulations for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Ali Al-Samydai
- Diagnostic Research Centre, Department Pharmacological, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan;
| | - Emad A. S. Al-Dujaili
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Hanan Azzam
- Hamdi Mango Center for Scientific Research (HMCSR), University of Jordan, Amman 11942, Jordan;
| | - Talal Aburjai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
13
|
More MP, Pardeshi SR, Pardeshi CV, Sonawane GA, Shinde MN, Deshmukh PK, Naik JB, Kulkarni AD. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
Tellurium doped zinc imidazole framework (Te@ZIF-8) for quantitative determination of hydrogen peroxide from serum of pancreatic cancer patients. Sci Rep 2020; 10:21077. [PMID: 33273679 PMCID: PMC7713350 DOI: 10.1038/s41598-020-78115-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The tellurium doped zinc imidazole framework (Te@ZIF-8) is prepared by a two-step hydrothermal strategy for the electrochemical sensing of hydrogen peroxide. Material is characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The electrochemical characterization of the MOF modified electrode is done by a three-electrode system. Electrochemical sensing of hydrogen peroxide is made by cyclic voltammetry, amperometry, and impedance measurements. Results demonstrate that Te@ZIF-8 shows a detection limit of 60 µM with linearity up to 0.98855. Material is stable to 1000 cycles with no significant change in electrochemical response. Amperometry depicts the recovery of hydrogen peroxide from human serum up to 101%. Impedance curve reveals the surface of Te@ZIF-8-GCE (glassy carbon electrode) as porous and rough and an interface is developed between analyte ions and the sensing material. Finally, the modified electrode is used for the quantitative determination of hydrogen peroxide from serum samples of pancreatic cancer patients, diagnosed with CA 19-9.
Collapse
|