1
|
Yu W, Rush C, Tingey M, Junod S, Yang W. Application of Super-resolution SPEED Microscopy in the Study of Cellular Dynamics. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:356-371. [PMID: 37501792 PMCID: PMC10369678 DOI: 10.1021/cbmi.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023]
Abstract
Super-resolution imaging techniques have broken the diffraction-limited resolution of light microscopy. However, acquiring three-dimensional (3D) super-resolution information about structures and dynamic processes in live cells at high speed remains challenging. Recently, the development of high-speed single-point edge-excitation subdiffraction (SPEED) microscopy, along with its 2D-to-3D transformation algorithm, provides a practical and effective approach to achieving 3D subdiffraction-limit information in subcellular structures and organelles with rotational symmetry. One of the major benefits of SPEED microscopy is that it does not rely on complex optical components and can be implemented on a standard, inverted epifluorescence microscope, simplifying the process of sample preparation and the expertise requirement. SPEED microscopy is specifically designed to obtain 2D spatial locations of individual immobile or moving fluorescent molecules inside submicrometer biological channels or cavities at high spatiotemporal resolution. The collected data are then subjected to postlocalization 2D-to-3D transformation to obtain 3D super-resolution structural and dynamic information. In recent years, SPEED microscopy has provided significant insights into nucleocytoplasmic transport across the nuclear pore complex (NPC) and cytoplasm-cilium trafficking through the ciliary transition zone. This Review focuses on the applications of SPEED microscopy in studying the structure and function of nuclear pores.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coby Rush
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Samuel Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
2
|
Kanoh Y, Ueno M, Hayano M, Kudo S, Masai H. Aberrant association of chromatin with nuclear periphery induced by Rif1 leads to mitotic defect. Life Sci Alliance 2023; 6:e202201603. [PMID: 36750367 PMCID: PMC9909590 DOI: 10.26508/lsa.202201603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The architecture and nuclear location of chromosomes affect chromatin events. Rif1, a crucial regulator of replication timing, recognizes G-quadruplex and inhibits origin firing over the 50-100-kb segment in fission yeast, Schizosaccharomyces pombe, leading us to postulate that Rif1 may generate chromatin higher order structures inhibitory for initiation. However, the effects of Rif1 on chromatin localization in nuclei have not been known. We show here that Rif1 overexpression causes growth inhibition and eventually, cell death in fission yeast. Chromatin-binding activity of Rif1, but not recruitment of phosphatase PP1, is required for growth inhibition. Overexpression of a PP1-binding site mutant of Rif1 does not delay the S-phase, but still causes cell death, indicating that cell death is caused not by S-phase problems but by issues in other phases of the cell cycle, most likely the M-phase. Indeed, Rif1 overexpression generates cells with unequally segregated chromosomes. Rif1 overexpression relocates chromatin near nuclear periphery in a manner dependent on its chromatin-binding ability, and this correlates with growth inhibition. Thus, coordinated progression of S- and M-phases may require regulated Rif1-mediated chromatin association with the nuclear periphery.
Collapse
Affiliation(s)
- Yutaka Kanoh
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Motoshi Hayano
- Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Satomi Kudo
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
3
|
Tinsley SL, Allen-Petersen BL. PP2A and cancer epigenetics: a therapeutic opportunity waiting to happen. NAR Cancer 2022; 4:zcac002. [PMID: 35118387 PMCID: PMC8807117 DOI: 10.1093/narcan/zcac002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
The epigenetic state of chromatin is altered by regulators which influence gene expression in response to environmental stimuli. While several post-translational modifications contribute to chromatin accessibility and transcriptional programs, our understanding of the role that specific phosphorylation sites play is limited. In cancer, kinases and phosphatases are commonly deregulated resulting in increased oncogenic signaling and loss of epigenetic regulation. Aberrant epigenetic states are known to promote cellular plasticity and the development of therapeutic resistance in many cancer types, highlighting the importance of these mechanisms to cancer cell phenotypes. Protein Phosphatase 2A (PP2A) is a heterotrimeric holoenzyme that targets a diverse array of cellular proteins. The composition of the PP2A complex influences its cellular targets and activity. For this reason, PP2A can be tumor suppressive or oncogenic depending on cellular context. Understanding the nuances of PP2A regulation and its effect on epigenetic alterations can lead to new therapeutic avenues that afford more specificity and contribute to the growth of personalized medicine in the oncology field. In this review, we summarize the known PP2A-regulated substrates and potential phosphorylation sites that contribute to cancer cell epigenetics and possible strategies to therapeutically leverage this phosphatase to suppress tumor growth.
Collapse
Affiliation(s)
- Samantha L Tinsley
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
4
|
Schnell SJ, Tingey M, Yang W. Speed Microscopy: High-Speed Single Molecule Tracking and Mapping of Nucleocytoplasmic Transport. Methods Mol Biol 2022; 2502:353-371. [PMID: 35412250 PMCID: PMC10131132 DOI: 10.1007/978-1-0716-2337-4_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nuclear pore complex (NPC) functions as a gateway through which molecules translocate into and out of the nucleus. Understanding the transport dynamics of these transiting molecules and how they interact with the NPC has great potentials in the discovery of clinical targets. Single-molecule microscopy techniques are powerful tools to provide sub-diffraction limit information about the dynamic and structural details of nucleocytoplasmic transport. Here we detail single-point edge-excitation subdiffraction (SPEED) microscopy, a high-speed superresolution microscopy technique designed to track and map proteins and RNAs as they cross native NPCs.
Collapse
Affiliation(s)
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Sunny DE, Hammer E, Strempel S, Joseph C, Manchanda H, Ittermann T, Hübner S, Weiss FU, Völker U, Heckmann M. Nup133 and ERα mediate the differential effects of hyperoxia-induced damage in male and female OPCs. Mol Cell Pediatr 2020; 7:10. [PMID: 32844334 PMCID: PMC7447710 DOI: 10.1186/s40348-020-00102-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Hyperoxia is a well-known cause of cerebral white matter injury in preterm infants with male sex being an independent and critical risk factor for poor neurodevelopmental outcome. Sex is therefore being widely considered as one of the major decisive factors for prognosis and treatment of these infants. But unfortunately, we still lack a clear view of the molecular mechanisms that lead to such a profound difference. Hence, using mouse-derived primary oligodendrocyte progenitor cells (OPCs), we investigated the molecular factors and underlying mechanisms behind the differential response of male and female cells towards oxidative stress. Results We demonstrate that oxidative stress severely affects cellular functions related to energy metabolism, stress response, and maturation in the male-derived OPCs, whereas the female cells remain largely unaffected. CNPase protein level was found to decline following hyperoxia in male but not in female cells. This impairment of maturation was accompanied by the downregulation of nucleoporin and nuclear lamina proteins in the male cells. We identify Nup133 as a novel target protein affected by hyperoxia, whose inverse regulation may mediate this differential response in the male and female cells. Nup133 protein level declined following hyperoxia in male but not in female cells. We show that nuclear respiratory factor 1 (Nrf1) is a direct downstream target of Nup133 and that Nrf1 mRNA declines following hyperoxia in male but not in female cells. The female cells may be rendered resistant due to synergistic protection via the estrogen receptor alpha (ERα) which was upregulated following hyperoxia in female but not in male cells. Both Nup133 and ERα regulate mitochondrial function and oxidative stress response by transcriptional regulation of Nrf1. Conclusions These findings from a basic cell culture model establish prominent sex-based differences and suggest a novel mechanism involved in the differential response of OPCs towards oxidative stress. It conveys a strong message supporting the need to study how complex cellular processes are regulated differently in male and female brains during development and for a better understanding of how the brain copes up with different forms of stress after preterm birth.
Collapse
Affiliation(s)
- Donna Elizabeth Sunny
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, Ferdinand-Sauerbruchstrasse, 17475, Greifswald, Germany.
| | - Elke Hammer
- Department of Functional Genomics, University of Medicine Greifswald, Greifswald, Germany
| | | | - Christy Joseph
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Himanshu Manchanda
- Department of Bioinformatics, University of Medicine Greifswald, Greifswald, Germany
| | - Till Ittermann
- Institute for Community Medicine, University of Medicine Greifswald, Greifswald, Germany
| | - Stephanie Hübner
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, Ferdinand-Sauerbruchstrasse, 17475, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Internal Medicine A, University of Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, University of Medicine Greifswald, Greifswald, Germany
| | - Matthias Heckmann
- Department of Neonatology and Pediatric Intensive Care, University of Medicine Greifswald, Ferdinand-Sauerbruchstrasse, 17475, Greifswald, Germany
| |
Collapse
|
6
|
Casting a Wider Net: Differentiating between Inner Nuclear Envelope and Outer Nuclear Envelope Transmembrane Proteins. Int J Mol Sci 2019; 20:ijms20215248. [PMID: 31652739 PMCID: PMC6862087 DOI: 10.3390/ijms20215248] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
The nuclear envelope (NE) surrounds the nucleus with a double membrane in eukaryotic cells. The double membranes are embedded with proteins that are synthesized on the endoplasmic reticulum and often destined specifically for either the outer nuclear membrane (ONM) or the inner nuclear membrane (INM). These nuclear envelope transmembrane proteins (NETs) play important roles in cellular function and participate in transcription, epigenetics, splicing, DNA replication, genome architecture, nuclear structure, nuclear stability, nuclear organization, and nuclear positioning. These vital functions are dependent upon both the correct localization and relative concentrations of NETs on the appropriate membrane of the NE. It is, therefore, important to understand the distribution and abundance of NETs on the NE. This review will evaluate the current tools and methodologies available to address this important topic.
Collapse
|
7
|
Chen L, Pan X, Zhang YH, Liu M, Huang T, Cai YD. Classification of Widely and Rarely Expressed Genes with Recurrent Neural Network. Comput Struct Biotechnol J 2018; 17:49-60. [PMID: 30595815 PMCID: PMC6307323 DOI: 10.1016/j.csbj.2018.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023] Open
Abstract
A tissue-specific gene expression shapes the formation of tissues, while gene expression changes reflect the immune response of the human body to environmental stimulations or pressure, particularly in disease conditions, such as cancers. A few genes are commonly expressed across tissues or various cancers, while others are not. To investigate the functional differences between widely and rarely expressed genes, we defined the genes that were expressed in 32 normal tissues/cancers (i.e., called widely expressed genes; FPKM >1 in all samples) and those that were not detected (i.e., called rarely expressed genes; FPKM <1 in all samples) based on the large gene expression data set provided by Uhlen et al. Each gene was encoded using the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment scores. Minimum redundancy maximum relevance (mRMR) was used to measure and rank these features on the mRMR feature list. Thereafter, we applied the incremental feature selection method with a supervised classifier recurrent neural network (RNN) to select the discriminate features for classifying widely expressed genes from rarely expressed genes and construct an optimum RNN classifier. The Youden's indexes generated by the optimum RNN classifier and evaluated using a 10-fold cross validation were 0.739 for normal tissues and 0.639 for cancers. Furthermore, the underlying mechanisms of the key discriminate GO and KEGG features were analyzed. Results can facilitate the identification of the expression landscape of genes and elucidation of how gene expression shapes tissues and the microenvironment of cancers. Some genes are widely expressed across tissues or various cancers. A number of genes are rarely expressed across tissues or various cancers. The functional differences between widely and rarely expressed genes were studied. Several GO terms and KEGG pathways were extracted and analyzed.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.,College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, People's Republic of China
| | - XiaoYong Pan
- Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
8
|
Sales Gil R, de Castro IJ, Berihun J, Vagnarelli P. Protein phosphatases at the nuclear envelope. Biochem Soc Trans 2018; 46:173-182. [PMID: 29432143 PMCID: PMC5818667 DOI: 10.1042/bst20170139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
The nuclear envelope (NE) is a unique topological structure formed by lipid membranes (Inner and Outer Membrane: IM and OM) interrupted by open channels (Nuclear Pore complexes). Besides its well-established structural role in providing a physical separation between the genome and the cytoplasm and regulating the exchanges between the two cellular compartments, it has become quite evident in recent years that the NE also represents a hub for localized signal transduction. Mechanical, stress, or mitogen signals reach the nucleus and trigger the activation of several pathways, many effectors of which are processed at the NE. Therefore, the concept of the NE acting just as a barrier needs to be expanded to embrace all the dynamic processes that are indeed associated with it. In this context, dynamic protein association and turnover coupled to reversible post-translational modifications of NE components can provide important clues on how this integrated cellular machinery functions as a whole. Reversible protein phosphorylation is the most used mechanism to control protein dynamics and association in cells. Keys to the reversibility of the system are protein phosphatases and the regulation of their activity in space and time. As the NE is clearly becoming an interesting compartment for the control and transduction of several signalling pathways, in this review we will focus on the role of Protein Phosphatases at the NE since the significance of this class of proteins in this context has been little explored.
Collapse
Affiliation(s)
- Raquel Sales Gil
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, U.K
| | - Ines J de Castro
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research (DZIF), Heidelberg 69120, Germany
| | - Jerusalem Berihun
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, U.K
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, U.K.
| |
Collapse
|
9
|
Misale MS, Witek Janusek L, Tell D, Mathews HL. Chromatin organization as an indicator of glucocorticoid induced natural killer cell dysfunction. Brain Behav Immun 2018; 67:279-289. [PMID: 28911980 PMCID: PMC5696065 DOI: 10.1016/j.bbi.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 11/19/2022] Open
Abstract
It is well-established that psychological distress reduces natural killer cell immune function and that this reduction can be due to the stress-induced release of glucocorticoids. Glucocorticoids are known to alter epigenetic marks associated with immune effector loci, and are also known to influence chromatin organization. The purpose of this investigation was to assess the effect of glucocorticoids on natural killer cell chromatin organization and to determine the relationship of chromatin organization to natural killer cell effector function, e.g. interferon gamma production. Interferon gamma production is the prototypic cytokine produced by natural killer cells and is known to modulate both innate and adaptive immunity. Glucocorticoid treatment of human peripheral blood mononuclear cells resulted in a significant reduction in interferon gamma production. Glucocorticoid treatment also resulted in a demonstrable natural killer cell nuclear phenotype. This phenotype was localization of the histone, post-translational epigenetic mark, H3K27me3, to the nuclear periphery. Peripheral nuclear localization of H3K27me3 was directly related to cellular levels of interferon gamma. This nuclear phenotype was determined by direct visual inspection and by use of an automated, high through-put technology, the Amnis ImageStream. This technology combines the per-cell information content provided by standard microscopy with the statistical significance afforded by large sample sizes common to standard flow cytometry. Most importantly, this technology provides for a direct assessment of the localization of signal intensity within individual cells. The results demonstrate glucocorticoids to dysregulate natural killer cell function at least in part through altered H3K27me3 nuclear organization and demonstrate H3K27me3 chromatin organization to be a predictive indicator of glucocorticoid induced immune dysregulation of natural killer cells.
Collapse
Affiliation(s)
- Michael S Misale
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Linda Witek Janusek
- Marcella Niehoff School of Nursing, Department of Health Promotion, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Dina Tell
- Marcella Niehoff School of Nursing, Department of Health Promotion, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Herbert L Mathews
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States.
| |
Collapse
|
10
|
Mudumbi KC, Yang W. Determination of Membrane Protein Distribution on the Nuclear Envelope by Single-Point Single-Molecule FRAP. ACTA ACUST UNITED AC 2017; 76:21.11.1-21.11.13. [PMID: 28862339 DOI: 10.1002/cpcb.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nuclear envelope transmembrane proteins (NETs) are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM) in eukaryotic cells. The abnormal distribution of NETs has been associated with many human diseases. However, quantitative determination of the spatial distribution and translocation dynamics of NETs on the ONM and INM is still very limited in currently existing approaches. Here we demonstrate a single-point single-molecule fluorescence recovery after photobleaching (FRAP) microscopy technique that enables quick determination of distribution and translocation rates for NETs in vivo. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Krishna C Mudumbi
- Department of Biology, Temple University, Philadelphia, Pennsylvania
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Bhosle VK, Rivera JC, Chemtob S. New insights into mechanisms of nuclear translocation of G-protein coupled receptors. Small GTPases 2017; 10:254-263. [PMID: 28125336 DOI: 10.1080/21541248.2017.1282402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The G-protein coupled receptor (GPCR) signaling was long believed to involve activation of receptor exclusively at the cell surface, followed by its binding to heterotrimeric G-proteins and arrestins to trigger various intracellular signaling cascades, and termination of signaling by internalization of the receptor. It is now accepted that many GPCRs continue to signal after internalization in the endosomes. Since the breakthrough discoveries of nuclear binding sites for their ligands in 1980s, several GPCRs have been detected at cell nuclei. But mechanisms of nuclear localization of GPCRs, many of whom contain putative nuclear localization signals, remain poorly understood to date. Nevertheless, it is known that subcellular trafficking of GPCRs is regulated by members of Ras superfamily of small GTPases, most notably by Rab and Arf GTPases. In this commentary, we highlight several recent studies which suggest novel roles of small GTPases, importins and sorting nexin proteins in the nuclear translocation of GPCRs via vesicular transport pathways. Taken together with increasing evidence for in vivo functionality of the nuclear GPCRs, better understanding of their trafficking will provide valuable clues in cell biology.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- a Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec , Canada.,b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,e Cell Biology Program , Peter Gilgan Centre for Research and Learning , Toronto , Ontario , Canada
| | - José Carlos Rivera
- b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada
| | - Sylvain Chemtob
- a Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec , Canada.,b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,d Departments of Pediatrics, Ophthalmology and Pharmacology , University of Montréal , Montréal , Québec , Canada
| |
Collapse
|
12
|
Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 2016; 18:73-89. [PMID: 27999437 DOI: 10.1038/nrm.2016.147] [Citation(s) in RCA: 432] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. They are large macromolecular assemblies with a complex composition and diverse functions. Apart from facilitating nucleocytoplasmic transport, NPCs are involved in chromatin organization, the regulation of gene expression and DNA repair. Understanding the molecular mechanisms underlying these functions has been hampered by a lack of structural knowledge about the NPC. The recent convergence of crystallographic and biochemical in vitro analysis of nucleoporins (NUPs), the components of the NPC, with cryo-electron microscopic imaging of the entire NPC in situ has provided first pseudo-atomic view of its central core and revealed that an unexpected network of short linear motifs is an important spatial organization principle. These breakthroughs have transformed the way we understand NPC structure, and they provide an important base for functional investigations, including the elucidation of the molecular mechanisms underlying clinically manifested mutations of the nucleocytoplasmic transport system.
Collapse
Affiliation(s)
- Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | - Ed Hurt
- Biochemistry Center of Heidelberg University, INF328, Heidelberg D-69120, Germany
| |
Collapse
|
13
|
Labade AS, Karmodiya K, Sengupta K. HOXA repression is mediated by nucleoporin Nup93 assisted by its interactors Nup188 and Nup205. Epigenetics Chromatin 2016; 9:54. [PMID: 27980680 PMCID: PMC5135769 DOI: 10.1186/s13072-016-0106-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
Background The nuclear pore complex (NPC) mediates nuclear transport of RNA and proteins into and out of the nucleus. Certain nucleoporins have additional functions in chromatin organization and transcription regulation. Nup93 is a scaffold nucleoporin at the nuclear pore complex which is associated with human chromosomes 5, 7 and 16 and with the promoters of the HOXA gene as revealed by ChIP-on-chip studies using tiling microarrays for these chromosomes. However, the functional consequences of the association of Nup93 with HOXA is unknown. Results Here, we examined the association of Nup93 with the HOXA gene cluster and its consequences on HOXA gene expression in diploid colorectal cancer cells (DLD1). Nup93 showed a specific enrichment ~1 Kb upstream of the transcription start site of each of the HOXA1, HOXA3 and HOXA5 promoters, respectively. Furthermore, the association of Nup93 with HOXA was assisted by its interacting partners Nup188 and Nup205. The depletion of the Nup93 sub-complex significantly upregulated HOXA gene expression levels. However, expression levels of a control gene locus (GLCCI1) on human chromosome 7 were unaffected. Three-dimensional fluorescence in situ hybridization (3D-FISH) analyses revealed that the depletion of the Nup93 sub-complex (but not Nup98) disengages the HOXA gene locus from the nuclear periphery, suggesting a potential role for Nup93 in tethering and repressing the HOXA gene cluster. Consistently, Nup93 knockdown increased active histone marks (H3K9ac), decreased repressive histone marks (H3K27me3) on the HOXA1 promoter and increased transcription elongation marks (H3K36me3) within the HOXA1 gene. Moreover, the combined depletion of Nup93 and CTCF (a known organizer of HOXA gene cluster) but not Nup93 alone, significantly increased GLCCI1 gene expression levels. Taken together, this suggests a novel role for Nup93 and its interactors in repressing the HOXA gene cluster. Conclusions This study reveals that the nucleoporin Nup93 assisted by its interactors Nup188 and Nup205 mediates the repression of HOXA gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0106-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajay S Labade
- Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008 India
| | - Krishanpal Karmodiya
- Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008 India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008 India
| |
Collapse
|
14
|
Xiong X, Panchenko T, Yang S, Zhao S, Yan P, Zhang W, Xie W, Li Y, Zhao Y, Allis CD, Li H. Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2. Nat Chem Biol 2016; 12:1111-1118. [PMID: 27775714 DOI: 10.1038/nchembio.2218] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/14/2016] [Indexed: 02/05/2023]
Abstract
Recognition of histone covalent modifications by 'reader' modules constitutes a major mechanism for epigenetic regulation. A recent upsurge of newly discovered histone lysine acylations, such as crotonylation (Kcr), butyrylation (Kbu), and propionylation (Kpr), greatly expands the coding potential of histone lysine modifications. Here we demonstrate that the histone acetylation-binding double PHD finger (DPF) domains of human MOZ (also known as KAT6A) and DPF2 (also known as BAF45d) accommodate a wide range of histone lysine acylations with the strongest preference for Kcr. Crystal structures of the DPF domain of MOZ in complex with H3K14cr, H3K14bu, and H3K14pr peptides reveal that these non-acetyl acylations are anchored in a hydrophobic 'dead-end' pocket with selectivity for crotonylation arising from intimate encapsulation and an amide-sensing hydrogen bonding network. Immunofluorescence and chromatin immunoprecipitation (ChIP)-quantitative PCR (qPCR) showed that MOZ and H3K14cr colocalize in a DPF-dependent manner. Our studies call attention to a new regulatory mechanism centered on histone crotonylation readout by DPF family members.
Collapse
Affiliation(s)
- Xiaozhe Xiong
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Tatyana Panchenko
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York, USA
| | - Shuang Yang
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Shuai Zhao
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Peiqiang Yan
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenhao Zhang
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Xie
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York, USA
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution. Nat Commun 2016; 7:12562. [PMID: 27558844 PMCID: PMC5007294 DOI: 10.1038/ncomms12562] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/13/2016] [Indexed: 12/15/2022] Open
Abstract
The normal distribution of nuclear envelope transmembrane proteins (NETs) is disrupted in several human diseases. NETs are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM). Quantitative determination of the distribution of NETs on the ONM and INM is limited in available approaches, which moreover provide no information about translocation rates in the two membranes. Here we demonstrate a single-point single-molecule FRAP microscopy technique that enables determination of distribution and translocation rates for NETs in vivo.
Collapse
|
16
|
Lemke EA. The Multiple Faces of Disordered Nucleoporins. J Mol Biol 2016; 428:2011-24. [PMID: 26791761 PMCID: PMC7611686 DOI: 10.1016/j.jmb.2016.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 11/26/2022]
Abstract
An evolutionary advantage of intrinsically disordered proteins (IDPs) is their ability to bind a variety of folded proteins-a paradigm that is central to the nucleocytoplasmic transport mechanism, in which nuclear transport receptors mediate the translocation of various cargo through the nuclear pore complex by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). FG-Nups are highly dynamic, which poses a substantial problem when trying to determine precisely their function using common experimental approaches. FG-Nups have been studied under a variety of conditions, ranging from those that constitute single-molecule measurements to physiological concentrations at which they can form supramolecular structures. In this review, I describe the physicochemical properties of FG-Nups and compare them to those of other disordered systems, including well-studied IDPs. From this comparison, it is apparent that FG-Nups not only share some properties with IDPs in general but also possess unique characteristics that might be key to their central role in the nucleocytoplasmic transport machinery.
Collapse
Affiliation(s)
- Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
17
|
Mudumbi KC, Yang W. Probing Protein Distribution Along the Nuclear Envelope In Vivo by Using Single-Point FRAP. Methods Mol Biol 2016; 1411:113-22. [PMID: 27147037 PMCID: PMC10099394 DOI: 10.1007/978-1-4939-3530-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Determining the locations of nuclear envelope transmembrane proteins and their concentrations across the outer and inner nuclear membranes has been a challenging and time-consuming process. Typically, this required the week-long process of fixing and immunogold staining of cells prior to analysis by electron microscopy. Here, we describe a method, single-point fluorescence recovery after photobleaching (spFRAP), which is able to quickly determine the localization and distribution of nuclear membrane proteins along the double nuclear envelope membranes with a precision of 10-15 nm in a matter of 10-20 min the day after transfection.
Collapse
Affiliation(s)
- Krishna C Mudumbi
- Department of Biology, Temple University, 1900 North 12th St., Philadelphia, PA, 19122, USA
| | - Weidong Yang
- Department of Biology, Temple University, 1900 North 12th St., Philadelphia, PA, 19122, USA.
| |
Collapse
|
18
|
Guet D, Burns LT, Maji S, Boulanger J, Hersen P, Wente SR, Salamero J, Dargemont C. Combining Spinach-tagged RNA and gene localization to image gene expression in live yeast. Nat Commun 2015; 6:8882. [PMID: 26582123 PMCID: PMC4673486 DOI: 10.1038/ncomms9882] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/13/2015] [Indexed: 11/14/2022] Open
Abstract
Although many factors required for the formation of export-competent mRNPs have been described, an integrative view of the spatiotemporal coordinated cascade leading mRNPs from their site of transcription to their site of nuclear exit, at a single cell level, is still partially missing due to technological limitations. Here we report that the RNA Spinach aptamer is a powerful tool for mRNA imaging in live S. cerevisiae with high spatial-temporal resolution and no perturbation of the mRNA biogenesis properties. Dedicated image processing workflows are developed to allow detection of very low abundance of transcripts, accurate quantitative dynamic studies, as well as to provide a localization precision close to 100 nm at consistent time scales. Combining these approaches has provided a state-of-the-art analysis of the osmotic shock response in live yeast by localizing induced transcription factors, target gene loci and corresponding transcripts. Measuring single-cell mRNA dynamics is critical to understand gene expression. Here, using RNA Spinach technique to detect very low abundant mRNAs, Guet et al. report an analysis of the osmotic shock response in live yeast by localizing induced transcription factors, target gene loci and corresponding transcripts.
Collapse
Affiliation(s)
- David Guet
- Univ Paris Diderot, Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, 75475, France
| | - Laura T Burns
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 205 Kirkland Hall, Nashville, Tennessee 37232-8240, USA
| | - Suman Maji
- Univ Paris Diderot, Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, 75475, France
| | - Jérôme Boulanger
- Team-Space Time Imaging of Endomembranes and Organelles Dynamics, UMR144 CNRS, Univ Pierre et Marie Curie, Institut Curie, 12 rue Lhomond, Paris 75005, France
| | - Pascal Hersen
- Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR7057, Laboratoire Matière et Systèmes Complexes, 10 rue Alice Domon et Léonie Duquet, Paris 75013, France
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 205 Kirkland Hall, Nashville, Tennessee 37232-8240, USA
| | - Jean Salamero
- Team-Space Time Imaging of Endomembranes and Organelles Dynamics, UMR144 CNRS, Univ Pierre et Marie Curie, Institut Curie, 12 rue Lhomond, Paris 75005, France.,PICT-IBiSA Imaging Core Facility, Institut Curie, 12 rue Lhomond, Paris 75005, France
| | - Catherine Dargemont
- Univ Paris Diderot, Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, Hôpital St Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, 75475, France
| |
Collapse
|
19
|
Myant K, Qiao X, Halonen T, Come C, Laine A, Janghorban M, Partanen JI, Cassidy J, Ogg EL, Cammareri P, Laiterä T, Okkeri J, Klefström J, Sears RC, Sansom OJ, Westermarck J. Serine 62-Phosphorylated MYC Associates with Nuclear Lamins and Its Regulation by CIP2A Is Essential for Regenerative Proliferation. Cell Rep 2015; 12:1019-31. [PMID: 26235622 PMCID: PMC4535171 DOI: 10.1016/j.celrep.2015.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/24/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023] Open
Abstract
An understanding of the mechanisms determining MYC's transcriptional and proliferation-promoting activities in vivo could facilitate approaches for MYC targeting. However, post-translational mechanisms that control MYC function in vivo are poorly understood. Here, we demonstrate that MYC phosphorylation at serine 62 enhances MYC accumulation on Lamin A/C-associated nuclear structures and that the protein phosphatase 2A (PP2A) inhibitor protein CIP2A is required for this process. CIP2A is also critical for serum-induced MYC phosphorylation and for MYC-elicited proliferation induction in vitro. Complementary transgenic approaches and an intestinal regeneration model further demonstrated the in vivo importance of CIP2A and serine 62 phosphorylation for MYC activity upon DNA damage. However, targeting of CIP2A did not influence the normal function of intestinal crypt cells. These data underline the importance of nuclear organization in the regulation of MYC phosphorylation, leading to an in vivo demonstration of a strategy for inhibiting MYC activity without detrimental physiological effects.
Collapse
Affiliation(s)
- Kevin Myant
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Xi Qiao
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Pathology, University of Turku, 20520 Turku, Finland
| | - Tuuli Halonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Christophe Come
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Anni Laine
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mahnaz Janghorban
- Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Johanna I Partanen
- Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - John Cassidy
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Erinn-Lee Ogg
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | | | - Tiina Laiterä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Juha Okkeri
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Juha Klefström
- Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Owen J Sansom
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK.
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Pathology, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
20
|
Promoter-Autonomous Functioning in a Controlled Environment using Single Molecule FISH. Sci Rep 2015; 5:9934. [PMID: 26017315 PMCID: PMC4446897 DOI: 10.1038/srep09934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/11/2015] [Indexed: 11/09/2022] Open
Abstract
Transcription is a highly regulated biological process, initiated through the assembly of complexes at the promoter that contain both the general transcriptional machinery and promoter-specific factors. Despite the abundance of studies focusing on transcription, certain questions have remained unanswered. It is not clear how the transcriptional profile of a promoter is affected by genomic context. Also, there is no single cell method to directly compare transcriptional profiles independent of gene length and sequence. In this work, we employ a single genetic site for isolating the transcriptional kinetics of yeast promoters. Utilizing single molecule FISH, we directly compare the transcriptional activity of different promoters, considering both synthesis and cell-to-cell variability. With this approach, we provide evidence suggesting promoters autonomously encode their associated transcriptional profiles, independent of genomic locus, gene length and gene sequence.
Collapse
|
21
|
Talamas JA, Capelson M. Nuclear envelope and genome interactions in cell fate. Front Genet 2015; 6:95. [PMID: 25852741 PMCID: PMC4365743 DOI: 10.3389/fgene.2015.00095] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/22/2015] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate.
Collapse
Affiliation(s)
- Jessica A Talamas
- Program in Epigenetics, Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Maya Capelson
- Program in Epigenetics, Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
22
|
Schnell SJ, Ma J, Yang W. Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex. Genes (Basel) 2014; 5:1032-49. [PMID: 25393401 PMCID: PMC4276925 DOI: 10.3390/genes5041032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/02/2014] [Accepted: 10/20/2014] [Indexed: 11/30/2022] Open
Abstract
The locations of transcription and translation of mRNA in eukaryotic cells are spatially separated by the nuclear envelope (NE). Plenty of nuclear pore complexes (NPCs) embedded in the NE function as the major gateway for the export of transcribed mRNAs from the nucleus to the cytoplasm. Whereas the NPC, perhaps one of the largest protein complexes, provides a relatively large channel for macromolecules to selectively pass through it in inherently three-dimensional (3D) movements, this channel is nonetheless below the diffraction limit of conventional light microscopy. A full understanding of the mRNA export mechanism urgently requires real-time mapping of the 3D dynamics of mRNA in the NPC of live cells with innovative imaging techniques breaking the diffraction limit of conventional light microscopy. Recently, super-resolution fluorescence microscopy and single-particle tracking (SPT) techniques have been applied to the study of nuclear export of mRNA in live cells. In this review, we emphasize the necessity of 3D mapping techniques in the study of mRNA export, briefly summarize the feasibility of current 3D imaging approaches, and highlight the new features of mRNA nuclear export elucidated with a newly developed 3D imaging approach combining SPT-based super-resolution imaging and 2D-to-3D deconvolution algorithms.
Collapse
Affiliation(s)
- Steven J Schnell
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | - Jiong Ma
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
23
|
Meinema AC, Poolman B, Veenhoff LM. The transport of integral membrane proteins across the nuclear pore complex. Nucleus 2014; 3:322-9. [DOI: 10.4161/nucl.20439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
24
|
Ptak C, Aitchison JD, Wozniak RW. The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr Opin Cell Biol 2014; 28:46-53. [PMID: 24657998 DOI: 10.1016/j.ceb.2014.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 12/21/2022]
Abstract
In addition to their established roles in nucleocytoplasmic transport, the intimate association of nuclear pore complexes (NPCs) with chromatin has long led to speculation that these structures influence peripheral chromatin structure and regulate gene expression. These ideas have their roots in morphological observations, however recent years have seen the identification of physical interactions between NPCs, chromatin, and the transcriptional machinery. Key insights into the molecular functions of specific NPC proteins have uncovered roles for these proteins in transcriptional activation and elongation, mRNA processing, as well as chromatin structure and localization. Here, we review recent studies that provide further molecular detail on the role of specific NPC components as distinct platforms for these chromatin dependent processes.
Collapse
Affiliation(s)
- Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John D Aitchison
- Seattle Biomedical Research Institute and Institute for Systems Biology, 307 Westlake Ave N, Seattle, WA 98109, USA.
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
25
|
Pascual-Garcia P, Capelson M. Nuclear pores as versatile platforms for gene regulation. Curr Opin Genet Dev 2014; 25:110-7. [PMID: 24632227 DOI: 10.1016/j.gde.2013.12.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022]
Abstract
Functional compartmentalization of the genome relies on interactions between genomic regions and various nuclear scaffolds and macro-complexes. The Nuclear Pore Complex (NPC) is a large nuclear envelope-embedded protein complex, which creates a highly regulated transport channel between the nucleus and the cytoplasm. In addition to its central role in transport, the NPC has been linked to genome compartmentalization via binding to specific regions of the genome and association with gene regulatory machinery. Although originally proposed to preferentially associate with active genes, the NPC has now been implicated in both gene activating and gene silencing processes. Here, we review recent findings that highlight the roles of various components of the NPC in transcriptional activation, transcriptional memory, heterochromatin formation, post-transcriptional gene silencing and RNA processing. Together, these findings suggest that the nuclear pore is utilized as a regulatory platform for a number of distinct gene expression processes and further point to its central role in setting up particular expression environments on the genomic template.
Collapse
Affiliation(s)
- Pau Pascual-Garcia
- Department of Cell and Developmental Biology, University of Pennsylvania, 9-101 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Maya Capelson
- Department of Cell and Developmental Biology, University of Pennsylvania, 9-101 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
26
|
Li B, Kohler JJ. Glycosylation of the nuclear pore. Traffic 2014; 15:347-61. [PMID: 24423194 DOI: 10.1111/tra.12150] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 01/09/2023]
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) posttranslational modification was first discovered 30 years ago and is highly concentrated in the nuclear pore. In the years since the discovery of this single sugar modification, substantial progress has been made in understanding the biochemistry of O-GlcNAc and its regulation. Nonetheless, O-GlcNAc modification of proteins continues to be overlooked, due in large part to the lack of reliable methods available for its detection. Recently, a new crop of immunological and chemical detection reagents has changed the research landscape. Using these tools, approximately 1000 O-GlcNAc-modified proteins have been identified. While other forms of glycosylation are typically associated with extracellular proteins, O-GlcNAc is abundant on nuclear and cytoplasmic proteins. In particular, phenylalanine-glycine nucleoporins are heavily O-GlcNAc-modified. Recent experiments are beginning to provide insight into the functional implications of O-GlcNAc modification on certain proteins, but its role in the nuclear pore has remained enigmatic. However, tantalizing new results suggest that O-GlcNAc may play roles in regulating nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, University of Texas Southwestern Medical Centre, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | | |
Collapse
|
27
|
To TK, Kim JM. Epigenetic regulation of gene responsiveness in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 4:548. [PMID: 24432027 PMCID: PMC3882666 DOI: 10.3389/fpls.2013.00548] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/17/2013] [Indexed: 05/19/2023]
Abstract
The regulation of chromatin structure is inevitable for proper transcriptional response in eukaryotes. Recent reports in Arabidopsis have suggested that gene responsiveness is modulated by particular chromatin status. One such feature is H2A.Z, a histone variant conserved among eukaryotes. In Arabidopsis, H2A.Z is enriched within gene bodies of transcriptionally variable genes, which is in contrast to genic DNA methylation found within constitutive genes. In the absence of H2A.Z, the genes normally harboring H2A.Z within gene bodies are transcriptionally misregulated, while DNA methylation is unaffected. Therefore, H2A.Z may promote variability of gene expression without affecting genic DNA methylation. Another epigenetic information that could be important for gene responsiveness is trimethylation of histone H3 lysine 4 (H3K4me3). The level of H3K4me3 increases when stress responsive genes are transcriptionally activated, and it decreases after recovery from the stress. Even after the recovery, however, H3K4me3 is kept at some atypical levels, suggesting possible role of H3K4me3 for a stress memory. In this review, we summarize and discuss the growing evidences connecting chromatin features and gene responsiveness.
Collapse
Affiliation(s)
- Taiko K. To
- Department of Integrated Genetics, National Institute of GeneticsShizuoka, Japan
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceKanagawa, Japan
- *Correspondence: Taiko K. To, Division of Agricultural Genetics, Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan e-mail:
| | - Jong Myong Kim
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource ScienceKanagawa, Japan
| |
Collapse
|
28
|
Guo T, Fang Y. Functional organization and dynamics of the cell nucleus. FRONTIERS IN PLANT SCIENCE 2014; 5:378. [PMID: 25161658 PMCID: PMC4130368 DOI: 10.3389/fpls.2014.00378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/16/2014] [Indexed: 05/16/2023]
Abstract
The eukaryotic cell nucleus enclosed within the nuclear envelope harbors organized chromatin territories and various nuclear bodies as sub-nuclear compartments. This higher-order nuclear organization provides a unique environment to regulate the genome during replication, transcription, maintenance, and other processes. In this review, we focus on the plant four-dimensional nuclear organization, its dynamics and function in response to signals during development or stress.
Collapse
Affiliation(s)
| | - Yuda Fang
- *Correspondence: Yuda Fang, National key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China e-mail:
| |
Collapse
|
29
|
Bridger JM, Arican-Gotkas HD, Foster HA, Godwin LS, Harvey A, Kill IR, Knight M, Mehta IS, Ahmed MH. The Non-random Repositioning of Whole Chromosomes and Individual Gene Loci in Interphase Nuclei and Its Relevance in Disease, Infection, Aging, and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:263-79. [DOI: 10.1007/978-1-4899-8032-8_12] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Li Z, Zhu Y, Zhai Y, R Castroagudin M, Bao Y, White TE, Glavy JS. Werner complex deficiency in cells disrupts the Nuclear Pore Complex and the distribution of lamin B1. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:3338-3345. [PMID: 24050918 DOI: 10.1016/j.bbamcr.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/22/2013] [Accepted: 09/03/2013] [Indexed: 11/24/2022]
Abstract
From the surrounding shell to the inner machinery, nuclear proteins provide the functional plasticity of the nucleus. This study highlights the nuclear association of Pore membrane (POM) protein NDC1 and Werner protein (WRN), a RecQ helicase responsible for the DNA instability progeria disorder, Werner Syndrome. In our previous publication, we connected the DNA damage sensor Werner's Helicase Interacting Protein (WHIP), a binding partner of WRN, to the NPC. Here, we confirm the association of the WRN/WHIP complex and NDC1. In established WRN/WHIP knockout cell lines, we further demonstrate the interdependence of WRN/WHIP and Nucleoporins (Nups). These changes do not completely abrogate the barrier of the Nuclear Envelope (NE) but do affect the distribution of FG Nups and the RAN gradient, which are necessary for nuclear transport. Evidence from WRN/WHIP knockout cell lines demonstrates changes in the processing and nucleolar localization of lamin B1. The appearance of "RAN holes" void of RAN corresponds to regions within the nucleolus filled with condensed pools of lamin B1. From WRN/WHIP knockout cell line extracts, we found three forms of lamin B1 that correspond to mature holoprotein and two potential post-translationally modified forms of the protein. Upon treatment with topoisomerase inhibitors lamin B1 cleavage occurs only in WRN/WHIP knockout cells. Our data suggest the link of the NDC1 and WRN as one facet of the network between the nuclear periphery and genome stability. Loss of WRN complex leads to multiple alterations at the NPC and the nucleolus.
Collapse
Affiliation(s)
- Zhi Li
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yizhou Zhu
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yujia Zhai
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Michelle R Castroagudin
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yifei Bao
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Tommy E White
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Joseph S Glavy
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| |
Collapse
|
31
|
Neufeldt CJ, Joyce MA, Levin A, Steenbergen RH, Pang D, Shields J, Tyrrell DLJ, Wozniak RW. Hepatitis C virus-induced cytoplasmic organelles use the nuclear transport machinery to establish an environment conducive to virus replication. PLoS Pathog 2013; 9:e1003744. [PMID: 24204278 PMCID: PMC3814334 DOI: 10.1371/journal.ppat.1003744] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 09/19/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection induces formation of a membranous web structure in the host cell cytoplasm where the viral genome replicates and virions assemble. The membranous web is thought to concentrate viral components and hide viral RNA from pattern recognition receptors. We have uncovered a role for nuclear pore complex proteins (Nups) and nuclear transport factors (NTFs) in the membranous web. We show that HCV infection leads to increased levels of cytoplasmic Nups that accumulate at sites enriched for HCV proteins. Moreover, we detected interactions between specific HCV proteins and both Nups and NTFs. We hypothesize that cytoplasmically positioned Nups facilitate formation of the membranous web and contribute to the compartmentalization of viral replication. Accordingly, we show that transport cargo proteins normally targeted to the nucleus are capable of entering regions of the membranous web, and that depletion of specific Nups or Kaps inhibits HCV replication and assembly.
Collapse
Affiliation(s)
| | - Michael A. Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Aviad Levin
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Rineke H. Steenbergen
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Pang
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Justin Shields
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - D. Lorne J. Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Richard W. Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
33
|
Dahan-Pasternak N, Nasereddin A, Kolevzon N, Pe'er M, Wong W, Shinder V, Turnbull L, Whitchurch CB, Elbaum M, Gilberger TW, Yavin E, Baum J, Dzikowski R. PfSec13 is an unusual chromatin-associated nucleoporin of Plasmodium falciparum that is essential for parasite proliferation in human erythrocytes. J Cell Sci 2013; 126:3055-69. [PMID: 23687383 DOI: 10.1242/jcs.122119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Plasmodium falciparum, the deadliest form of human malaria, the nuclear periphery has drawn much attention due to its role as a sub-nuclear compartment involved in virulence gene expression. Recent data have implicated components of the nuclear envelope in regulating gene expression in several eukaryotes. Special attention has been given to nucleoporins that compose the nuclear pore complex (NPC). However, very little is known about components of the nuclear envelope in Plasmodium parasites. Here we characterize PfSec13, an unusual nucleoporin of P. falciparum, which shows unique structural similarities suggesting that it is a fusion between Sec13 and Nup145C of yeast. Using super resolution fluorescence microscopy (3D-SIM) and in vivo imaging, we show that the dynamic localization of PfSec13 during parasites' intra-erythrocytic development corresponds with that of the NPCs and that these dynamics are associated with microtubules rather than with F-actin. In addition, PfSec13 does not co-localize with the heterochormatin markers HP1 and H3K9me3, suggesting euchromatic location of the NPCs. The proteins associated with PfSec13 indicate that this unusual Nup is involved in several cellular processes. Indeed, ultrastructural and chromatin immunoprecipitation analyses revealed that, in addition to the NPCs, PfSec13 is found in the nucleoplasm where it is associated with chromatin. Finally, we used peptide nucleic acids (PNA) to downregulate PfSec13 and show that it is essential for parasite proliferation in human erythrocytes.
Collapse
Affiliation(s)
- Noa Dahan-Pasternak
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Díaz-Castillo C. Females and males contribute in opposite ways to the evolution of gene order in Drosophila. PLoS One 2013; 8:e64491. [PMID: 23696898 PMCID: PMC3655977 DOI: 10.1371/journal.pone.0064491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/16/2013] [Indexed: 11/19/2022] Open
Abstract
An intriguing association between the spatial layout of chromosomes within nuclei and the evolution of chromosome gene order was recently uncovered. Chromosome regions with conserved gene order in the Drosophila genus are larger if they interact with the inner side of the nuclear envelope in D. melanogaster somatic cells. This observation opens a new door to understand the evolution of chromosomes in the light of the dynamics of the spatial layout of chromosomes and the way double-strand breaks are repaired in D. melanogaster germ lines. Chromosome regions at the nuclear periphery in somatic cell nuclei relocate to more internal locations of male germ line cell nuclei, which might prefer a gene order-preserving mechanism to repair double-strand breaks. Conversely, chromosome regions at the nuclear periphery in somatic cells keep their location in female germ line cell nuclei, which might be inaccessible for cellular machinery that causes gene order-disrupting chromosome rearrangements. Thus, the gene order stability for genome regions at the periphery of somatic cell nuclei might result from the active repair of double-strand breaks using conservative mechanisms in male germ line cells, and the passive inaccessibility for gene order-disrupting factors at the periphery of nuclei of female germ line cells. In the present article, I find evidence consistent with a DNA break repair-based differential contribution of both D. melanogaster germ lines to the stability/disruption of gene order. The importance of germ line differences for the layout of chromosomes and DNA break repair strategies with regard to other genomic patterns is briefly discussed.
Collapse
|
35
|
Nuclear pores and perinuclear expression sites of var and ribosomal DNA genes correspond to physically distinct regions in Plasmodium falciparum. EUKARYOTIC CELL 2013; 12:697-702. [PMID: 23475702 DOI: 10.1128/ec.00023-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human malaria parasite Plasmodium falciparum modifies the erythrocyte it infects by exporting variant proteins to the host cell surface. The var gene family that codes for a large, variant adhesive surface protein called P. falciparum erythrocyte membrane protein 1 (PfEMP1) plays a particular role in this process, which is linked to pathogenesis and immune evasion. A single member of this gene family is highly transcribed while the other 59 members remain silenced. Importantly, var gene transcription occurs at a spatially restricted, but yet undefined, perinuclear site that is distinct from repressed var gene clusters. To advance our understanding of monoallelic expression, we investigated whether nuclear pores associate with the var gene expression site. To this end, we studied the nuclear pore organization during the asexual blood stage using a specific antibody directed against a subunit of the nuclear pore, P. falciparum Nup116 (PfNup116). Ring and schizont stage parasites showed highly polarized nuclear pore foci, whereas in trophozoite stage nuclear pores redistributed over the entire nuclear surface. Colocalization studies of var transcripts and anti-PfNup116 antibodies showed clear dissociation between nuclear pores and the var gene expression site in ring stage. Similar results were obtained for another differentially transcribed perinuclear gene family, the ribosomal DNA units. Furthermore, we show that in the poised state, the var gene locus is not physically linked to nuclear pores. Our results indicate that P. falciparum does form compartments of high transcriptional activity at the nuclear periphery which are, unlike the case in yeast, devoid of nuclear pores.
Collapse
|
36
|
Abstract
Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell's genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope and composed of proteins termed nucleoporins (or "Nups"), and (2) nuclear transport factors that recognize the cargoes to be transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly conserved features of this transport system, revealing the structure and function of the NPC; the NPC's role in the regulation of gene expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins.
Collapse
|
37
|
Vastenhouw NL, Schier AF. Bivalent histone modifications in early embryogenesis. Curr Opin Cell Biol 2012; 24:374-86. [PMID: 22513113 DOI: 10.1016/j.ceb.2012.03.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 02/08/2023]
Abstract
Histone modifications influence the interactions of transcriptional regulators with chromatin. Studies in embryos and embryonic stem (ES) cells have uncovered histone modification patterns that are diagnostic for different cell types and developmental stages. For example, bivalent domains consisting of regions of H3 lysine 27 trimethylation (H3K27me3) and H3 lysine 4 trimethylation (H3K4me3) mark lineage control genes in ES cells and zebrafish blastomeres. Such bivalent domains have garnered attention because the H3K27me3 mark might help repress lineage-regulatory genes during pluripotency while the H3K4me3 mark could poise genes for activation upon differentiation. Despite the prominence of the bivalent domain concept, studies in other model organisms have questioned its universal nature, and the function of bivalent domains has remained unclear. Histone marks are also associated with developmental regulatory genes in sperm. These observations have raised the possibility that specific histone modification patterns might persist from parent to offspring, but it is unclear whether histone marks are inherited or formed de novo. Here, we review the potential roles of H3K4me3 and H3K27me3 marks in embryos and ES cells and discuss how histone marks might be established, maintained and resolved during embryonic development.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
38
|
Antigenic variation and the generation of diversity in malaria parasites. Curr Opin Microbiol 2012; 15:456-62. [PMID: 22503815 DOI: 10.1016/j.mib.2012.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/08/2012] [Indexed: 11/27/2022]
Abstract
Investigations into the genetic basis underlying antigenic variation in malaria parasites have primarily described transcriptional regulation of the large, multi-copy gene families that encode red cell surface antigens. In particular, extensive alterations to chromatin structure and subnuclear localization have been shown to play key roles in mutually exclusive expression, gene silencing and activation, and epigenetic memory. However the mechanisms responsible for the generation of sequence diversity within these gene families, a characteristic that is equally important for a parasite's ability to avoid the host's immune response, remains poorly understood in malaria. Recent work in model organisms suggests that the mechanisms controlling gene activation and silencing might also contribute to preferential recombination between antigen encoding genes, thus linking these two key processes.
Collapse
|
39
|
Chatel G, Fahrenkrog B. Dynamics and diverse functions of nuclear pore complex proteins. Nucleus 2012; 3:162-71. [PMID: 22555605 DOI: 10.4161/nucl.19674] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear pore complexes (NPCs) are best known for their central role in controlling the molecular trafficking between the cytoplasm and the nucleus. NPCs are assembled from about 30 different proteins and a growing body of evidence suggests that these nucleoporins are not only acting in the context of NPCs, but also in the nucleoplasm and cytoplasm. In this context it is well accepted that a set of nucleoporins are important regulators of a variety of mitotic processes, including kinetochore assembly, spindle checkpoint control and cytokinesis, whereas others associate with chromatin and administer gene expression. However, the functional importance of nucleoporins go far beyond these roles and this review will provide an overview of the latest insights into the versatility of metazoan nucleoporins with an emphasis on their roles in cell migration, cellular signaling and tissue-specific activities.
Collapse
Affiliation(s)
- Guillaume Chatel
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | | |
Collapse
|
40
|
Oeffinger M, Zenklusen D. To the pore and through the pore: a story of mRNA export kinetics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:494-506. [PMID: 22387213 DOI: 10.1016/j.bbagrm.2012.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/26/2022]
Abstract
The evolutionary 'decision' to store genetic information away from the place of protein synthesis, in a separate compartment, has forced eukaryotic cells to establish a system to transport mRNAs from the nucleus to the cytoplasm for translation. To ensure export to be fast and efficient, cells have evolved a complex molecular interplay that is tightly regulated. Over the last few decades, many of the individual players in this process have been described, starting with the composition of the nuclear pore complex to proteins that modulate co-transcriptional events required to prepare an mRNP for export to the cytoplasm. How the interplay between all the factors and processes results in the efficient and selective export of mRNAs from the nucleus and how the export process itself is executed within cells, however, is still not fully understood. Recent advances in using proteomic and single molecule microscopy approaches have provided important insights into the process and its kinetics. This review summarizes these recent advances and how they led to the current view on how cells orchestrate the export of mRNAs. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Marlene Oeffinger
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, Canada.
| | | |
Collapse
|
41
|
Abstract
Because of the association between aberrant nuclear structure and tumour grade, nuclear morphology is an indispensible criterion in the current pathological assessment of cancer. Components of the nuclear envelope environment have central roles in many aspects of cell function that affect tumour development and progression. As the roles of the nuclear envelope components, including nuclear pore complexes and nuclear lamina, are being deciphered in molecular detail there are opportunities to harness this knowledge for cancer therapeutics and biomarker development. In this Review, we summarize the progress that has been made in our understanding of the nuclear envelope and the implications of changes in this environment for cancer biology.
Collapse
Affiliation(s)
- Kin-Hoe Chow
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
42
|
Green EM, Jiang Y, Joyner R, Weis K. A negative feedback loop at the nuclear periphery regulates GAL gene expression. Mol Biol Cell 2012; 23:1367-75. [PMID: 22323286 PMCID: PMC3315802 DOI: 10.1091/mbc.e11-06-0547] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Examination of the role of the nuclear localization of the GAL gene locus shows that localization to the periphery upon induction dampens gene expression and is required for rapid repression after inactivation. Thus GAL gene movement to the nuclear periphery is part of a negative feedback enabling a rapid response to changes in the environment. The genome is nonrandomly organized within the nucleus, but it remains unclear how gene position affects gene expression. Silenced genes have frequently been found associated with the nuclear periphery, and the environment at the periphery is believed to be refractory to transcriptional activation. However, in budding yeast, several highly regulated classes of genes, including the GAL7-10-1 gene cluster, are known to translocate to the nuclear periphery concurrent with their activation. To investigate the role of gene positioning on GAL gene expression, we monitored the effects of mutations that disrupt the interaction between the GAL locus and the periphery or synthetically tethered the locus to the periphery. Localization to the nuclear periphery was found to dampen initial GAL gene induction and was required for rapid repression after gene inactivation, revealing a function for the nuclear periphery in repressing endogenous GAL gene expression. Our results do not support a gene-gating model in which GAL gene interaction with the nuclear pore ensures rapid gene expression, but instead they suggest that a repressive environment at the nuclear periphery establishes a negative feedback loop that enables the GAL locus to respond rapidly to changes in environmental conditions.
Collapse
Affiliation(s)
- Erin M Green
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
43
|
Hampoelz B, Lecuit T. Nuclear mechanics in differentiation and development. Curr Opin Cell Biol 2011; 23:668-75. [PMID: 22079175 DOI: 10.1016/j.ceb.2011.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 09/23/2011] [Accepted: 10/10/2011] [Indexed: 11/30/2022]
Abstract
The nucleus is by far one of the stiffest organelles within cells of higher eukaryotes. Its mechanical properties are determined by contributions from the nuclear lamina and chromatin. Together they allow a viscoelastic response of the nucleus to applied stresses, where the lamina is thought to behave as an elastic shell, while the nucleoplasm contributes as a largely viscous material. Nuclear mechanics changes during differentiation and development. Altered nuclear mechanics reflects but might also influence global re-arrangements in chromatin architecture, which take place when cells commit themselves into distinct lineages. Thus it is likely that the mechanical characteristics of nuclei significantly contribute to proper differentiation.
Collapse
Affiliation(s)
- Bernhard Hampoelz
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy, case 907, 13288 Marseille Cedex 09, France
| | | |
Collapse
|
44
|
Chatel G, Fahrenkrog B. Nucleoporins: leaving the nuclear pore complex for a successful mitosis. Cell Signal 2011; 23:1555-62. [PMID: 21683138 DOI: 10.1016/j.cellsig.2011.05.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/31/2011] [Indexed: 12/01/2022]
Abstract
The nuclear envelope (NE) separates the cytoplasm and the cell nucleus of interphase eukaryotic cells and nuclear pore complexes (NPCs) mediate the macromolecular exchange between these two compartments. The NE and the NPCs of vertebrate cells disassemble during prophase and the nuclear pore proteins (nucleoporins) are distributed within the mitotic cytoplasm. For an increasing number of them active mitotic functions have been assigned over the past few years. Nucleoporins are participating in spindle assembly, kinetochore organisation, and the spindle assembly checkpoint, all processes that control chromosome segregation and are important for maintenance of genome integrity. But nucleoporins are also engaged in early and late mitotic events, such as centrosome positioning and cytokinesis. Here we will highlight recent progress in deciphering the roles for nucleoporins in the distinct steps of mitosis.
Collapse
Affiliation(s)
- Guillaume Chatel
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Belgium
| | | |
Collapse
|