1
|
Laguía F, Chojnacki J, Erkizia I, Geli MI, Enrich C, Martinez-Picado J, Resa-Infante P. Massive endocytosis mechanisms are involved in uptake of HIV-1 particles by monocyte-derived dendritic cells. Front Immunol 2025; 15:1505840. [PMID: 39867902 PMCID: PMC11757119 DOI: 10.3389/fimmu.2024.1505840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin. Here, we investigate the potential involvement of massive endocytosis (MEND) in this process. Methods We used live cell confocal imaging to measure the dimensions and dynamics of the compartment. We assessed the role of actin and cholesterol in fixed and live cells using confocal microscopy and evaluated the effect of PI3K and protein palmytoilation inhibitors during viral uptake. Results Our data demonstrate extensive plasma membrane invagination based on sac-like compartment dimensions (2.9 μm in diameter and 20 μm3 in volume). We showed that the cholesterol concentration doubles within the regions of viral uptake, suggesting lipid-phase separation, and that development of the sac-like compartment is accompanied by transient depolarization of cortical actin. Moreover, we observed that protein palmitoylation and PI3K inhibition reduce the sac-like compartment formation rate from 70% to 20% and 40%, respectively. Conclusions Our results indicate the involvement of MEND mechanisms during sac-like compartment formation.
Collapse
Affiliation(s)
| | - Jakub Chojnacki
- IrsiCaixa, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | - María Isabel Geli
- Department of Cell Biology, Institute for Molecular Biology of Barcelona (IBMB, CSIC), Barcelona, Spain
| | - Carlos Enrich
- Cell Compartments and Signaling Group, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Patricia Resa-Infante
- IrsiCaixa, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| |
Collapse
|
2
|
Jo S, Fischer BR, Cronin NM, Nurmalasari NPD, Loyd YM, Kerkvliet JG, Bailey EM, Anderson RB, Scott BL, Hoppe AD. Antibody surface mobility amplifies FcγR signaling via Arp2/3 during phagocytosis. Biophys J 2024; 123:2312-2327. [PMID: 38321740 PMCID: PMC11331046 DOI: 10.1016/j.bpj.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
We report herein that the anti-CD20 therapeutic antibody, rituximab, is rearranged into microclusters within the phagocytic synapse by macrophage Fcγ receptors (FcγR) during antibody-dependent cellular phagocytosis. These microclusters were observed to potently recruit Syk and to undergo rearrangements that were limited by the cytoskeleton of the target cell, with depolymerization of target-cell actin filaments leading to modest increases in phagocytic efficiency. Total internal reflection fluorescence analysis revealed that FcγR total phosphorylation, Syk phosphorylation, and Syk recruitment were enhanced when IgG-FcγR microclustering was enabled on fluid bilayers relative to immobile bilayers in a process that required Arp2/3. We conclude that on fluid surfaces, IgG-FcγR microclustering promotes signaling through Syk that is amplified by Arp2/3-driven actin rearrangements. Thus, the surface mobility of antigens bound by IgG shapes the signaling of FcγR with an unrecognized complexity beyond the zipper and trigger models of phagocytosis.
Collapse
Affiliation(s)
- Seongwan Jo
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Brady R Fischer
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Nicholas M Cronin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Ni Putu Dewi Nurmalasari
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Yoseph M Loyd
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Jason G Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Elizabeth M Bailey
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota
| | - Robert B Anderson
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Brandon L Scott
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota; BioSNTRii, South Dakota School of Mines and Technology, Rapid City, South Dakota
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota; BioSNTRii, South Dakota State University, Brookings, South Dakota.
| |
Collapse
|
3
|
Carella F, Prado P, García-March JR, Tena-Medialdea J, Melendreras EC, Porcellini A, Feola A. Measuring immunocompetence in the natural population and captive individuals of noble pen shell Pinna nobilis affected by Pinna nobilis Picornavirus (PnPV). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109664. [PMID: 38844186 DOI: 10.1016/j.fsi.2024.109664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Mass Mortality Events (MMEs) affecting the noble pen shell Pinna nobilis have been reported since 2016. In this work, we used an in vitro flow cytometric assay to evaluate phagocytosis, coupled with cytology and Electron Microscopy (TEM), to define animal immunocompetence following infection by P. nobilis Picornavirus (PnPV). The study was performed on 27 animals in July 2021 and May 2022 on two natural population from the Ebro Delta (Catalonia, Spain) and animals maintained in captivity at facilities in Valencia and Murcia Aquarium. Hemolymph was collected in the field and in captivity as a non-destructive sampling method. Based on dimension and internal complexity, flow cytometry identified three haemocyte types, distinguished in granulocytes, hyalinocytes and a third type, biggest in size and with high internal complexity and granularity. Those cells corresponded at ultrastructure to hemocytes with advanced phases of PnPV infection and related to cytopathic effect of the replicating virus displaying numerous Double Membrane Vesicles (DMVs) and cells corpse fusion. The results showed that pen shell in captivity had significantly lower Total Hemocyte Count (THC) compared with natural population of Alfacs Bay (mean number of 7-9 x 104 vs 2-5 x 105 cells/mL, respectively). FACS (Fluorescence-activated cell sorting) based phagocytosis analysis demonstrate that animals in captivity at IMEDMAR-UCV and Murcia Aquarium, had scarce or absent ability to phagocyte the two stimuli (Staphylococcus aureus and Zymosan A) (10,2 % ± 1,7 of positives) if compared with the natural population in Alfacs Bay (28,5 % ± 5,6 of positive). Ultrastructure images showed that PnPV itself can lead to an alteration of the hemocyte cytoskeleton, impairing the capabilities to perform an active phagocytosis and an efficient phagolysosome fusion.
Collapse
Affiliation(s)
- Francesca Carella
- Department of Biology, University of Naples Federico II, Via Cinthia Complesso di Monte Sant Angelo, Naples, Italy.
| | - Patricia Prado
- IMEDMAR-UCV, Universidad Católica de Valencia, 03710, Calpe, Alicante, Spain; Institut d'Estudis Professionals Aqüícoles i Ambientals de Catalunya (IEPAAC), 43540, La Ràpita, Tarragona, Spain
| | | | - José Tena-Medialdea
- IMEDMAR-UCV, Universidad Católica de Valencia, 03710, Calpe, Alicante, Spain
| | | | - Antonio Porcellini
- Department of Biology, University of Naples Federico II, Via Cinthia Complesso di Monte Sant Angelo, Naples, Italy
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Via Cinthia Complesso di Monte Sant Angelo, Naples, Italy
| |
Collapse
|
4
|
Askman S, Westerlund J, Pettersson Å, Hellmark T, Johansson Å, Wichert S, Hansson M. Decreased neutrophil function in newly diagnosed multiple myeloma patients is restored with lenalidomide therapy. Eur J Haematol 2024; 113:72-81. [PMID: 38553844 DOI: 10.1111/ejh.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 06/04/2024]
Abstract
OBJECTIVES Bacterial infections are common and a major cause of morbidity and mortality in multiple myeloma (MM). We have investigated the function of polymorphonuclear leukocyte (PMN), the immune system's first line of defense against bacteria, in peripheral blood (PB) and bone marrow (BM) samples from patients with newly diagnosed MM (NDMM), smoldering MM (SMM), monoclonal gammopathy of undetermined significance (MGUS) and healthy controls. METHODS Phagocytosis and oxidative burst in PMN cells from patients and healthy donors were investigated using PhagoTest and PhagoBurst assay. RESULTS PMN from NDMM, SMM, and MGUS patients had reduced phagocytosis and oxidative burst ability compared with healthy controls. The dysfunction was most prominent in BM samples from MM, SMM, and MGUS patients. Importantly the reduced phagocytosis in MM patients was restored in patients on lenalidomide therapy. Consistently the ability of Escherichia coli stimulated oxidative burst in BM was reduced for the MM, SMM, and MGUS cohort in contrast to the healthy controls and the patients on lenalidomide treatment. CONCLUSION Our results show that MM patients have neutrophil dysfunction that could contribute to susceptibility for bacterial infections and that lenalidomide therapy was associated with restored PMN function.
Collapse
Affiliation(s)
- Sandra Askman
- Department of Respiratory Medicine and Allergology, Skane University Hospital, Lund, Sweden
- Department of Hematology, BMC B13, Lund University, Lund, Sweden
| | - Julia Westerlund
- Department of Hematology, BMC B13, Lund University, Lund, Sweden
| | - Åsa Pettersson
- Department of Clinical Sciences, Nephrology, Skane University Hospital, Lund University, Lund, Sweden
| | - Thomas Hellmark
- Department of Clinical Sciences, Nephrology, Skane University Hospital, Lund University, Lund, Sweden
| | - Åsa Johansson
- Clinical Genetics and Pathology, Skåne University Hospital, Lund, Sweden
| | - Stina Wichert
- Department of Hematology, BMC B13, Lund University, Lund, Sweden
| | - Markus Hansson
- Department of Hematology, BMC B13, Lund University, Lund, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Ye J, Yang D, Shi C, Zhou F, Wang P. Designer
DNA
Nanostructures and Their Cellular Uptake Behaviors. DNA NANOTECHNOLOGY FOR CELL RESEARCH 2024:375-399. [DOI: 10.1002/9783527840816.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Ye J, Wang Y, Li Q, Hussain S, Chen S, Zhou X, Hou S, Feng Y. Phagocytosis in Marine Coccolithophore Gephyrocapsa huxleyi: Comparison between Calcified and Non-Calcified Strains. BIOLOGY 2024; 13:310. [PMID: 38785792 PMCID: PMC11117637 DOI: 10.3390/biology13050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Coccolithophores play a significant role in marine calcium carbonate production and carbon cycles, attributing to their unique feature of producing calcareous plates, coccoliths. Coccolithophores also possess a haplo-diplontic life cycle, presenting distinct morphology types and calcification states. However, differences in nutrient acquisition strategies and mixotrophic behaviors of the two life phases remain unclear. In this study, we conducted a series of phagocytosis experiments of calcified diploid and non-calcified haploid strains of coccolithophore Gephyrocapsa huxleyi under light and dark conditions. The phagocytosis capability of each strain was examined based on characteristic fluorescent signals from ingested beads using flow cytometry and fluorescence microscopy. The results show a significantly higher phagocytosis percentage on fluorescent beads in the bacterial prey surrogates of the non-calcified haploid Gephyrocapsa huxleyi strain, than the calcified diploid strain with or without light. In addition, the non-calcified diploid cells seemingly to presented a much higher phagocytosis percentage in darkness than under light. The differential phagocytosis capacities between the calcified diploid and non-calcified haploid Gephyrocapsa huxleyi strains indicate potential distinct nutritional strategies at different coccolithophore life and calcifying stages, which may further shed light on the potential strategies that coccolithophore possesses in unfavorable environments such as twilight zones and the expanding coccolithophore niches in the natural marine environment under the climate change scenario.
Collapse
Affiliation(s)
- Jiayang Ye
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China;
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
| | - Ying Wang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
| | - Qian Li
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
| | - Sarfraz Hussain
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songze Chen
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China
| | - Xunying Zhou
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shengwei Hou
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China;
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanyuan Feng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China;
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
| |
Collapse
|
7
|
Uribe-Querol E, Rosales C. Neutrophils versus Protozoan Parasites: Plasmodium, Trichomonas, Leishmania, Trypanosoma, and Entameoba. Microorganisms 2024; 12:827. [PMID: 38674770 PMCID: PMC11051968 DOI: 10.3390/microorganisms12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophils are the most abundant polymorphonuclear granular leukocytes in human blood and are an essential part of the innate immune system. Neutrophils are efficient cells that eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections remains controversial. At sites of protozoan parasite infections, a large number of infiltrating neutrophils is observed, suggesting that neutrophils are important cells for controlling the infection. Yet, in most cases, there is also a strong inflammatory response that can provoke tissue damage. Diseases like malaria, trichomoniasis, leishmaniasis, Chagas disease, and amoebiasis affect millions of people globally. In this review, we summarize these protozoan diseases and describe the novel view on how neutrophils are involved in protection from these parasites. Also, we present recent evidence that neutrophils play a double role in these infections participating both in control of the parasite and in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
8
|
Faure-Dupuy S, Jubrail J, Depierre M, Africano-Gomez K, Öberg L, Israelsson E, Thörn K, Delevoye C, Castellano F, Herit F, Guilbert T, Russell DG, Mayer G, Cunoosamy DM, Kurian N, Niedergang F. ARL5b inhibits human rhinovirus 16 propagation and impairs macrophage-mediated bacterial clearance. EMBO Rep 2024; 25:1156-1175. [PMID: 38332148 PMCID: PMC10933434 DOI: 10.1038/s44319-024-00069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Human rhinovirus is the most frequently isolated virus during severe exacerbations of chronic respiratory diseases, like chronic obstructive pulmonary disease. In this disease, alveolar macrophages display significantly diminished phagocytic functions that could be associated with bacterial superinfections. However, how human rhinovirus affects the functions of macrophages is largely unknown. Macrophages treated with HRV16 demonstrate deficient bacteria-killing activity, impaired phagolysosome biogenesis, and altered intracellular compartments. Using RNA sequencing, we identify the small GTPase ARL5b to be upregulated by the virus in primary human macrophages. Importantly, depletion of ARL5b rescues bacterial clearance and localization of endosomal markers in macrophages upon HRV16 exposure. In permissive cells, depletion of ARL5b increases the secretion of HRV16 virions. Thus, we identify ARL5b as a novel regulator of intracellular trafficking dynamics and phagolysosomal biogenesis in macrophages and as a restriction factor of HRV16 in permissive cells.
Collapse
Affiliation(s)
| | - Jamil Jubrail
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
- Southampton Solent University, East Park Terrace, Southampton, SO14 0YN, UK
| | - Manon Depierre
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | | | - Lisa Öberg
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Elisabeth Israelsson
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Kristofer Thörn
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Cédric Delevoye
- Institut Curie, Université PSL, CNRS, UMR144, Structure and Membrane Compartments, Paris, France
- Institut Curie, Université PSL, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Flavia Castellano
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
- Université Paris Est Creteil, INSERM, IMRB, Creteil, 94010, France
| | - Floriane Herit
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - Thomas Guilbert
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gaell Mayer
- Immunology, Late stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Danen M Cunoosamy
- Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | - Nisha Kurian
- Research & Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 413 14, Sweden
| | | |
Collapse
|
9
|
Chen J, Deng L, Pang M, Li Y, Xu Z, Zhang X, Liu H. Transcriptomic insights into the shift of trophic strategies in mixotrophic dinoflagellate Lepidodinium in the warming ocean. ISME COMMUNICATIONS 2024; 4:ycae087. [PMID: 39011280 PMCID: PMC11247192 DOI: 10.1093/ismeco/ycae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
The shift between photoautotrophic and phagotrophic strategies in mixoplankton significantly impacts the planktonic food webs and biogeochemical cycling. Considering the projected global warming, studying how temperature impacts this shift is crucial. Here, we combined the transcriptome of in-lab cultures (mixotrophic dinoflagellate Lepidodinium sp.) and the metatranscriptome dataset of the global ocean to investigate the mechanisms underlying the shift of trophic strategies and its relationship with increasing temperatures. Our results showed that phagocytosis-related pathways, including focal adhesion, regulation of actin cytoskeleton, and oxidative phosphorylation, were significantly stimulated in Lepidodinium sp. when cryptophyte prey were added. We further compared the expression profiles of photosynthesis and phagocytosis genes in Lepidodinium sp. in the global sunlit ocean. Our results indicated that Lepidodinium sp. became more phagotrophic with increasing temperatures when the ambient chlorophyll concentration was >0.3 mg.m-3 (~20.58% of the ocean surface) but became more photoautotrophic with increasing temperatures when the chlorophyll concentration was between 0.2 and 0.3 mg.m-3 (~11.47% of the ocean surface). Overall, we emphasized the crucial role of phagocytosis in phago-mixotrophy and suggested that the expression profile of phagocytosis genes can be a molecular marker to target the phagotrophic activity of mixoplankton in situ.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Lixia Deng
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mengwen Pang
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yingdong Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Zhimeng Xu
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiaodong Zhang
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hongbin Liu
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong SAR, China
| |
Collapse
|
10
|
Charvet S, Bock NA, Kim E, Duhamel S. Transcriptomics reveal a unique phago-mixotrophic response to low nutrient concentrations in the prasinophyte Pterosperma cristatum. ISME COMMUNICATIONS 2024; 4:ycae083. [PMID: 38957873 PMCID: PMC11217555 DOI: 10.1093/ismeco/ycae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Constitutive mixoplankton-plastid-bearing microbial eukaryotes capable of both phototrophy and phagotrophy-are ubiquitous in marine ecosystems and facilitate carbon transfer to higher trophic levels within aquatic food webs, which supports enhanced sinking carbon flux. However, the regulation of the relative contribution of photosynthesis and prey consumption remains poorly characterized. We investigated the transcriptional dynamics behind this phenotypic plasticity in the prasinophyte green alga Pterosperma cristatum. Based on what is known of other mixoplankton species that cannot grow without photosynthesis (obligate phototrophs), we hypothesized that P. cristatum uses phagotrophy to circumvent the restrictions imposed on photosynthesis by nutrient depletion, to obtain nutrients from ingested prey, and to maintain photosynthetic carbon fixation. We observed an increase in feeding as a response to nutrient depletion, coinciding with an upregulation of expression for genes involved in essential steps of phagocytosis including prey recognition, adhesion and engulfment, transport and maturation of food vacuoles, and digestion. Unexpectedly, genes involved in the photosynthetic electron transfer chain, pigment biosynthesis, and carbon fixation were downregulated as feeding increased, implying an abatement of photosynthesis. Contrary to our original hypothesis, our results therefore suggest that depletion of inorganic nutrients triggered an alteration of trophic behavior from photosynthesis to phagotrophy in P. cristatum. While this behavior distinguishes P. cristatum from other groups of constitutive mixoplankton, its physiological response aligns with recent discoveries from natural microbial communities. These findings indicate that mixoplankton communities in nutrient-limited oceans can regulate photosynthesis against bacterivory based on nutrient availability.
Collapse
Affiliation(s)
- Sophie Charvet
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, United States
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, NY 10024, United States
- Department of Biology, School of Natural and Social Sciences, Susquehanna University, Selinsgrove, PA 17870, United States
| | - Nicholas A Bock
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, United States
- Laboratoire d’Océanographie de Villefranche, CNRS and Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, NY 10024, United States
- Division of EcoScience, Ewha Womans University, Seoul 03760, South Korea
| | - Solange Duhamel
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, United States
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, NY 10024, United States
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
11
|
Davis LC, Morgan AJ, Galione A. Optical profiling of autonomous Ca 2+ nanodomains generated by lysosomal TPC2 and TRPML1. Cell Calcium 2023; 116:102801. [PMID: 37742482 DOI: 10.1016/j.ceca.2023.102801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Multiple families of Ca2+-permeable channels co-exist on lysosomal Ca2+ stores but how each family couples to its own unique downstream physiology is unclear. We have therefore investigated the Ca2+-signalling architecture underpinning different channels on the same vesicle that drive separate pathways, using phagocytosis as a physiological stimulus. Lysosomal Ca2+-channels are a major Ca2+ source driving particle uptake in macrophages, but different channels drive different aspects of Fc-receptor-mediated phagocytosis: TPC2 couples to dynamin activation, whilst TRPML1 couples to lysosomal exocytosis. We hypothesised that they are driven by discrete local plumes of Ca2+ around open channels (Ca2+ nanodomains). To test this, we optimized Ca2+-nanodomain recordings by screening panels of genetically encoded Ca2+ indicators (GECIs) fused to TPC2 to monitor the [Ca2+] next to the channel. Signal calibration accounting for the distance of the GECI from the channel mouth reveals that, during phagocytosis, TPC2 generates local Ca2+ nanodomains around itself of up to 42 µM, nearly a hundred-fold greater than the global cytosolic [Ca2+] rise. We further show that TPC2 and TRPML1, though on the same lysosomes, generate autonomous Ca2+ nanodomains of high [Ca2+] that are largely insulated from one another, a platform allowing their discrete Ca2+-decoding to promote unique respective physiologies.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
12
|
Scharrig E, Mantegazza AR. Dissecting Phagosomal Pattern Recognition Receptor-Dependent Signaling and Antigen MHC-II Presentation from Phagosomes in Murine Dendritic Cells. Methods Mol Biol 2023; 2692:275-287. [PMID: 37365475 DOI: 10.1007/978-1-0716-3338-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Phagosomal pattern recognition receptor signaling promotes phagosome maturation and additional immune pathways such as proinflammatory cytokine secretion and antigen MHC-II presentation in antigen-presenting cells. In the present chapter, we describe procedures to assess these pathways in murine dendritic cells, professional phagocytes positioned at the interface between innate and adaptive immune responses. The assays described herein follow proinflammatory signaling by biochemical and immunological assays as well as antigen presentation of the model antigen Eα by immunofluorescence followed by flow cytometry.
Collapse
Affiliation(s)
- Emilia Scharrig
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adriana R Mantegazza
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Distel JS, Flores RMO, Bienvenu A, Aguilera MO, Bonazzi M, Berón W. Ezrin and CD44 participate in the internalization process of
Coxiella burnetii
into non‐phagocytic cells. Biol Cell 2022; 114:237-253. [DOI: 10.1111/boc.202100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jesús S. Distel
- Instituto de Histología y Embriología Facultad de Ciencias Médicas Universidad Nacional de Cuyo ‐ CONICET Mendoza 5500 Argentina
| | - Rodolfo M. Ortiz Flores
- Instituto de Histología y Embriología Facultad de Ciencias Médicas Universidad Nacional de Cuyo ‐ CONICET Mendoza 5500 Argentina
- Cátedra de Microbiología Parasitología e Inmunología Facultad de Odontología Universidad Nacional de Cuyo Mendoza Argentina
| | - Arthur Bienvenu
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS Université de Montpellier Montpellier France
| | - Milton O. Aguilera
- Instituto de Histología y Embriología Facultad de Ciencias Médicas Universidad Nacional de Cuyo ‐ CONICET Mendoza 5500 Argentina
- Cátedra de Microbiología Parasitología e Inmunología Facultad de Odontología Universidad Nacional de Cuyo Mendoza Argentina
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004 CNRS Université de Montpellier Montpellier France
| | - Walter Berón
- Instituto de Histología y Embriología Facultad de Ciencias Médicas Universidad Nacional de Cuyo ‐ CONICET Mendoza 5500 Argentina
| |
Collapse
|
14
|
Krendel M, Gauthier NC. Building the phagocytic cup on an actin scaffold. Curr Opin Cell Biol 2022; 77:102112. [PMID: 35820329 PMCID: PMC10078615 DOI: 10.1016/j.ceb.2022.102112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022]
Abstract
Cells ingest large particles, such as bacteria, viruses, or apoptotic cells, via the process of phagocytosis, which involves formation of an actin-rich structure known as the phagocytic cup. Phagocytic cup assembly and closure results from a concerted action of phagocytic receptors, regulators of actin polymerization, and myosin motors. Recent studies using advanced imaging approaches and biophysical techniques have revealed new information regarding phagocytic cup architecture, regulation of actin assembly, and the distribution, direction, and magnitude of the forces produced by the cytoskeletal elements that form the cup. These findings provide insights into the mechanisms leading to the assembly, expansion, and closure of phagocytic cups. The new data show that engulfment and internalization of phagocytic targets rely on several distinct yet complementary mechanisms that support the robust uptake of foreign objects and may be precisely tailored to the demands of specific phagocytic pathways.
Collapse
Affiliation(s)
- Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Nils C Gauthier
- IFOM, FIRC Institute of Molecular Oncology, Milan, 20139, Italy
| |
Collapse
|
15
|
Li Y, Pan L, Tong R, Li Y, Li Z, Chen Y. Effects of ammonia-N stress on molecular mechanisms associated with immune behavior changes in the haemocytes of Litopenaeus vannamei. Mol Immunol 2022; 149:1-12. [PMID: 35696848 DOI: 10.1016/j.molimm.2022.05.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
High concentration of ammonia-N will inhibit the immune defense of aquatic animals. The neuroendocrine-immune (NEI) regulatory mechanism under ammonia-N stress has been systematically studied, but the final response mechanism of ammonia-N affecting the immune system remains unclear. To investigate the relationship among immune factors of Litopenaeus vannamei (L. vannamei) exposed to 0, 2, 10 and 20 mg/L ammonia-N, the determination of complement components, C-type lectins, proPO system, signal transduction pathway and phagocytosis as well as exocytosis were performed. The results showed that the expressions of complement components including C1q, MBL, ficolin and alpha-2 macroglobulin (A2M) and the complement receptor integrin were decreased significantly in ammonia-N treatment groups at 6,12 and 24 h. C-type lectins and signal transduction factors changed significantly. The decrease of phagocytosis-related genes and phagocytic activity were similar to the changes of complement components, C-type lectins and the signal pathway. The mRNA abundance of exocytosis-related genes was significantly down-regulated under ammonia-N exposure. Correspondingly, significantly changes occurred in the expressions of PPAE and PPO3, immune factors-related genes (Pen3, crustin, stylicins, ALFs and LYC) and inflammatory factors (HSP90, TNFα, IL-16) in haemocytes. Eventually, the serine proteinase activity, PO activity, antibacterial activity and bacteriolytic activity in plasma were decreased significantly. In addition, we speculated that under ammonia-N stress, phagocytosis and exocytosis were affected by complement components, and C-type lectins through intracellular signal transduction pathway. Complement components may involve in the regulation of proPO-activating system to response to ammonia-N stress. This study helped to further understanding the relationship among immune factors of crustacean in response to environmental stress, which implied that when it comes to the decrease of immunity affected by environmental stress, we should not only focus on the mechanism of upstream neuroendocrine response, but also pay attention to the role of immune factors.
Collapse
Affiliation(s)
- Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yuanjing Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
16
|
Mazzolini J, Le Clerc S, Morisse G, Coulonges C, Zagury J, Sieger D. Wasl is crucial to maintain microglial core activities during glioblastoma initiation stages. Glia 2022; 70:1027-1051. [PMID: 35194846 PMCID: PMC9306864 DOI: 10.1002/glia.24154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
Microglia actively promotes the growth of high-grade gliomas. Within the glioma microenvironment an amoeboid microglial morphology has been observed, however the underlying causes and the related impact on microglia functions and their tumor promoting activities is unclear. Using the advantages of the larval zebrafish model, we identified the underlying mechanism and show that microglial morphology and functions are already impaired during glioma initiation stages. The presence of pre-neoplastic HRasV12 expressing cells induces an amoeboid morphology of microglia, increases microglial numbers and decreases their motility and phagocytic activity. RNA sequencing analysis revealed lower expression levels of the actin nucleation promoting factor wasla in microglia. Importantly, a microglia specific rescue of wasla expression restores microglial morphology and functions. This results in increased phagocytosis of pre-neoplastic cells and slows down tumor progression. In conclusion, we identified a mechanism that de-activates core microglial functions within the emerging glioma microenvironment. Restoration of this mechanism might provide a way to impair glioma growth.
Collapse
Affiliation(s)
- Julie Mazzolini
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Sigrid Le Clerc
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Gregoire Morisse
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Cédric Coulonges
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Jean‐François Zagury
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Dirk Sieger
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
17
|
Delgado MG, Rivera CA, Lennon-Duménil AM. Macropinocytosis and Cell Migration: Don't Drink and Drive…. Subcell Biochem 2022; 98:85-102. [PMID: 35378704 DOI: 10.1007/978-3-030-94004-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macropinocytosis is a nonspecific mechanism by which cells compulsively "drink" the surrounding extracellular fluids in order to feed themselves or sample the molecules therein, hence gaining information about their environment. This process is cell-intrinsically incompatible with the migration of many cells, implying that the two functions are antagonistic. The migrating cell uses a molecular switch to stop and explore its surrounding fluid by macropinocytosis, after which it employs the same molecular machinery to start migrating again to examine another location. This cycle of migration/macropinocytosis allows cells to explore tissues, and it is key to a range of physiological processes. Evidence of this evolutionarily conserved antagonism between the two processes can be found in several cell types-immune cells, for example, being particularly adept-and ancient organisms (e.g., the social amoeba Dictyostelium discoideum). How macropinocytosis and migration are negatively coupled is the subject of this chapter.
Collapse
|
18
|
Zak A, Dupré-Crochet S, Hudik E, Babataheri A, Barakat AI, Nüsse O, Husson J. Distinct timing of neutrophil spreading and stiffening during phagocytosis. Biophys J 2022; 121:1381-1394. [PMID: 35318004 PMCID: PMC9072703 DOI: 10.1016/j.bpj.2022.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Phagocytic cells form the first line of defense in an organism, engulfing microbial pathogens. Phagocytosis involves cell mechanical changes that are not yet well understood. Understanding these mechanical modifications promises to shed light on the immune processes that trigger pathological complications. Previous studies showed that phagocytes undergo a sequence of spreading events around their target followed by an increase in cell tension. Seemingly in contradiction, other studies observed an increase in cell tension concomitant with membrane expansion. Even though phagocytes are viscoelastic, few studies have quantified viscous changes during phagocytosis. It is also unclear whether cell lines behave mechanically similarly to primary neutrophils. We addressed the question of simultaneous versus sequential spreading and mechanical changes during phagocytosis by using immunoglobulin-G-coated 8- and 20-μm-diameter beads as targets. We used a micropipette-based single-cell rheometer to monitor viscoelastic properties during phagocytosis by both neutrophil-like PLB cells and primary human neutrophils. We show that the faster expansion of PLB cells on larger beads is a geometrical effect reflecting a constant advancing speed of the phagocytic cup. Cells become stiffer on 20- than on 8-μm beads, and the relative timing of spreading and stiffening of PLB cells depends on target size: on larger beads, stiffening starts before maximal spreading area is reached but ends after reaching maximal area. On smaller beads, the stiffness begins to increase after cells have engulfed the bead. Similar to PLB cells, primary cells become stiffer on larger beads but start spreading and stiffen faster, and the stiffening begins before the end of spreading on both bead sizes. Our results show that mechanical changes in phagocytes are not a direct consequence of cell spreading and that models of phagocytosis should be amended to account for causes of cell stiffening other than membrane expansion.
Collapse
Affiliation(s)
- Alexandra Zak
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Elodie Hudik
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Avin Babataheri
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Oliver Nüsse
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Julien Husson
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
19
|
Trzeciak A, Wang YT, Perry JSA. First we eat, then we do everything else: The dynamic metabolic regulation of efferocytosis. Cell Metab 2021; 33:2126-2141. [PMID: 34433074 PMCID: PMC8568659 DOI: 10.1016/j.cmet.2021.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Clearance of apoptotic cells, or "efferocytosis," is essential for diverse processes including embryonic development, tissue turnover, organ regeneration, and immune cell development. The human body is estimated to remove approximately 1% of its body mass via apoptotic cell clearance daily. This poses several intriguing cell metabolism problems. For instance, phagocytes such as macrophages must induce or suppress metabolic pathways to find, engulf, and digest apoptotic cells. Then, phagocytes must manage the potentially burdensome biomass of the engulfed apoptotic cell. Finally, phagocytes reside in complex tissue architectures that vary in nutrient availability, the types of dying cells or debris that require clearance, and the neighboring cells they interact with. Here, we review advances in our understanding of these three key areas of phagocyte metabolism. We end by proposing a model of efferocytosis that integrates recent findings and establishes a new paradigm for testing how efferocytosis prevents chronic inflammatory disease and autoimmunity.
Collapse
Affiliation(s)
- Alissa Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ya-Ting Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Justin Shaun Arnold Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 417 E 68th Street, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 417 E 68th Street, New York, NY 10065, USA.
| |
Collapse
|
20
|
NOP53 Suppresses Autophagy through ZKSCAN3-Dependent and -Independent Pathways. Int J Mol Sci 2021; 22:ijms22179318. [PMID: 34502226 PMCID: PMC8430719 DOI: 10.3390/ijms22179318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagy is an evolutionally conserved process that recycles aged or damaged intracellular components through a lysosome-dependent pathway. Although this multistep process is propagated in the cytoplasm by the orchestrated activity of the mTOR complex, phosphatidylinositol 3-kinase, and a set of autophagy-related proteins (ATGs), recent investigations have suggested that autophagy is tightly regulated by nuclear events. Thus, it is conceivable that the nucleolus, as a stress-sensing and -responding intranuclear organelle, plays a role in autophagy regulation, but much is unknown concerning the nucleolar controls in autophagy. In this report, we show a novel nucleolar–cytoplasmic axis that regulates the cytoplasmic autophagy process: nucleolar protein NOP53 regulates the autophagic flux through two divergent pathways, the ZKSCAN3-dependent and -independent pathways. In the ZKSCAN3-dependent pathway, NOP53 transcriptionally activates a master autophagy suppressor ZKSCAN3, thereby inhibiting MAP1LC3B/LC3B induction and autophagy propagation. In the ZKSCAN3-independent pathway, NOP53 physically interacts with histone H3 to dephosphorylate S10 of H3, which, in turn, transcriptionally downregulates the ATG7 and ATG12 expressions. Our results identify nucleolar protein NOP53 as an upstream regulator of the autophagy process.
Collapse
|
21
|
Berghoff K, Gross W, Eisentraut M, Kress H. Using blinking optical tweezers to study cell rheology during initial cell-particle contact. Biophys J 2021; 120:3527-3537. [PMID: 34181902 PMCID: PMC8391049 DOI: 10.1016/j.bpj.2021.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Phagocytosis is an important part of innate immunity and describes the engulfment of bacteria and other extracellular objects on the micrometer scale. The protrusion of the cell membrane around the bacteria during this process is driven by a reorganization of the actin cortex. The process has been studied on the molecular level to great extent during the past decades. However, a deep, fundamental understanding of the mechanics of the process is still lacking, in particular because of a lack of techniques that give access to binding dynamics below the optical resolution limit and cellular viscoelasticity at the same time. In this work, we propose a technique to characterize the mechanical properties of cells in a highly localized manner and apply it to investigate the early stages of phagocytosis. The technique can simultaneously resolve the contact region between a cell and an external object (in our application, a phagocytic target) even below the optical resolution limit. We used immunoglobulin-G-coated microparticles with a size of 2 μm as a model system and attached the particles to the macrophages with holographic optical tweezers. By switching the trap on and off, we were able to measure the rheological properties of the cells in a time-resolved manner during the first few minutes after attachment. The measured viscoelastic cellular response is consistent with power law rheology. The contact radius between particle and cell increased on a timescale of ∼30 s and converged after a few minutes. Although the binding dynamics are not affected by cytochalasin D, we observed an increase of the cellular compliance and a significant fluidization of the cortex after addition of cytochalasin D treatment. Furthermore, we report upper boundaries for the length- and timescale, at which cortical actin has been hypothesized to depolymerize during early phagocytosis.
Collapse
Affiliation(s)
- Konrad Berghoff
- Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - Wolfgang Gross
- Department of Physics, University of Bayreuth, Bayreuth, Germany
| | | | - Holger Kress
- Department of Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
22
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
23
|
Kühn S, Bergqvist J, Gil M, Valenzuela C, Barrio L, Lebreton S, Zurzolo C, Enninga J. Actin Assembly around the Shigella-Containing Vacuole Promotes Successful Infection. Cell Rep 2021; 31:107638. [PMID: 32402280 PMCID: PMC7225751 DOI: 10.1016/j.celrep.2020.107638] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
The enteroinvasive bacterium Shigella flexneri forces its uptake into non-phagocytic host cells through the translocation of T3SS effectors that subvert the actin cytoskeleton. Here, we report de novo actin polymerization after cellular entry around the bacterium-containing vacuole (BCV) leading to the formation of a dynamic actin cocoon. This cocoon is thicker than any described cellular actin structure and functions as a gatekeeper for the cytosolic access of the pathogen. Host CDC42, TOCA-1, N-WASP, WIP, the Arp2/3 complex, cortactin, coronin, and cofilin are recruited to the actin cocoon. They are subverted by T3SS effectors, such as IpgD, IpgB1, and IcsB. IcsB immobilizes components of the actin polymerization machinery at the BCV dependent on its fatty acyltransferase activity. This represents a unique microbial subversion strategy through localized entrapment of host actin regulators causing massive actin assembly. We propose that the cocoon promotes subsequent invasion steps for successful Shigella infection. A thick actin cocoon forms de novo around the Shigella-containing vacuole upon entry The effector IcsB entraps host actin regulators at the vacuole by lipidation Cdc42, N-WASP, and the Arp2/3 complex are major actin cocoon regulators Cocoon formation promotes subsequent Shigella niche formation and dissemination
Collapse
Affiliation(s)
- Sonja Kühn
- Institut Pasteur, Department of Cell Biology and Infection, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, 75015 Paris, France; CNRS UMR3691, 25 Rue du Dr. Roux, 75015 Paris, France
| | - John Bergqvist
- Institut Pasteur, Department of Cell Biology and Infection, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, 75015 Paris, France; CNRS UMR3691, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Magdalena Gil
- Institut Pasteur, Department of Cell Biology and Infection, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, 75015 Paris, France; CNRS UMR3691, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Department of Cell Biology and Infection, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, 75015 Paris, France; CNRS UMR3691, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Laura Barrio
- Institut Pasteur, Department of Cell Biology and Infection, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, 75015 Paris, France; CNRS UMR3691, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Stéphanie Lebreton
- Institut Pasteur, Department of Cell Biology and Infection, Membrane Trafficking and Pathogenesis Unit, 28 Rue du Dr. Roux, 75015 Paris, France
| | - Chiara Zurzolo
- Institut Pasteur, Department of Cell Biology and Infection, Membrane Trafficking and Pathogenesis Unit, 28 Rue du Dr. Roux, 75015 Paris, France
| | - Jost Enninga
- Institut Pasteur, Department of Cell Biology and Infection, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, 75015 Paris, France; CNRS UMR3691, 25 Rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
24
|
Fu YL, Harrison RE. Microbial Phagocytic Receptors and Their Potential Involvement in Cytokine Induction in Macrophages. Front Immunol 2021; 12:662063. [PMID: 33995386 PMCID: PMC8117099 DOI: 10.3389/fimmu.2021.662063] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Phagocytosis is an essential process for the uptake of large (>0.5 µm) particulate matter including microbes and dying cells. Specialized cells in the body perform phagocytosis which is enabled by cell surface receptors that recognize and bind target cells. Professional phagocytes play a prominent role in innate immunity and include macrophages, neutrophils and dendritic cells. These cells display a repertoire of phagocytic receptors that engage the target cells directly, or indirectly via opsonins, to mediate binding and internalization of the target into a phagosome. Phagosome maturation then proceeds to cause destruction and recycling of the phagosome contents. Key subsequent events include antigen presentation and cytokine production to alert and recruit cells involved in the adaptive immune response. Bridging the innate and adaptive immunity, macrophages secrete a broad selection of inflammatory mediators to orchestrate the type and magnitude of an inflammatory response. This review will focus on cytokines produced by NF-κB signaling which is activated by extracellular ligands and serves a master regulator of the inflammatory response to microbes. Macrophages secrete pro-inflammatory cytokines including TNFα, IL1β, IL6, IL8 and IL12 which together increases vascular permeability and promotes recruitment of other immune cells. The major anti-inflammatory cytokines produced by macrophages include IL10 and TGFβ which act to suppress inflammatory gene expression in macrophages and other immune cells. Typically, macrophage cytokines are synthesized, trafficked intracellularly and released in response to activation of pattern recognition receptors (PRRs) or inflammasomes. Direct evidence linking the event of phagocytosis to cytokine production in macrophages is lacking. This review will focus on cytokine output after engagement of macrophage phagocytic receptors by particulate microbial targets. Microbial receptors include the PRRs: Toll-like receptors (TLRs), scavenger receptors (SRs), C-type lectin and the opsonic receptors. Our current understanding of how macrophage receptor stimulation impacts cytokine production is largely based on work utilizing soluble ligands that are destined for endocytosis. We will instead focus this review on research examining receptor ligation during uptake of particulate microbes and how this complex internalization process may influence inflammatory cytokine production in macrophages.
Collapse
Affiliation(s)
- Yan Lin Fu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
25
|
Morgan AJ, Davis LC, Galione A. Choreographing endo-lysosomal Ca 2+ throughout the life of a phagosome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119040. [PMID: 33872669 DOI: 10.1016/j.bbamcr.2021.119040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
The emergence of endo-lysosomes as ubiquitous Ca2+ stores with their unique cohort of channels has resulted in their being implicated in a growing number of processes in an ever-increasing number of cell types. The architectural and regulatory constraints of these acidic Ca2+ stores distinguishes them from other larger Ca2+ sources such as the ER and influx across the plasma membrane. In view of recent advances in the understanding of the modes of operation, we discuss phagocytosis as a template for how endo-lysosomal Ca2+ signals (generated via TPC and TRPML channels) can be integrated in multiple sophisticated ways into biological processes. Phagocytosis illustrates how different endo-lysosomal Ca2+ signals drive different phases of a process, and how these can be altered by disease or infection.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK.
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK.
| |
Collapse
|
26
|
Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. NATURE NANOTECHNOLOGY 2021; 16:266-276. [PMID: 33712737 DOI: 10.1038/s41565-021-00858-8] [Citation(s) in RCA: 620] [Impact Index Per Article: 155.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/19/2021] [Indexed: 05/20/2023]
Abstract
Endocytosis is a critical step in the process by which many therapeutic nanomedicines reach their intracellular targets. Our understanding of cellular uptake mechanisms has developed substantially in the past five years. However, these advances in cell biology have not fully translated to the nanoscience and therapeutics literature. Misconceptions surrounding the role of different endocytic pathways and how to study these pathways are hindering progress in developing improved nanoparticle therapies. Here, we summarize the latest insights into cellular uptake mechanisms and pathways. We highlight limitations of current systems to study endocytosis, particularly problems with non-specific inhibitors. We also summarize alternative genetic approaches to robustly probe these pathways and discuss the need to understand how cells endocytose particles in vivo. We hope that this critical assessment of the current methods used in studying nanoparticle uptake will guide future studies at the interface of cell biology and nanomedicine.
Collapse
Affiliation(s)
- Joshua J Rennick
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland, Australia.
| | - Robert G Parton
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
27
|
Perez MA, Watts JL. Worms, Fat, and Death: Caenorhabditis elegans Lipid Metabolites Regulate Cell Death. Metabolites 2021; 11:metabo11020125. [PMID: 33672292 PMCID: PMC7926963 DOI: 10.3390/metabo11020125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is well-known as the model organism used to elucidate the genetic pathways underlying the first described form of regulated cell death, apoptosis. Since then, C. elegans investigations have contributed to the further understanding of lipids in apoptosis, especially the roles of phosphatidylserines and phosphatidylinositols. More recently, studies in C. elegans have shown that dietary polyunsaturated fatty acids can induce the non-apoptotic, iron-dependent form of cell death, ferroptosis. In this review, we examine the roles of various lipids in specific aspects of regulated cell death, emphasizing recent work in C. elegans.
Collapse
|
28
|
Arroyo Portilla C, Tomas J, Gorvel JP, Lelouard H. From Species to Regional and Local Specialization of Intestinal Macrophages. Front Cell Dev Biol 2021; 8:624213. [PMID: 33681185 PMCID: PMC7930007 DOI: 10.3389/fcell.2020.624213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Initially intended for nutrient uptake, phagocytosis represents a central mechanism of debris removal and host defense against invading pathogens through the entire animal kingdom. In vertebrates and also many invertebrates, macrophages (MFs) and MF-like cells (e.g., coelomocytes and hemocytes) are professional phagocytic cells that seed tissues to maintain homeostasis through pathogen killing, efferocytosis and tissue shaping, repair, and remodeling. Some MF functions are common to all species and tissues, whereas others are specific to their homing tissue. Indeed, shaped by their microenvironment, MFs become adapted to perform particular functions, highlighting their great plasticity and giving rise to high population diversity. Interestingly, the gut displays several anatomic and functional compartments with large pools of strikingly diversified MF populations. This review focuses on recent advances on intestinal MFs in several species, which have allowed to infer their specificity and functions.
Collapse
Affiliation(s)
- Cynthia Arroyo Portilla
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Departamento de Análisis Clínicos, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Julie Tomas
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | |
Collapse
|
29
|
Westman J, Grinstein S. Determinants of Phagosomal pH During Host-Pathogen Interactions. Front Cell Dev Biol 2021. [PMID: 33505976 DOI: 10.3389/fcell.2020.624958/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ability of phagosomes to halt microbial growth is intimately linked to their ability to acidify their luminal pH. Establishment and maintenance of an acidic lumen requires precise co-ordination of H+ pumping and counter-ion permeation to offset the countervailing H+ leakage. Despite the best efforts of professional phagocytes, however, a number of specialized pathogens survive and even replicate inside phagosomes. In such instances, pathogens target the pH-regulatory machinery of the host cell in an effort to survive inside or escape from phagosomes. This review aims to describe how phagosomal pH is regulated during phagocytosis, why it varies in different types of professional phagocytes and the strategies developed by prototypical intracellular pathogens to manipulate phagosomal pH to survive, replicate, and eventually escape from the phagocyte.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Westman J, Grinstein S. Determinants of Phagosomal pH During Host-Pathogen Interactions. Front Cell Dev Biol 2021; 8:624958. [PMID: 33505976 PMCID: PMC7829662 DOI: 10.3389/fcell.2020.624958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
The ability of phagosomes to halt microbial growth is intimately linked to their ability to acidify their luminal pH. Establishment and maintenance of an acidic lumen requires precise co-ordination of H+ pumping and counter-ion permeation to offset the countervailing H+ leakage. Despite the best efforts of professional phagocytes, however, a number of specialized pathogens survive and even replicate inside phagosomes. In such instances, pathogens target the pH-regulatory machinery of the host cell in an effort to survive inside or escape from phagosomes. This review aims to describe how phagosomal pH is regulated during phagocytosis, why it varies in different types of professional phagocytes and the strategies developed by prototypical intracellular pathogens to manipulate phagosomal pH to survive, replicate, and eventually escape from the phagocyte.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Massana R, Labarre A, López-Escardó D, Obiol A, Bucchini F, Hackl T, Fischer MG, Vandepoele K, Tikhonenkov DV, Husnik F, Keeling PJ. Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate. THE ISME JOURNAL 2021; 15:154-167. [PMID: 32920602 PMCID: PMC7852580 DOI: 10.1038/s41396-020-00770-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022]
Abstract
Phagocytosis is a fundamental process in marine ecosystems by which prey organisms are consumed and their biomass incorporated in food webs or remineralized. However, studies searching for the genes underlying this key ecological process in free-living phagocytizing protists are still scarce, in part due to the lack of appropriate ecological models. Our reanalysis of recent molecular datasets revealed that the cultured heterotrophic flagellate Cafeteria burkhardae is widespread in the global oceans, which prompted us to design a transcriptomics study with this species, grown with the cultured flavobacterium Dokdonia sp. We compared the gene expression between exponential and stationary phases, which were complemented with three starvation by dilution phases that appeared as intermediate states. We found distinct expression profiles in each condition and identified 2056 differentially expressed genes between exponential and stationary samples. Upregulated genes at the exponential phase were related to DNA duplication, transcription and translational machinery, protein remodeling, respiration and phagocytosis, whereas upregulated genes in the stationary phase were involved in signal transduction, cell adhesion, and lipid metabolism. We identified a few highly expressed phagocytosis genes, like peptidases and proton pumps, which could be used to target this ecologically relevant process in marine ecosystems.
Collapse
Affiliation(s)
- Ramon Massana
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, ES-08003, Barcelona, Catalonia, Spain.
| | - Aurelie Labarre
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, ES-08003, Barcelona, Catalonia, Spain
| | - David López-Escardó
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, ES-08003, Barcelona, Catalonia, Spain
| | - Aleix Obiol
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, ES-08003, Barcelona, Catalonia, Spain
| | - François Bucchini
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Thomas Hackl
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | | | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia
| | - Filip Husnik
- University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | |
Collapse
|
32
|
Tabata H, Morita H, Kaji H, Tohyama K, Tohyama Y. Syk facilitates phagosome-lysosome fusion by regulating actin-remodeling in complement-mediated phagocytosis. Sci Rep 2020; 10:22086. [PMID: 33328565 PMCID: PMC7744523 DOI: 10.1038/s41598-020-79156-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022] Open
Abstract
Effective phagocytosis is crucial for host defense against pathogens. Macrophages entrap pathogens into a phagosome and subsequently acidic lysosomes fuse to the phagosome. Previous studies showed the pivotal role of actin-remodeling mediated by phosphoinositide-related signaling in phagosome formation, but the mechanisms of phagosome-lysosome fusion remain unexplored. Here we show that in complement-mediated phagocytosis, phagosome-lysosome fusion requires the disappearance of F-actin structure surrounding the phagosome and a tyrosine kinase Syk plays a key role in this process. Using macrophage-like differentiated HL60 and Syk-knockout (Syk-KO) HL60 cells, we found that Syk-KO cells showed insufficient phagosome acidification caused by impaired fusion with lysosomes and permitted the survival of Candida albicans in complement-mediated phagocytosis. Phagosome tracking analysis showed that during phagosome internalization process, F-actin surrounding phagosomes disappeared in both parental and Syk-KO cells but this structure was reconstructed immediately only in Syk-KO cells. In addition, F-actin-stabilizing agent induced a similar impairment of phagosome-lysosome fusion. Collectively, Syk-derived signaling facilitates phagosome-lysosome fusion by regulating actin-remodeling.
Collapse
Affiliation(s)
- Hiroyuki Tabata
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kami-ohno, Himeji, Hyogo, 670-8524, Japan
| | - Hiroyuki Morita
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kami-ohno, Himeji, Hyogo, 670-8524, Japan
| | - Hiroaki Kaji
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kami-ohno, Himeji, Hyogo, 670-8524, Japan
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yumi Tohyama
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kami-ohno, Himeji, Hyogo, 670-8524, Japan.
| |
Collapse
|
33
|
Levin-Konigsberg R, Mantegazza AR. A guide to measuring phagosomal dynamics. FEBS J 2020; 288:1412-1433. [PMID: 32757358 PMCID: PMC7984381 DOI: 10.1111/febs.15506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Phagocytosis is an essential mechanism for immunity and homeostasis, performed by a subset of cells known as phagocytes. Upon target engulfment, de novo formation of specialized compartments termed phagosomes takes place. Phagosomes then undergo a series of fusion and fission events as they interact with the endolysosomal system and other organelles, in a dynamic process known as phagosome maturation. Because phagocytes play a key role in tissue patrolling and immune surveillance, phagosome maturation is associated with signaling pathways that link phagocytosis to antigen presentation and the development of adaptive immune responses. In addition, and depending on the nature of the cargo, phagosome integrity may be compromised, triggering additional cellular mechanisms including inflammation and autophagy. Upon completion of maturation, phagosomes enter a recently described phase: phagosome resolution, where catabolites from degraded cargo are metabolized, phagosomes are resorbed, and vesicles of phagosomal origin are recycled. Finally, phagocytes return to homeostasis and become ready for a new round of phagocytosis. Altogether, phagosome maturation and resolution encompass a series of dynamic events and organelle crosstalk that can be measured by biochemical, imaging, photoluminescence, cytometric, and immune‐based assays that will be described in this guide.
Collapse
Affiliation(s)
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Torres-Gomez A, Cabañas C, Lafuente EM. Phagocytic Integrins: Activation and Signaling. Front Immunol 2020; 11:738. [PMID: 32425937 PMCID: PMC7203660 DOI: 10.3389/fimmu.2020.00738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Phagocytic integrins are endowed with the ability to engulf and dispose of particles of different natures. Evolutionarily conserved from worms to humans, they are involved in pathogen elimination and apoptotic and tumoral cell clearance. Research in the field of integrin-mediated phagocytosis has shed light on the molecular events controlling integrin activation and their effector functions. However, there are still some aspects of the regulation of the phagocytic process that need to be clarified. Here, we have revised the molecular events controlling phagocytic integrin activation and the downstream signaling driving particle engulfment, and we have focused particularly on αMβ2/CR3, αXβ2/CR4, and a brief mention of αVβ5/αVβ3integrins.
Collapse
Affiliation(s)
- Alvaro Torres-Gomez
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Carlos Cabañas
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Severo Ochoa Center for Molecular Biology (CSIC-UAM), Madrid, Spain
| | - Esther M Lafuente
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
35
|
Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 108:377-396. [DOI: 10.1002/jlb.4mir0220-574rr] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
36
|
Lê-Bury G, Deschamps C, Kizilyaprak C, Blanchard W, Daraspe J, Dumas A, Gordon MA, Hinton JCD, Humbel BM, Niedergang F. Increased intracellular survival of Salmonella Typhimurium ST313 in HIV-1-infected primary human macrophages is not associated with Salmonella hijacking the HIV compartment. Biol Cell 2020; 112:92-101. [PMID: 31922615 DOI: 10.1111/boc.201900055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) causes a severe invasive syndrome (iNTS disease) described in HIV-positive adults. The impact of HIV-1 on Salmonella pathogenesis and the molecular basis for the differences between these bacteria and classical diarrhoeal S. Typhimurium remains unclear. RESULTS Here, we show that iNTS-associated S. Typhimurium Sequence Type 313 (ST313) bacteria show greater intracellular survival in primary human macrophages, compared with a 'classical' diarrhoeal S. Typhimurium ST19 isolate. The increased intracellular survival phenotype of ST313 is more pronounced in HIV-infected macrophages. We explored the possibility that the bacteria take advantage of the HIV-associated viral-containing compartments created in human macrophages that have low pH. Confocal fluorescence microscopy and focussed ion beam-scanning electron microscopy tomography showed that Salmonella did not co-localise extensively with HIV-positive compartments. CONCLUSION The capacity of ST313 bacteria to survive better than ST19 bacteria within primary human macrophages is enhanced in cells pre-infected with HIV-1. Our results indicate that the ST313 bacteria do not directly benefit from the niche created by the virus in HIV-1-infected macrophages, and that they might take advantage from a more globally modified host cell. SIGNIFICANCE A better understanding of the interplay between HIV-1 and Salmonella is important not only for these bacteria but also for other opportunistic pathogens.
Collapse
Affiliation(s)
- G Lê-Bury
- Institut Cochin, Université de Paris, INSERM, U1016, CNRS, UMR 8104, Paris, F-75014, France
| | - C Deschamps
- Institut Cochin, Université de Paris, INSERM, U1016, CNRS, UMR 8104, Paris, F-75014, France
| | - C Kizilyaprak
- Faculté de Biologie et de Médecine, Electron Microscopy Facility, Université de Lausanne, Lausanne, Switzerland
| | - W Blanchard
- Faculté de Biologie et de Médecine, Electron Microscopy Facility, Université de Lausanne, Lausanne, Switzerland
| | - J Daraspe
- Faculté de Biologie et de Médecine, Electron Microscopy Facility, Université de Lausanne, Lausanne, Switzerland
| | - A Dumas
- Institut Cochin, Université de Paris, INSERM, U1016, CNRS, UMR 8104, Paris, F-75014, France
| | - M A Gordon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Malawi-Liverpool-Welcome Trust B=Clinical Research Programme, Malawi
| | - J C D Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - B M Humbel
- Faculté de Biologie et de Médecine, Electron Microscopy Facility, Université de Lausanne, Lausanne, Switzerland.,IMG, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - F Niedergang
- Institut Cochin, Université de Paris, INSERM, U1016, CNRS, UMR 8104, Paris, F-75014, France
| |
Collapse
|
37
|
Jubrail J, Africano‐Gomez K, Herit F, Mularski A, Bourdoncle P, Oberg L, Israelsson E, Burgel P, Mayer G, Cunoosamy DM, Kurian N, Niedergang F. Arpin is critical for phagocytosis in macrophages and is targeted by human rhinovirus. EMBO Rep 2020; 21:e47963. [PMID: 31721415 PMCID: PMC6945061 DOI: 10.15252/embr.201947963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/09/2019] [Accepted: 10/19/2019] [Indexed: 11/09/2022] Open
Abstract
Human rhinovirus is a causative agent of severe exacerbations of chronic obstructive pulmonary disease (COPD). COPD is characterised by an increased number of alveolar macrophages with diminished phagocytic functions, but how rhinovirus infection affects macrophage function is still unknown. Here, we describe that human rhinovirus 16 impairs bacterial uptake and receptor-mediated phagocytosis in macrophages. The stalled phagocytic cups contain accumulated F-actin. Interestingly, we find that human rhinovirus 16 downregulates the expression of Arpin, a negative regulator of the Arp2/3 complex. Importantly, re-expression of the protein rescues defective internalisation in human rhinovirus 16-treated cells, demonstrating that Arpin is a key factor targeted to impair phagocytosis. We further show that Arpin is required for efficient uptake of multiple targets, for F-actin cup formation and for successful phagosome completion in macrophages. Interestingly, Arpin is recruited to sites of membrane extension and phagosome closure. Thus, we identify Arpin as a central actin regulator during phagocytosis that it is targeted by human rhinovirus 16, allowing the virus to perturb bacterial internalisation and phagocytosis in macrophages.
Collapse
Affiliation(s)
- Jamil Jubrail
- Université de ParisInstitut CochinINSERM, U1016, CNRSUMR 8104ParisFrance
| | | | - Floriane Herit
- Université de ParisInstitut CochinINSERM, U1016, CNRSUMR 8104ParisFrance
| | - Anna Mularski
- Université de ParisInstitut CochinINSERM, U1016, CNRSUMR 8104ParisFrance
| | - Pierre Bourdoncle
- Université de ParisInstitut CochinINSERM, U1016, CNRSUMR 8104ParisFrance
| | - Lisa Oberg
- Translational Science and Experimental MedicineResearch and Early DevelopmentRespiratory Inflammation and AutoimmunityBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Elisabeth Israelsson
- Translational Science and Experimental MedicineResearch and Early DevelopmentRespiratory Inflammation and AutoimmunityBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Pierre‐Regis Burgel
- Université de ParisInstitut CochinINSERM, U1016, CNRSUMR 8104ParisFrance
- Department of PneumologyHospital Cochin, AP‐HPParisFrance
| | - Gaell Mayer
- Late‐stage developmentRespiratory, Inflammation and Autoimmunity (RIA)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Danen M Cunoosamy
- Translational Science and Experimental MedicineResearch and Early DevelopmentRespiratory Inflammation and AutoimmunityBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Nisha Kurian
- Respiratory Inflammation and Autoimmune Precision Medicine UnitPrecision Medicine, Oncology R&DAstraZenecaGothenburgSweden
| | | |
Collapse
|
38
|
Abstract
Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
Collapse
|
39
|
The NADPH Oxidase and the Phagosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:153-177. [DOI: 10.1007/978-3-030-40406-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Inpanathan S, Botelho RJ. The Lysosome Signaling Platform: Adapting With the Times. Front Cell Dev Biol 2019; 7:113. [PMID: 31281815 PMCID: PMC6595708 DOI: 10.3389/fcell.2019.00113] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are the terminal degradative compartment of autophagy, endocytosis and phagocytosis. What once was viewed as a simple acidic organelle in charge of macromolecular digestion has emerged as a dynamic organelle capable of integrating cellular signals and producing signal outputs. In this review, we focus on the concept that the lysosome surface serves as a platform to assemble major signaling hubs like mTORC1, AMPK, GSK3 and the inflammasome. These molecular assemblies integrate and facilitate cross-talk between signals such as amino acid and energy levels, membrane damage and infection, and ultimately enable responses such as autophagy, cell growth, membrane repair and microbe clearance. In particular, we review how molecular machinery like the vacuolar-ATPase proton pump, sestrins, the GATOR complexes, and the Ragulator, modulate mTORC1, AMPK, GSK3 and inflammation. We then elaborate how these signals control autophagy initiation and resolution, TFEB-mediated lysosome adaptation, lysosome remodeling, antigen presentation, inflammation, membrane damage repair and clearance. Overall, by being at the cross-roads for several membrane pathways, lysosomes have emerged as the ideal surveillance compartment to sense, integrate and elicit cellular behavior and adaptation in response to changing environmental and cellular conditions.
Collapse
Affiliation(s)
- Subothan Inpanathan
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
41
|
Tremblay ME, Cookson MR, Civiero L. Glial phagocytic clearance in Parkinson's disease. Mol Neurodegener 2019; 14:16. [PMID: 30953527 PMCID: PMC6451240 DOI: 10.1186/s13024-019-0314-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
An emerging picture suggests that glial cells' loss of beneficial roles or gain of toxic functions can contribute to neurodegenerative conditions. Among glial cells, microglia and astrocytes have been shown to play phagocytic roles by engulfing synapses, apoptotic cells, cell debris, and released toxic proteins. As pathogenic protein accumulation is a key feature in Parkinson's disease (PD), compromised phagocytic clearance might participate in PD pathogenesis. In contrast, enhanced, uncontrolled and potentially toxic glial clearance capacity could contribute to synaptic degeneration. Here, we summarize the current knowledge of the molecular mechanisms underlying microglial and astrocytic phagocytosis, focusing on the possible implication of phagocytic dysfunction in neuronal degeneration. Several endo-lysosomal proteins displaying genetic variants in PD are highly expressed by microglia and astrocytes. We also present the evidence that lysosomal defects can affect phagocytic clearance and discuss the therapeutic relevance of restoring or enhancing lysosomal function in PD.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC Canada
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Laura Civiero
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
42
|
Westman J, Hube B, Fairn GD. Integrity under stress: Host membrane remodelling and damage by fungal pathogens. Cell Microbiol 2019; 21:e13016. [DOI: 10.1111/cmi.13016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Johannes Westman
- Program in Cell Biology The Hospital for Sick Children Toronto Ontario Canada
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms Hans Knoell Institute Jena Germany
- Institute of Microbiology Microbial Pathogenicity Friedrich Schiller University Jena Germany
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Sciences St. Michael's Hospital Toronto Ontario Canada
- Department of Surgery University of Toronto Toronto Ontario Canada
| |
Collapse
|
43
|
Budai Z, Ujlaky-Nagy L, Kis GN, Antal M, Bankó C, Bacsó Z, Szondy Z, Sarang Z. Macrophages engulf apoptotic and primary necrotic thymocytes through similar phosphatidylserine-dependent mechanisms. FEBS Open Bio 2019; 9:446-456. [PMID: 30868053 PMCID: PMC6396166 DOI: 10.1002/2211-5463.12584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/22/2018] [Accepted: 12/12/2018] [Indexed: 11/12/2022] Open
Abstract
One of the major roles of professional phagocytes is the removal of dead cells in the body. We know less about the clearance of necrotic cells than apoptotic cell phagocytosis, despite the fact that both types of dead cells need to be cleared together and necrotic cells appear often in pathological settings. In the present study, we examined phagocytosis of heat‐ or H2O2‐killed necrotic and apoptotic thymocytes by mouse bone marrow‐derived macrophages (BMDMs) in vitro and found that the two cell types are engulfed at equal efficiency and compete with each other when added together to BMDMs. Phagocytosis of both apoptotic and necrotic thymocytes was decreased by (a) blocking phosphatidylserine on the surface of dying cells; (b) inhibition of Mer tyrosine kinase, Tim‐4, integrin β3 receptor signaling, or Ras‐related C3 botulinum toxin substrate 1 activity; or (c) using BMDMs deficient for transglutaminase 2. Stimulation of liver X, retinoid X, retinoic acid or glucocorticoid nuclear receptors in BMDMs enhanced not only apoptotic, but also necrotic cell uptake. Electron microscopic analysis of the engulfment process revealed that the morphology of phagosomes and the phagocytic cup formed during the uptake of dying thymocytes is similar for apoptotic and necrotic cells. Our data indicate that apoptotic and necrotic cells are cleared via the same mechanisms, and removal of necrotic cells in vivo can be facilitated by molecules known to enhance the uptake of apoptotic cells.
Collapse
Affiliation(s)
- Zsófia Budai
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology Faculty of Medicine University of Debrecen Hungary
| | - Gréta Nikoletta Kis
- Department of Anatomy, Histology and Embryology Faculty of Medicine University of Debrecen Hungary
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology Faculty of Medicine University of Debrecen Hungary
| | - Csaba Bankó
- Department of Biophysics and Cell Biology Faculty of Medicine University of Debrecen Hungary
| | - Zsolt Bacsó
- Department of Biophysics and Cell Biology Faculty of Medicine and Faculty of Pharmacy University of Debrecen Hungary
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary.,Department of Basic Medical Sciences Faculty of Dentistry University of Debrecen Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| |
Collapse
|
44
|
Bonner M, Fresno M, Gironès N, Guillén N, Santi-Rocca J. Reassessing the Role of Entamoeba gingivalis in Periodontitis. Front Cell Infect Microbiol 2018; 8:379. [PMID: 30420943 PMCID: PMC6215854 DOI: 10.3389/fcimb.2018.00379] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The protozoan Entamoeba gingivalis resides in the oral cavity and is frequently observed in the periodontal pockets of humans and pets. This species of Entamoeba is closely related to the human pathogen Entamoeba histolytica, the agent of amoebiasis. Although E. gingivalis is highly enriched in people with periodontitis (a disease in which inflammation and bone loss correlate with changes in the microbial flora), the potential role of this protozoan in oral infectious diseases is not known. Periodontitis affects half the adult population in the world, eventually leads to edentulism, and has been linked to other pathologies, like diabetes and cardiovascular diseases. As aging is a risk factor for the disorder, it is considered an inevitable physiological process, even though it can be prevented and cured. However, the impact of periodontitis on the patient's health and quality of life, as well as its economic burden, are underestimated. Commonly accepted models explain the progression from health to gingivitis and then periodontitis by a gradual change in the identity and proportion of bacterial microorganisms in the gingival crevices. Though not pathognomonic, inflammation is always present in periodontitis. The recruitment of leukocytes to inflamed gums and their passage to the periodontal pocket lumen are speculated to fuel both tissue destruction and the development of the flora. The individual contribution to the disease of each bacterial species is difficult to establish and the eventual role of protozoa in the fate of this disease has been ignored. Following recent scientific findings, we discuss the relevance of these data and propose that the status of E. gingivalis be reconsidered as a potential pathogen contributing to periodontitis.
Collapse
Affiliation(s)
- Mark Bonner
- International Institute of Periodontology Victoriaville, QC, Canada
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Nancy Guillén
- Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| | | |
Collapse
|