1
|
Jia L, Gao S, Qiao Y. Optical Control over Liquid–Liquid Phase Separation. SMALL METHODS 2024; 8:e2301724. [PMID: 38530063 DOI: 10.1002/smtd.202301724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the emergence of intracellular membrane-less organelles and the development of coacervate protocells. Benefitting from the advantages of simplicity, precision, programmability, and noninvasiveness, light has become an effective tool to regulate the assembly dynamics of LLPS, and mediate various biochemical processes associated with LLPS. In this review, recent advances in optically controlling membrane-less organelles within living organisms are summarized, thereby modulating a series of biological processes including irreversible protein aggregation pathologies, transcription activation, metabolic flux, genomic rearrangements, and enzymatic reactions. Among these, the intracellular systems (i.e., optoDroplet, Corelet, PixELL, CasDrop, and other optogenetic systems) that enable the photo-mediated control over biomolecular condensation are highlighted. The design of photoactive complex coacervate protocells in laboratory settings by utilizing photochromic molecules such as azobenzene and diarylethene is further discussed. This review is expected to provide in-depth insights into phase separation-associated biochemical processes, bio-metabolism, and diseases.
Collapse
Affiliation(s)
- Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Gao
- Department of Orthopedic, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Wang L, Wang Y, Ke Z, Wang Z, Guo Y, Zhang Y, Zhang X, Guo Z, Wan B. Liquid-liquid phase separation: a new perspective on respiratory diseases. Front Immunol 2024; 15:1444253. [PMID: 39391315 PMCID: PMC11464301 DOI: 10.3389/fimmu.2024.1444253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) is integral to various biological processes, facilitating signal transduction by creating a condensed, membrane-less environment that plays crucial roles in diverse physiological and pathological processes. Recent evidence has underscored the significance of LLPS in human health and disease. However, its implications in respiratory diseases remain poorly understood. This review explores current insights into the mechanisms and biological roles of LLPS, focusing particularly on its relevance to respiratory diseases, aiming to deepen our understanding and propose a new paradigm for studying phase separation in this context.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Shanghai East Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yongjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhangmin Ke
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zexu Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yufang Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongliang Guo
- Shanghai East Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Qiu J, Lai C, Yuan Z, Hu J, Wu J, Liu C, Xu K. Utilizing Liquid-liquid phase separation-related lncRNAs to predict the prognosis and treatment response of PCa. Discov Oncol 2024; 15:352. [PMID: 39150479 PMCID: PMC11329450 DOI: 10.1007/s12672-024-01226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Studies have indicated a close association between genes linked to liquid-liquid phase separation (LLPS) and the progression of prostate cancer (PCa). However, the interplay among long non-coding RNAs (lncRNAs) linked to LLPS in PCa remains elusive. Therefore, we constructed a prediction model based on LLPS-related LncRNA in PCa to explore its relationship with the prognosis and drug treatment of PCa. METHODS We obtained clinical and sequencing data from TCGA and LLPS genes from the Phase Separation Protein Database. By analyzing the differential expression of LLPS-related genes and lncRNAs in prostate cancer, and using Poisson correlation, we identified LLPS-related lncRNAs. Prognostic LLPS-lncRNAs were found through prognostic correlation analysis and included in a Cox model to compute regression coefficients. Patients were scored and divided into high- and low-risk groups. Independent prognostic factors were integrated into a prognostic nomogram with risk and Gleason scores. We also conducted drug sensitivity analyses, GSEA, and validated the impact of key lncRNAs through functional experiments. RESULTS Our study identified five LLPS-associated lncRNAs that are of prognostic importance. And found notable disparities in biochemical recurrence rates and survival outcomes between these risk groups, with the low-risk cohort exhibiting superior prognostic indicators. Moreover, our prediction nomogram demonstrated robust predictive accuracy and significant clinical utility. Furthermore, our model exhibited promising capabilities in forecasting patient sensitivity to various conventional therapeutic drugs, thereby highlighting its potential in personalized treatment strategies. GSEA showed that these lncRNAs may influence PCa prognosis and sensitivity to therapeutic agents by affecting pathways such as cell cycle. Knockdown of AC009812.4 could inhibit the ability of PCa cells to proliferate, migrate and invade, and compare to paracancerous tissue, AC009812.4 in PCa tissue has significantly higher expression. CONCLUSION Our research uncovers the prognostic significance of lncRNAs associated with LLPS in PCa and established a model exhibiting excellent predictive accuracy for prognosis. Those lncRNAs may influence progress of PCa as well as sensitivity to therapy drugs through pathways such as cell cycle.
Collapse
Affiliation(s)
- Jiangping Qiu
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.1 Zhanqian Heng'er Road, Dongchong Town, Shanwei City, 516621, Guangdong, China
| | - Cong Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Zhihan Yuan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Jintao Hu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Jiang Wu
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.1 Zhanqian Heng'er Road, Dongchong Town, Shanwei City, 516621, Guangdong, China.
| | - Cheng Liu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Guangzhou, 510000, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510000, Guangdong, China.
| | - Kewei Xu
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.1 Zhanqian Heng'er Road, Dongchong Town, Shanwei City, 516621, Guangdong, China.
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Guangzhou, 510000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510000, Guangdong, China.
- Sun Yat-Sen University School of Medicine, Sun Yat-Sen University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
4
|
Li P, Chen P, Qi F, Shi J, Zhu W, Li J, Zhang P, Xie H, Li L, Lei M, Ren X, Wang W, Zhang L, Xiang X, Zhang Y, Gao Z, Feng X, Du W, Liu X, Xia L, Liu BF, Li Y. High-throughput and proteome-wide discovery of endogenous biomolecular condensates. Nat Chem 2024; 16:1101-1112. [PMID: 38499848 DOI: 10.1038/s41557-024-01485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Phase separation inside mammalian cells regulates the formation of the biomolecular condensates that are related to gene expression, signalling, development and disease. However, a large population of endogenous condensates and their candidate phase-separating proteins have yet to be discovered in a quantitative and high-throughput manner. Here we demonstrate that endogenously expressed biomolecular condensates can be identified across a cell's proteome by sorting proteins across varying oligomeric states. We employ volumetric compression to modulate the concentrations of intracellular proteins and the degree of crowdedness, which are physical regulators of cellular biomolecular condensates. The changes in degree of the partition of proteins into condensates or phase separation led to varying oligomeric states of the proteins, which can be detected by coupling density gradient ultracentrifugation and quantitative mass spectrometry. In total, we identified 1,518 endogenous condensate proteins, of which 538 have not been reported before. Furthermore, we demonstrate that our strategy can identify condensate proteins that respond to specific biological processes.
Collapse
Affiliation(s)
- Pengjie Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fukang Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jinyun Shi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenjie Zhu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiashuo Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Peng Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lina Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mengcheng Lei
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xueqing Ren
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenhui Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liang Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yiwei Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhaolong Gao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Limin Xia
- Department of Gastroenterology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Wang X, Liu J, Mao C, Mao Y. Phase separation-mediated biomolecular condensates and their relationship to tumor. Cell Commun Signal 2024; 22:143. [PMID: 38383403 PMCID: PMC10880379 DOI: 10.1186/s12964-024-01518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Phase separation is a cellular phenomenon where macromolecules aggregate or segregate, giving rise to biomolecular condensates resembling "droplets" and forming distinct, membrane-free compartments. This process is pervasive in biological cells, contributing to various essential cellular functions. However, when phase separation goes awry, leading to abnormal molecular aggregation, it can become a driving factor in the development of diseases, including tumor. Recent investigations have unveiled the intricate connection between dysregulated phase separation and tumor pathogenesis, highlighting its potential as a novel therapeutic target. This article provides an overview of recent phase separation research, with a particular emphasis on its role in tumor, its therapeutic implications, and outlines avenues for further exploration in this intriguing field.
Collapse
Affiliation(s)
- Xi Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jiameng Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Yufei Mao
- Department of Ultrasound Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
6
|
Ramšak M, Ramirez DA, Hough LE, Shirts MR, Vidmar S, Eleršič Filipič K, Anderluh G, Jerala R. Programmable de novo designed coiled coil-mediated phase separation in mammalian cells. Nat Commun 2023; 14:7973. [PMID: 38042897 PMCID: PMC10693550 DOI: 10.1038/s41467-023-43742-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Membraneless liquid compartments based on phase-separating biopolymers have been observed in diverse cell types and attributed to weak multivalent interactions predominantly based on intrinsically disordered domains. The design of liquid-liquid phase separated (LLPS) condensates based on de novo designed tunable modules that interact in a well-understood, controllable manner could improve our understanding of this phenomenon and enable the introduction of new features. Here we report the construction of CC-LLPS in mammalian cells, based on designed coiled-coil (CC) dimer-forming modules, where the stability of CC pairs, their number, linkers, and sequential arrangement govern the transition between diffuse, liquid and immobile condensates and are corroborated by coarse-grained molecular simulations. Through modular design, we achieve multiple coexisting condensates, chemical regulation of LLPS, condensate fusion, formation from either one or two polypeptide components or LLPS regulation by a third polypeptide chain. These findings provide further insights into the principles underlying LLPS formation and a design platform for controlling biological processes.
Collapse
Affiliation(s)
- Maruša Ramšak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Dominique A Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Loren E Hough
- Department of Physics and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Sara Vidmar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Eleršič Filipič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Wang Y, Mao A, Liu J, Li P, Zheng S, Tong T, Li Z, Zhang H, Ma L, Lin J, Pang Z, Han Q, Qi F, Zhang X, Chen M, He X, Zhang X, Fei T, Liu BF, Gao D, Cao L, Wang Q, Li Y, Sheng R. USP10 strikes down β-catenin by dual-wielding deubiquitinase activity and phase separation potential. Cell Chem Biol 2023; 30:1436-1452.e10. [PMID: 37611590 DOI: 10.1016/j.chembiol.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 07/30/2023] [Indexed: 08/25/2023]
Abstract
Wnt/β-catenin signaling is a conserved pathway crucially governing development, homeostasis, and oncogenesis. Discoveries of its regulators hold great values in both basic and translational research. Through screening, we identified a deubiquitinase, USP10, as a critical modulator of β-catenin. Mechanistically, USP10 binds to key scaffold Axin1 via conserved motifs and stabilizes Axin1 through K48-linked deubiquitination. Surprisingly, USP10 physically tethers Axin1 and β-catenin and promotes the phase separation for β-catenin suppression regardless of the enzymatic activity. Function-wise, USP10 enzymatic activity preferably regulates embryonic development and both the enzymatic activity and physical function jointly control intestinal homeostasis by antagonizing β-catenin. In colorectal cancer, USP10 substantially represses cancer growth mainly through physical promotion of phase separation and correlates with Wnt/β-catenin magnitude clinically. Collectively, we discovered USP10 functioning in multiple biological processes against β-catenin and unearthed the enzyme-dependent and -independent "dual-regulating" mechanism. These two functions of USP10 work in parallel and are context dependent.
Collapse
Affiliation(s)
- Yinuo Wang
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Aihua Mao
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Jingwei Liu
- College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Pengjie Li
- Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoqin Zheng
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Tong Tong
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Zexu Li
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Haijiao Zhang
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Lanjing Ma
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Jiahui Lin
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Zhongqiu Pang
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Qing Han
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Fukang Qi
- Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Maorong Chen
- F.M Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Xi He
- F.M Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Teng Fei
- College of Life and Health Science, Northeastern University, Shenyang 110819, China
| | - Bi-Feng Liu
- Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Yiwei Li
- Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ren Sheng
- College of Life and Health Science, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
8
|
Toledo PL, Gianotti AR, Vazquez DS, Ermácora MR. Protein nanocondensates: the next frontier. Biophys Rev 2023; 15:515-530. [PMID: 37681092 PMCID: PMC10480383 DOI: 10.1007/s12551-023-01105-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
Over the past decade, myriads of studies have highlighted the central role of protein condensation in subcellular compartmentalization and spatiotemporal organization of biological processes. Conceptually, protein condensation stands at the highest level in protein structure hierarchy, accounting for the assembly of bodies ranging from thousands to billions of molecules and for densities ranging from dense liquids to solid materials. In size, protein condensates range from nanocondensates of hundreds of nanometers (mesoscopic clusters) to phase-separated micron-sized condensates. In this review, we focus on protein nanocondensation, a process that can occur in subsaturated solutions and can nucleate dense liquid phases, crystals, amorphous aggregates, and fibers. We discuss the nanocondensation of proteins in the light of general physical principles and examine the biophysical properties of several outstanding examples of nanocondensation. We conclude that protein nanocondensation cannot be fully explained by the conceptual framework of micron-scale biomolecular condensation. The evolution of nanocondensates through changes in density and order is currently under intense investigation, and this should lead to the development of a general theoretical framework, capable of encompassing the full range of sizes and densities found in protein condensates.
Collapse
Affiliation(s)
- Pamela L. Toledo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Diego S. Vazquez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Mario R. Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
9
|
Abstract
Biomolecular condensates constitute a newly recognized form of spatial organization in living cells. Although many condensates are believed to form as a result of phase separation, the physicochemical properties that determine the phase behavior of heterogeneous biomolecular mixtures are only beginning to be explored. Theory and simulation provide invaluable tools for probing the relationship between molecular determinants, such as protein and RNA sequences, and the emergence of phase-separated condensates in such complex environments. This review covers recent advances in the prediction and computational design of biomolecular mixtures that phase-separate into many coexisting phases. First, we review efforts to understand the phase behavior of mixtures with hundreds or thousands of species using theoretical models and statistical approaches. We then describe progress in developing analytical theories and coarse-grained simulation models to predict multiphase condensates with the molecular detail required to make contact with biophysical experiments. We conclude by summarizing the challenges ahead for modeling the inhomogeneous spatial organization of biomolecular mixtures in living cells.
Collapse
Affiliation(s)
- William M Jacobs
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Biomolecular condensation involving the cytoskeleton. Brain Res Bull 2023; 194:105-117. [PMID: 36690162 DOI: 10.1016/j.brainresbull.2023.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Biomolecular condensation of proteins contributes to the organization of the cytoplasm and nucleoplasm. A number of condensation processes appear to be directly involved in regulating the structure, function and dynamics of the cytoskeleton. Liquid-liquid phase separation of cytoskeleton proteins, together with polymerization modulators, promotes cytoskeletal fiber nucleation and branching. Furthermore, the attachment of protein condensates to the cytoskeleton can contribute to cytoskeleton stability and organization, regulate transport, create patterns of functional reaction containers, and connect the cytoskeleton with membranes. Surface-bound condensates can exert and buffer mechanical forces that give stability and flexibility to the cytoskeleton, thus, may play a large role in cell biology. In this review, we introduce the concept and role of cellular biomolecular condensation, explain its special function on cytoskeletal fiber surfaces, and point out potential definition and experimental caveats. We review the current literature on protein condensation processes related to the actin, tubulin, and intermediate filament cytoskeleton, and discuss some of them in the context of neurobiology. In summary, we provide an overview about biomolecular condensation in relation to cytoskeleton structure and function, which offers a base for the exploration and interpretation of cytoskeletal condensates in neurobiology.
Collapse
|
11
|
Phase separation of SGS3 drives siRNA body formation and promotes endogenous gene silencing. Cell Rep 2023; 42:111985. [PMID: 36640363 DOI: 10.1016/j.celrep.2022.111985] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/26/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The generation of small interfering RNA (siRNA) involves many RNA processing components, including SUPPRESSOR OF GENE SILENCING 3 (SGS3), RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), and DICER-LIKE proteins (DCLs). Nonetheless, how these components are coordinated to produce siRNAs is unclear. Here, we show that SGS3 forms condensates via phase separation in vivo and in vitro. SGS3 interacts with RDR6 and drives it to form siRNA bodies in cytoplasm, which is promoted by SGS3-targeted RNAs. Disrupting SGS3 phase separation abrogates siRNA body assembly and siRNA biogenesis, whereas coexpression of SGS3 and RDR6 induces siRNA body formation in tobacco and yeast cells. Dysfunction in translation and mRNA decay increases the number of siRNA bodies, whereas DCL2/4 mutations enhance their size. Purification of SGS3 condensates identifies numerous RNA-binding proteins and siRNA processing components. Together, our findings reveal that SGS3 phase separation-mediated formation of siRNA bodies is essential for siRNA production and gene silencing.
Collapse
|
12
|
Vazquez DS, Toledo PL, Gianotti AR, Ermácora MR. Protein conformation and biomolecular condensates. Curr Res Struct Biol 2022; 4:285-307. [PMID: 36164646 PMCID: PMC9508354 DOI: 10.1016/j.crstbi.2022.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/27/2022] Open
Abstract
Protein conformation and cell compartmentalization are fundamental concepts and subjects of vast scientific endeavors. In the last two decades, we have witnessed exciting advances that unveiled the conjunction of these concepts. An avalanche of studies highlighted the central role of biomolecular condensates in membraneless subcellular compartmentalization that permits the spatiotemporal organization and regulation of myriads of simultaneous biochemical reactions and macromolecular interactions. These studies have also shown that biomolecular condensation, driven by multivalent intermolecular interactions, is mediated by order-disorder transitions of protein conformation and by protein domain architecture. Conceptually, protein condensation is a distinct level in protein conformational landscape in which collective folding of large collections of molecules takes place. Biomolecular condensates arise by the physical process of phase separation and comprise a variety of bodies ranging from membraneless organelles to liquid condensates to solid-like conglomerates, spanning lengths from mesoscopic clusters (nanometers) to micrometer-sized objects. In this review, we summarize and discuss recent work on the assembly, composition, conformation, material properties, thermodynamics, regulation, and functions of these bodies. We also review the conceptual framework for future studies on the conformational dynamics of condensed proteins in the regulation of cellular processes.
Collapse
Affiliation(s)
- Diego S. Vazquez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Pamela L. Toledo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Mario R. Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| |
Collapse
|
13
|
Krishnan R, Ranganathan S, Maji SK, Padinhateeri R. Role of non-specific interactions in the phase-separation and maturation of macromolecules. PLoS Comput Biol 2022; 18:e1010067. [PMID: 35533203 PMCID: PMC9119624 DOI: 10.1371/journal.pcbi.1010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/19/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Phase separation of biomolecules could be mediated by both specific and non-specific interactions. How the interplay between non-specific and specific interactions along with polymer entropy influences phase separation is an open question. We address this question by simulating self-associating molecules as polymer chains with a short core stretch that forms the specifically interacting functional interface and longer non-core regions that participate in non-specific/promiscuous interactions. Our results show that the interplay of specific (strength, ϵsp) and non-specific interactions (strength, ϵns) could result in phase separation of polymers and its transition to solid-like aggregates (mature state). In the absence of ϵns, the polymer chains do not dwell long enough in the vicinity of each other to undergo phase separation and transition into a mature state. On the other hand, in the limit of strong ϵns, the assemblies cannot transition into the mature state and form a non-specific assembly, suggesting an optimal range of interactions favoring mature multimers. In the scenario where only a fraction (Nfrac) of the non-core regions participate in attractive interactions, we find that slight modifications to either ϵns or Nfrac can result in dramatically altered self-assembled states. Using a combination of heterogeneous and homogeneous mix of polymers, we establish how this interplay between interaction energies dictates the propensity of biomolecules to find the correct binding partner at dilute concentrations in crowded environments.
Collapse
Affiliation(s)
- Rakesh Krishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Srivastav Ranganathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SR); (RP)
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SR); (RP)
| |
Collapse
|
14
|
PPARγ phase separates with RXRα at PPREs to regulate target gene expression. Cell Discov 2022; 8:37. [PMID: 35473936 PMCID: PMC9043196 DOI: 10.1038/s41421-022-00388-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ is a key transcription activator controlling adipogenesis and lipid metabolism. PPARγ binds PPAR response elements (PPREs) as the obligate heterodimer with retinoid X receptor (RXR) α, but exactly how PPARγ orchestrates the transcriptional response is unknown. This study demonstrates that PPARγ forms phase-separated droplets in vitro and solid-like nuclear condensates in cell, which is intriguingly mediated by its DNA binding domain characterized by the zinc finger motif. Furthermore, PPARγ forms nuclear condensates at PPREs sites through phase separation to compartmentalize its heterodimer partner RXRα to initiate PPARγ-specific transcriptional activation. Finally, using an optogenetic approach, the enforced formation of PPARγ/RXRα condensates leads to preferential enrichment at PPREs sites and significantly promotes the expression of PPARγ target genes. These results define a novel mechanism by which PPARγ engages the phase separation principles for efficient and specific transcriptional activation.
Collapse
|
15
|
Abstract
The purpose of this review is to explore self-organizing mechanisms that pattern microtubules (MTs) and spatially organize animal cell cytoplasm, inspired by recent experiments in frog egg extract. We start by reviewing conceptual distinctions between self-organizing and templating mechanisms for subcellular organization. We then discuss self-organizing mechanisms that generate radial MT arrays and cell centers in the absence of centrosomes. These include autocatalytic MT nucleation, transport of minus ends, and nucleation from organelles such as melanosomes and Golgi vesicles that are also dynein cargoes. We then discuss mechanisms that partition the cytoplasm in syncytia, in which multiple nuclei share a common cytoplasm, starting with cytokinesis, when all metazoan cells are transiently syncytial. The cytoplasm of frog eggs is partitioned prior to cytokinesis by two self-organizing modules, protein regulator of cytokinesis 1 (PRC1)-kinesin family member 4A (KIF4A) and chromosome passenger complex (CPC)-KIF20A. Similar modules may partition longer-lasting syncytia, such as early Drosophila embryos. We end by discussing shared mechanisms and principles for the MT-based self-organization of cellular units.
Collapse
Affiliation(s)
- Timothy J Mitchison
- Harvard Medical School, Boston, Massachusetts 02115, USA; ,
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Christine M Field
- Harvard Medical School, Boston, Massachusetts 02115, USA; ,
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
16
|
Hazawa M, Amemori S, Nishiyama Y, Iga Y, Iwashima Y, Kobayashi A, Nagatani H, Mizuno M, Takahashi K, Wong RW. A light-switching pyrene probe to detect phase-separated biomolecules. iScience 2021; 24:102865. [PMID: 34386728 PMCID: PMC8346672 DOI: 10.1016/j.isci.2021.102865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/04/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Biomolecules may undergo liquid-liquid phase separation (LLPS) to spatiotemporally compartmentalize and regulate diverse biological processes. Because the number of tools to directly probe LLPS is limited (ie. FRAP, FRET, fluorescence microscopy, fluorescence anisotropy, circular dichroism, etc.), the physicochemical traits of phase-separated condensates remain largely elusive. Here, we introduce a light-switching dipyrene probe (Pyr-A) that forms monomers in either hydrophobic or viscous environments, and intramolecular excimers in aqueous solutions. By exploiting their distinct fluorescence emission spectra, we used fluorescent microscopic imaging to study phase-separated condensates formed by in vitro protein droplets and membraneless intracellular organelles (centrosomes). Ratiometric measurement of excimer and monomer fluorescence intensities showed that protein droplets became hydrophobic and viscous as their size increased. Moreover, centrosomes became hydrophobic and viscous during maturation. Our results show that Pyr-A is a valuable tool to characterize LLPS and enhance our understanding of phase separation underlying biological functions.
Collapse
Affiliation(s)
- Masaharu Hazawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shogo Amemori
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- NanoMaterials Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshio Nishiyama
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshihiro Iga
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuki Iwashima
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akiko Kobayashi
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hirohisa Nagatani
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Motohiro Mizuno
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- NanoMaterials Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kenji Takahashi
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Richard W. Wong
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
17
|
Pereira SG, Dias Louro MA, Bettencourt-Dias M. Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure. Annu Rev Cell Dev Biol 2021; 37:43-63. [PMID: 34314592 DOI: 10.1146/annurev-cellbio-120219-051400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centrosome is a main orchestrator of the animal cellular microtubule cytoskeleton. Dissecting its structure and assembly mechanisms has been a goal of cell biologists for over a century. In the last two decades, a good understanding of the molecular constituents of centrosomes has been achieved. Moreover, recent breakthroughs in electron and light microscopy techniques have enabled the inspection of the centrosome and the mapping of its components with unprecedented detail. However, we now need a profound and dynamic understanding of how these constituents interact in space and time. Here, we review the latest findings on the structural and molecular architecture of the centrosome and how its biogenesis is regulated, highlighting how biophysical techniques and principles as well as quantitative modeling are changing our understanding of this enigmatic cellular organelle. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
18
|
Li J, Zhang Y, Chen X, Ma L, Li P, Yu H. Protein phase separation and its role in chromatin organization and diseases. Biomed Pharmacother 2021; 138:111520. [PMID: 33765580 DOI: 10.1016/j.biopha.2021.111520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
In the physical sciences, solid, liquid, and gas are the most familiar phase states, whose essence is their existence reflecting the different spatial distribution of molecular components. The biological molecules in the living cell also have differences in spatial distribution. The molecules organized in the form of membrane-bound organelles are well recognized. However, the biomolecules organized in membraneless compartments called biomolecular condensates remain elusive. The liquid-liquid phase separation (LLPS), as a new emerging scientific breakthrough, describes the biomolecules assembled in special distribution and appeared as membraneless condensates in the form of a new "phase" compared with the surrounding liquid milieu. LLPS provides an important theoretical basis for explaining the composition of biological molecules and related biological reactions. Mounting evidence has emerged recently that phase-separated condensates participate in various biological activities. This article reviews the occurrence of LLPS and underlying regulatory mechanisms for understanding how multivalent molecules drive phase transitions to form the biomolecular condensates. And, it also summarizes recent major progress in elucidating the roles of LLPS in chromatin organization and provides clues for the development of new innovative therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Jiaqi Li
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yao Zhang
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Xi Chen
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Lijuan Ma
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Haijie Yu
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China.
| |
Collapse
|
19
|
Xie D, Chen M, Niu J, Wang L, Li Y, Fang X, Li P, Qi Y. Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nat Cell Biol 2021; 23:32-39. [PMID: 33288888 DOI: 10.1038/s41556-020-00606-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023]
Abstract
MicroRNA (miRNA) production entails the step-wise processing of primary miRNAs (pri-miRNAs) into precursor miRNAs (pre-miRNAs) and miRNA/* duplexes by Dicing complexes containing DCL1, HYL1 and SE, which are localized in nuclear dicing bodies (D-bodies)1,2. Here, we show that D-bodies are phase-separated condensates. SE forms droplets and drives DCL1, HYL1 and pri/pre-miRNAs into the droplets in vitro, and mutation of SE abrogates the formation of D-bodies in vivo, which indicates that D-bodies arise through SE-mediated phase separation. Disruption of SE phase separation greatly reduces its activity in promoting miRNA processing both in vitro and in vivo. We further show that pre-miRNAs are processed into miRNA/* duplexes in the droplets and, after processing, miRNA/* duplexes are bound by HYL1 and released from the droplets. Our findings provide evidence that efficient miRNA processing depends on the SE-phase-separation-mediated formation of D-bodies and suggest a paradigm that the products made in phase-separated condensates can be shipped out for subsequent processes.
Collapse
Affiliation(s)
- Dongqi Xie
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Min Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jinrong Niu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Liang Wang
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Pilong Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
20
|
Hou C, Xie H, Fu Y, Ma Y, Li T. MloDisDB: a manually curated database of the relations between membraneless organelles and diseases. Brief Bioinform 2020; 22:5943794. [PMID: 33126250 DOI: 10.1093/bib/bbaa271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 01/03/2023] Open
Abstract
Cells are compartmentalized by numerous membrane-bounded organelles and membraneless organelles (MLOs) to ensure temporal and spatial regulation of various biological processes. A number of MLOs, such as nucleoli, nuclear speckles and stress granules, exist as liquid droplets within the cells and arise from the condensation of proteins and RNAs via liquid-liquid phase separation (LLPS). By concentrating certain proteins and RNAs, MLOs accelerate biochemical reactions and protect cells during stress, and dysfunction of MLOs is associated with various pathological processes. With the development in this field, more and more relations between the MLOs and diseases have been described; however, these results have not been made available in a centralized resource. Herein, we build MloDisDB, a database which aims to gather the relations between MLOs and diseases from dispersed literature. In addition, the relations between LLPS and diseases were included as well. Currently, MloDisDB contains 771 curated entries from 607 publications; each entry in MloDisDB contains detailed information about the MLO, the disease and the functional factor in the relation. Furthermore, an efficient and user-friendly interface for users to search, browse and download all entries was provided. MloDisDB is the first comprehensive database of the relations between MLOs and diseases so far, and the database is freely accessible at http://mlodis.phasep.pro/.
Collapse
Affiliation(s)
- Chao Hou
- Department of Biomedical Informatics, Peking University Health Science Center
| | | | - Yang Fu
- Peking University Health Science Center
| | - Yao Ma
- Peking University Health Science Center
| | - Tingting Li
- Department of Biomedical Informatics, Peking University Health Science Center, Beijing, China
| |
Collapse
|
21
|
Wang W, Chen Y, Xu A, Cai M, Cao J, Zhu H, Yang B, Shao X, Ying M, He Q. Protein phase separation: A novel therapy for cancer? Br J Pharmacol 2020; 177:5008-5030. [PMID: 32851637 DOI: 10.1111/bph.15242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, phase separation has been increasingly reported to play a pivotal role in a wide range of biological processes. Due to the close relationships between cancer and disorders in intracellular physiological function, the identification of new mechanisms involved in intracellular regulation has been regarded as a new direction for cancer therapy. Introducing the concept of phase separation into complex descriptions of disease mechanisms may provide many different insights. Here, we review the recent findings on the phase separation of cancer-related proteins, describing the possible relationships between phase separation and key proteins associated with cancer and indicate possible regulatory modalities, especially drug candidates for phase separation, which may provide more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqian Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aixiao Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minyi Cai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Trivedi P, Stukenberg PT. A Condensed View of the Chromosome Passenger Complex. Trends Cell Biol 2020; 30:676-687. [PMID: 32684321 PMCID: PMC10714244 DOI: 10.1016/j.tcb.2020.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/02/2023]
Abstract
The inner centromere is a region on the mitotic chromosome that serves as a platform for mitotic signaling and possesses unique biophysical properties that enable it to withstand relatively large pulling forces that are generated by kinetochores (KTs) during chromosome segregation. The chromosomal passenger complex (CPC) localizes to and is the key regulator of inner centromere organization and function during mitosis. Recently, we demonstrated that in addition to its kinase and histone code-reading activities, the CPC also can undergo liquid-liquid phase separation (LLPS) and proposed that the inner centromere is a membraneless organelle scaffolded by the CPC. In this perspective, we explore mechanisms that can allow the formation and dissolution of this membraneless body. The cell-cycle-regulated spatially defined assembly and disassembly of the CPC condensate at the inner centromere can reveal general principles about how histone modifications control chromatin-bound membraneless organelles. We further explore how the ability of the CPC to undergo LLPS may contribute to the organization and function of the inner centromere during mitosis.
Collapse
Affiliation(s)
- Prasad Trivedi
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - P Todd Stukenberg
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
23
|
Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. SCIENCE CHINA. LIFE SCIENCES 2020; 63:953-985. [PMID: 32548680 DOI: 10.1007/s11427-020-1702-x] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.
Collapse
|
24
|
Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 2020; 21:151-166. [DOI: 10.1038/s41580-019-0208-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/31/2022]
|
25
|
Liu X, Shen J, Xie L, Wei Z, Wong C, Li Y, Zheng X, Li P, Song Y. Mitotic Implantation of the Transcription Factor Prospero via Phase Separation Drives Terminal Neuronal Differentiation. Dev Cell 2020; 52:277-293.e8. [DOI: 10.1016/j.devcel.2019.11.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 10/09/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
|
26
|
Supramolecular Fuzziness of Intracellular Liquid Droplets: Liquid-Liquid Phase Transitions, Membrane-Less Organelles, and Intrinsic Disorder. Molecules 2019; 24:molecules24183265. [PMID: 31500307 PMCID: PMC6767272 DOI: 10.3390/molecules24183265] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Cells are inhomogeneously crowded, possessing a wide range of intracellular liquid droplets abundantly present in the cytoplasm of eukaryotic and bacterial cells, in the mitochondrial matrix and nucleoplasm of eukaryotes, and in the chloroplast’s stroma of plant cells. These proteinaceous membrane-less organelles (PMLOs) not only represent a natural method of intracellular compartmentalization, which is crucial for successful execution of various biological functions, but also serve as important means for the processing of local information and rapid response to the fluctuations in environmental conditions. Since PMLOs, being complex macromolecular assemblages, possess many characteristic features of liquids, they represent highly dynamic (or fuzzy) protein–protein and/or protein–nucleic acid complexes. The biogenesis of PMLOs is controlled by specific intrinsically disordered proteins (IDPs) and hybrid proteins with ordered domains and intrinsically disordered protein regions (IDPRs), which, due to their highly dynamic structures and ability to facilitate multivalent interactions, serve as indispensable drivers of the biological liquid–liquid phase transitions (LLPTs) giving rise to PMLOs. In this article, the importance of the disorder-based supramolecular fuzziness for LLPTs and PMLO biogenesis is discussed.
Collapse
|